Antimicrobial and Immunomodulatory Potential of Cow Colostrum Extracellular Vesicles (ColosEVs) in an Intestinal In Vitro Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Farm and Animals Selection
2.2. Strains Isolation and Characterization
2.3. Colostrum Collection and ColosEV Isolation
2.4. ColosEV Morphological Characterization
2.4.1. Western Blotting
2.4.2. Transmission Electron Microscopy (TEM)
2.4.3. Nanoparticle Tracking Analysis (NTA)
2.5. Cell Cultures
2.5.1. Cell Viability Assay
2.5.2. ColosEV and E. coli Cell Treatments
2.6. Bacterial Adhesion Assay
2.7. Gene Expression Assay
2.8. Statystical Analysis
3. Results
3.1. Strains Isolation and Characterization
3.2. ColosEVs Morphologic Characterization
3.3. Cell Viability
3.4. Gene Expression Assay
3.5. Bacterial Adhesion
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McGrath, B.A.; Fox, P.F.; McSweeney, P.L.H.; Kelly, A.L. Composition and Properties of Bovine Colostrum: A Review. Dairy Sci. Technol. 2016, 96, 133–158. [Google Scholar] [CrossRef] [Green Version]
- Van Hese, I.; Goossens, K.; Vandaele, L.; Opsomer, G. Invited Review: MicroRNAs in Bovine Colostrum—Focus on Their Origin and Potential Health Benefits for the Calf. J. Dairy Sci. 2020, 103, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, T.; Li, W.; Chen, Y.; Cobo, E.R.; Windeyer, C.; Gamsjäger, L.; Diao, Q.; Tu, Y.; Guan, L.L. Assessment of MicroRNA Profiles in Small Extracellular Vesicles Isolated from Bovine Colostrum with Different Immunoglobulin G Concentrations. JDS Commun. 2022, 3, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Kalluri, R.; LeBleu, V.S. The Biology, Function, and Biomedical Applications of Exosomes. Science 2020, 367, eaau6977. [Google Scholar] [CrossRef] [PubMed]
- El Andaloussi, S.; Mäger, I.; Breakefield, X.O.; Wood, M.J.A. Extracellular Vesicles: Biology and Emerging Therapeutic Opportunities. Nat. Rev. Drug Discov. 2013, 12, 347–357. [Google Scholar] [CrossRef]
- Malkin, E.Z.; Bratman, S.V. Bioactive DNA from Extracellular Vesicles and Particles. Cell Death Dis. 2020, 11, 584. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Liu, H.; Tang, W.H. Exosomes: Biogenesis, Biologic Function and Clinical Potential. Cell Biosci. 2019, 9, 19. [Google Scholar] [CrossRef]
- Lee, Y.; El Andaloussi, S.; Wood, M.J.A. Exosomes and Microvesicles: Extracellular Vesicles for Genetic Information Transfer and Gene Therapy. Hum. Mol. Genet. 2012, 21, R125–R134. [Google Scholar] [CrossRef] [Green Version]
- Cocucci, E.; Meldolesi, J. Ectosomes and Exosomes: Shedding the Confusion between Extracellular Vesicles. Trends Cell Biol. 2015, 25, 364–372. [Google Scholar] [CrossRef]
- Caruso, S.; Poon, I.K.H. Apoptotic Cell-Derived Extracellular Vesicles: More Than Just Debris. Front. Immunol. 2018, 9, 1486. [Google Scholar] [CrossRef]
- Raposo, G.; Stoorvogel, W. Extracellular Vesicles: Exosomes, Microvesicles, and Friends. J. Cell Biol. 2013, 200, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, Y.; Miura, Y.; Harazono, A.; Kanai-Azuma, M.; Akimoto, Y.; Kawakami, H.; Yamaguchi, T.; Toda, T.; Endo, T.; Tsubuki, M.; et al. Proteomic Analysis of Two Types of Exosomes in Human Whole Saliva. Biol. Pharm. Bull. 2011, 34, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Masyuk, A.I.; Huang, B.Q.; Ward, C.J.; Gradilone, S.A.; Banales, J.M.; Masyuk, T.V.; Radtke, B.; Splinter, P.L.; LaRusso, N.F. Biliary Exosomes Influence Cholangiocyte Regulatory Mechanisms and Proliferation through Interaction with Primary Cilia. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 299, G990–G999. [Google Scholar] [CrossRef] [Green Version]
- Admyre, C.; Grunewald, J.; Thyberg, J.; Gripenbäck, S.; Tornling, G.; Eklund, A.; Scheynius, A.; Gabrielsson, S. Exosomes with Major Histocompatibility Complex Class II and Co-Stimulatory Molecules Are Present in Human BAL Fluid. Eur. Respir. J. 2003, 22, 578–583. [Google Scholar] [CrossRef]
- Dear, J.W.; Street, J.M.; Bailey, M.A. Urinary Exosomes: A Reservoir for Biomarker Discovery and Potential Mediators of Intrarenal Signalling. Proteomics 2013, 13, 1572–1580. [Google Scholar] [CrossRef]
- Admyre, C.; Johansson, S.M.; Qazi, K.R.; Filen, J.-J.; Lahesmaa, R.; Norman, M.; Neve, E.P.A.; Scheynius, A.; Gabrielsson, S. Exosomes with Immune Modulatory Features Are Present in Human Breast Milk. J. Immunol. 2007, 179, 1969–1978. [Google Scholar] [CrossRef] [Green Version]
- Santoro, J.; Mukhopadhya, A.; Oliver, C.; Brodkorb, A.; Giblin, L.; O’Driscoll, L. An Investigation of Extracellular Vesicles in Bovine Colostrum, First Milk and Milk over the Lactation Curve. Food Chem. 2023, 401, 134029. [Google Scholar] [CrossRef]
- Ferreira, R.F. Comparative Proteome Profiling in Exosomes Derived from Porcine Colostrum versus Mature Milk Reveals Distinct Functional Proteomes. J. Proteom. 2021, 249, 104338. [Google Scholar] [CrossRef]
- Ross, M. The Bioactivity of Colostrum and Milk Exosomes of High, Average, and Low Immune Responder Cows on Human Intestinal Epithelial Cells. J. Dairy Sci. 2021, 104, 2499–2510. [Google Scholar] [CrossRef]
- El-kattawy, A.M.; Algezawy, O.; Alfaifi, M.Y.; Noseer, E.A.; Hawsawi, Y.M.; Alzahrani, O.R.; Algarni, A.; Kahilo, K.A.; El-Magd, M.A. Therapeutic Potential of Camel Milk Exosomes against HepaRG Cells with Potent Apoptotic, Anti-Inflammatory, and Anti-Angiogenesis Effects for Colostrum Exosomes. Biomed. Pharmacother. 2021, 143, 112220. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Cho, H.; Kim, H.; Jang, Y.; Jang, H.; Kim, D.E.; Kim, E.S.; Kim, E.H.; Hwang, K.Y.; Kim, K.; et al. Bovine Colostrum Derived-Exosomes Prevent Dextran Sulfate Sodium-Induced Intestinal Colitis via Suppression of Inflammation and Oxidative Stress. Biomater. Sci. 2022, 10, 2076–2087. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, D.E.; Han, G.; Lim, N.R.; Kim, E.H.; Jang, Y.; Cho, H.; Jang, H.; Kim, K.H.; Kim, S.H.; et al. Harnessing the Natural Healing Power of Colostrum: Bovine Milk-Derived Extracellular Vesicles from Colostrum Facilitating the Transition from Inflammation to Tissue Regeneration for Accelerating Cutaneous Wound Healing. Adv. Healthc. Mater. 2022, 11, 2102027. [Google Scholar] [CrossRef] [PubMed]
- Yun, B.; Maburutse, B.E.; Kang, M.; Park, M.R.; Park, D.J.; Kim, Y.; Oh, S. Short Communication: Dietary Bovine Milk–Derived Exosomes Improve Bone Health in an Osteoporosis-Induced Mouse Model. J. Dairy Sci. 2020, 103, 7752–7760. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, S. Identification and Comparison of Exosomal MicroRNAs in the Milk and Colostrum of Two Different Cow Breeds. Gene 2020, 743, 144609. [Google Scholar] [CrossRef]
- Feuerstein, A.; Scuda, N.; Klose, C.; Hoffmann, A.; Melchner, A.; Boll, K.; Rettinger, A.; Fell, S.; Straubinger, R.K.; Riehm, J.M. Antimicrobial Resistance, Serologic and Molecular Characterization of E. Coli Isolated from Calves with Severe or Fatal Enteritis in Bavaria, Germany. Antibiotics 2021, 11, 23. [Google Scholar] [CrossRef]
- Naylor, J.M. Neonatal Calf Diarrhea. In Food Animal Practice, 5th ed.; Anderson, D.E., Rings, D.M., Eds.; W.B. Saunders: Saint Louis, MO, USA, 2009; Chapter 21; pp. 70–77. ISBN 978-1-4160-3591-6. [Google Scholar]
- Mohammed, S.A.E.-M.; Marouf, S.A.E.-M.; Erfana, A.M.; El-Jakee, J.K.A.E.-H.; Hessain, A.M.; Dawoud, T.M.; Kabli, S.A.; Moussa, I.M. Risk Factors Associated with E. Coli Causing Neonatal Calf Diarrhea. Saudi J. Biol. Sci. 2019, 26, 1084–1088. [Google Scholar] [CrossRef]
- Lu, L.; Hu, W.; Tian, Z.; Yuan, D.; Yi, G.; Zhou, Y.; Cheng, Q.; Zhu, J.; Li, M. Developing Natural Products as Potential Anti-Biofilm Agents. Chin. Med. 2019, 14, 11. [Google Scholar] [CrossRef] [Green Version]
- Vivas, R.; Barbosa, A.A.T.; Dolabela, S.S.; Jain, S. Multidrug-Resistant Bacteria and Alternative Methods to Control Them: An Overview. Microb. Drug Resist. 2019, 25, 890–908. [Google Scholar] [CrossRef]
- He, B.; Hamby, R.; Jin, H. Plant Extracellular Vesicles: Trojan Horses of Cross-kingdom Warfare. FASEB Bioadv. 2021, 3, 657–664. [Google Scholar] [CrossRef]
- Brakhage, A.A.; Zimmermann, A.-K.; Rivieccio, F.; Visser, C.; Blango, M.G. Host-Derived Extracellular Vesicles for Antimicrobial Defense. microLife 2021, 2, uqab003. [Google Scholar] [CrossRef]
- Leiva-Sabadini, C.; Alvarez, S.; Barrera, N.P.; Schuh, C.M.A.P.; Aguayo, S. Antibacterial Effect of Honey-Derived Exosomes Containing Antimicrobial Peptides Against Oral Streptococci. Int. J. Nanomed. 2021, 16, 4891–4900. [Google Scholar] [CrossRef]
- Razzuoli, E.; Villa, R.; Amadori, M. IPEC-J2 Cells as Reporter System of the Anti-Inflammatory Control Actions of Interferon-Alpha. J. Interferon Cytokine Res. 2013, 33, 597–605. [Google Scholar] [CrossRef] [Green Version]
- Mariani, V.; Palermo, S.; Fiorentini, S.; Lanubile, A.; Giuffra, E. Gene Expression Study of Two Widely Used Pig Intestinal Epithelial Cell Lines: IPEC-J2 and IPI-2I. Vet. Immunol. Immunopathol. 2009, 131, 278–284. [Google Scholar] [CrossRef]
- Nielsen, E.M.; Andersen, M.T. Detection and Characterization of Verocytotoxin-Producing Escherichia Coli by Automated 5′ Nuclease PCR Assay. J. Clin. Microbiol. 2003, 41, 2884–2893. [Google Scholar] [CrossRef] [Green Version]
- Casey, T.A.; Bosworth, B.T. Design and Evaluation of a Multiplex Polymerase Chain Reaction Assay for the Simultaneous Identification of Genes for Nine Different Virulence Factors Associated with Escherichia Coli That Cause Diarrhea and Edema Disease in Swine. J. Vet. Diagn. Investig. 2009, 21, 25–30. [Google Scholar] [CrossRef] [Green Version]
- de Brito, B.G.; da Silva Leite, D.; Linhares, R.E.C.; Vidotto, M.C. Virulence-Associated Factors of Uropathogenic Escherichia Coli Strains Isolated from Pigs. Vet. Microbiol. 1999, 65, 123–132. [Google Scholar] [CrossRef]
- Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 5th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020; ISBN 978-1-68440-092-8.
- Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 4th ed.; VET08; Lubbers, B.V. (Ed.) Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; ISBN 978-1-68440-010-2. [Google Scholar]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs for Antifungal Agents, Version 10.0. 2020. Available online: http://www.policlinico.pa.it/portal/pdf/news/CIO/Breakpoint%20EUCAST%20per%20l_interpretazione%20delle%20MIC%20per%20farmaci%20antimicotici%202022.pdf (accessed on 14 December 2021).
- Teale, C.; Borriello, P. A Proposed Scheme for the Monitoring of Antibiotic Resistance in Veterinary Pathogens of Food Animals in the UK. Vet. Rec. 2021, 189, e201. [Google Scholar] [CrossRef]
- Mecocci, S.; Pietrucci, D.; Milanesi, M.; Pascucci, L.; Filippi, S.; Rosato, V.; Chillemi, G.; Capomaccio, S.; Cappelli, K. Transcriptomic Characterization of Cow, Donkey and Goat Milk Extracellular Vesicles Reveals Their Anti-Inflammatory and Immunomodulatory Potential. Int. J. Mol. Sci. 2021, 22, 12759. [Google Scholar] [CrossRef]
- Razzuoli, E.; Amadori, M.; Lazzara, F.; Bilato, D.; Ferraris, M.; Vito, G.; Ferrari, A. Salmonella Serovar-Specific Interaction with Jejunal Epithelial Cells. Vet. Microbiol. 2017, 207, 219–225. [Google Scholar] [CrossRef]
- Schmidt, L.D.; Kohrt, L.J.; Brown, D.R. Comparison of Growth Phase on Salmonella Enterica Serovar Typhimurium Invasion in an Epithelial Cell Line (IPEC J2) and Mucosal Explants from Porcine Small Intestine. Comp. Immunol. Microbiol. Infect. Dis. 2008, 31, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Razzuoli, E.; Vencia, W.; Modesto, P.; Franzoni, G.; Giudici, S.D.; Parisi, E.; Ferrari, A.; Amadori, M. Yersinia Enterocolitica-Specific Modulation of Innate Immune Responses in Jejunal Epithelial Cells. Vet. Microbiol. 2020, 242, 108596. [Google Scholar] [CrossRef]
- Mecocci, S.; Ottaviani, A.; Razzuoli, E.; Fiorani, P.; Pietrucci, D.; De Ciucis, C.G.; Dei Giudici, S.; Franzoni, G.; Chillemi, G.; Cappelli, K. Cow Milk Extracellular Vesicle Effects on an In Vitro Model of Intestinal Inflammation. Biomedicines 2022, 10, 570. [Google Scholar] [CrossRef]
- Mecocci, S.; De Paolis, L.; Fruscione, F.; Pietrucci, D.; De Ciucis, C.G.; Giudici, S.D.; Franzoni, G.; Chillemi, G.; Cappelli, K.; Razzuoli, E. In Vitro Evaluation of Immunomodulatory Activities of Goat Milk Extracellular Vesicles (MEVs) in a Model of Gut Inflammation. Res. Vet. Sci. 2022, 152, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Razzuoli, E.; Villa, R.; Sossi, E.; Amadori, M. Reverse Transcription Real-Time PCR for Detection of Porcine Interferon α and β Genes: RT Real-Time PCR for Pig Interferon Genes. Scand. J. Immunol. 2011, 74, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Veldhuizen, E.J.A.; Koomen, I.; Ultee, T.; van Dijk, A.; Haagsman, H.P. Salmonella Serovar Specific Upregulation of Porcine Defensins 1 and 2 in a Jejunal Epithelial Cell Line. Vet. Microbiol. 2009, 136, 69–75. [Google Scholar] [CrossRef]
- Foster, D.M.; Smith, G.W. Pathophysiology of Diarrhea in Calves. Vet. Clin. N. Am. Food Anim. Pract. 2009, 25, 13–36. [Google Scholar] [CrossRef]
- Hata, T.; Murakami, K.; Nakatani, H.; Yamamoto, Y.; Matsuda, T.; Aoki, N. Isolation of Bovine Milk-Derived Microvesicles Carrying MRNAs and MicroRNAs. Biochem. Biophys. Res. Commun. 2010, 396, 528–533. [Google Scholar] [CrossRef]
- Tsai, K.-W.; Lai, H.-T.; Tsai, T.-C.; Wu, Y.-C.; Yang, Y.-T.; Chen, K.-Y.; Chen, C.-M.; Li, Y.-S.J.; Chen, C.-N. Difference in the Regulation of IL-8 Expression Induced by Uropathogenic E. Coli between Two Kinds of Urinary Tract Epithelial Cells. J. Biomed. Sci. 2009, 16, 91. [Google Scholar] [CrossRef] [Green Version]
- Lian, S.; Lin, X.; Zhan, F.; Shen, X.; Liang, Y.; Li, C. Transcriptome Analysis Reveals the Multiple Functions of PBD2 in IPEC-J2 Cells against E. Coli. Int. J. Mol. Sci. 2022, 23, 9754. [Google Scholar] [CrossRef]
- Asadpour-Behzadi, A.; Kariminik, A. RIG-1 and MDA5 Are the Important Intracellular Sensors against Bacteria in Septicemia Suffering Patients. J. Appl. Biomed. 2018, 16, 358–361. [Google Scholar] [CrossRef]
- Long, T.M.; Nisa, S.; Donnenberg, M.S.; Hassel, B.A. Enteropathogenic Escherichia Coli Inhibits Type I Interferon- and RNase L-Mediated Host Defense To Disrupt Intestinal Epithelial Cell Barrier Function. Infect. Immun. 2014, 82, 2802–2814. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Zhang, K.; Zhang, H.; Gao, C.; Li, C. Analysis of the Antimicrobial Mechanism of Porcine Beta Defensin 2 against E. Coli by Electron Microscopy and Differentially Expressed Genes. Sci. Rep. 2018, 8, 14711. [Google Scholar] [CrossRef] [Green Version]
- Dai, C.; Yang, L.; Jin, J.; Wang, H.; Wu, S.; Bao, W. Regulation and Molecular Mechanism of TLR5 on Resistance to Escherichia Coli F18 in Weaned Piglets. Animals 2019, 9, 735. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, F.; Smith, K.D.; Ozinsky, A.; Hawn, T.R.; Yi, E.C.; Goodlett, D.R.; Eng, J.K.; Akira, S. The Innate Immune Response to Bacterial flagellin Is Mediated by Toll-like Receptor 5. Nature 2001, 410, 5. [Google Scholar] [CrossRef]
- Decout, A.; Katz, J.D.; Venkatraman, S.; Ablasser, A. The CGAS–STING Pathway as a Therapeutic Target in Inflammatory Diseases. Nat. Rev. Immunol. 2021, 21, 548–569. [Google Scholar] [CrossRef]
- Zevini, A.; Olagnier, D.; Hiscott, J. Crosstalk between Cytoplasmic RIG-I and STING Sensing Pathways. Trends Immunol. 2017, 38, 194–205. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Lin, X.; Wan, Z.; Zuo, J.; Wang, Z.; Xu, Y.; Phouthapane, V.; Han, X.; Zhang, J.; Miao, J. Regulation of YdiV-Induced Biological Characteristics Permits Escherichia Coli Evasion of the Host STING Inflammatory Response. Vet. Microbiol. 2021, 261, 109207. [Google Scholar] [CrossRef]
- Wottawa, F.; Bordoni, D.; Baran, N.; Rosenstiel, P.; Aden, K. The Role of CGAS/STING in Intestinal Immunity. Eur. J. Immunol. 2021, 51, 785–797. [Google Scholar] [CrossRef]
- Palmela, C.; Chevarin, C.; Xu, Z.; Torres, J.; Sevrin, G.; Hirten, R.; Barnich, N.; Ng, S.C.; Colombel, J.-F. Adherent-Invasive Escherichia Coli in Inflammatory Bowel Disease. Gut 2018, 67, 574–587. [Google Scholar] [CrossRef]
Gene | Primer Sequences | Amplicon Length | Source |
---|---|---|---|
CXCL8 | For—5′-TTCGATGCCAGTGCATAAATA -3′ | 175 | [44] |
Rev—5′-CTGTACAACCTTCTGCACCCA-3′ | |||
NFKB1 | For—5′-CGAGAGGAGCACGGATACCA-3′ | 61 | [44] |
Rev—5′-GCCCCGTGTAGCCATTGA-3′ | |||
TLR4 | For—5′-TGGCAGTTTCTGAGGAGTCATG-3′ | 71 | [44] |
Rev—5′-CCGCAGCAGGGACTTCTC-3′ | |||
TLR5 | For—5′-TCAAAGATCCTGACCATCACA– 3′ | 59 | [44] |
Rev—5′-CCAGCTGTATCAGGGAGCTT-3′ | |||
IFNB | For-5′-AGTTGCCTGGGACTCCTCAA-3′ | 59 | [44] |
Rev-5′-CCTCAGGGACCTCGAAGTTCAT-3′ | |||
DEFB1 | For—5′-CTGTTAGCTGCTTAAGGAATAAAGGC-3′ | 80 | [44] |
Rev—5′-TGCCACAGGTGCCGATCT-3′ | |||
DEFB4A | For—5′-CCAGAGGTCCGACCACTA-3′ | 87 | [44] |
Rev—5′-GGTCCCTTCAATCCTGTT-3′ | |||
CGAS | For—5′-TGGAGTGAAATGTTGCAGGAAAGA-3′ | 149 | XM_013985148 |
Rev—5′-GGGTCCTGGGTACAGACGTG-3′ | |||
STING | For—5′-GCCTGCATCCATCCATCCCA-3′ | 226 | MK302493.1 |
Rev—5′-GCTGCTCTGGTACCTGGAGTG-3′ | |||
RIGI | For—5′-GAATCTGCACGCTTTCGGGG-3′ | 96 | NM_213804.2 |
Rev—5′-CTGCACCTCATCGTCCCTA-3′ | |||
GAPDH | For—5′-ATGGTGAAGGTCGGAGTGAA-3′ | 61 | NM_001206359.1 |
Rev—5′-AGTGGAGGTCAATGAAGGGG -3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mecocci, S.; De Paolis, L.; Zoccola, R.; Fruscione, F.; De Ciucis, C.G.; Chiaradia, E.; Moccia, V.; Tognoloni, A.; Pascucci, L.; Zoppi, S.; et al. Antimicrobial and Immunomodulatory Potential of Cow Colostrum Extracellular Vesicles (ColosEVs) in an Intestinal In Vitro Model. Biomedicines 2022, 10, 3264. https://doi.org/10.3390/biomedicines10123264
Mecocci S, De Paolis L, Zoccola R, Fruscione F, De Ciucis CG, Chiaradia E, Moccia V, Tognoloni A, Pascucci L, Zoppi S, et al. Antimicrobial and Immunomodulatory Potential of Cow Colostrum Extracellular Vesicles (ColosEVs) in an Intestinal In Vitro Model. Biomedicines. 2022; 10(12):3264. https://doi.org/10.3390/biomedicines10123264
Chicago/Turabian StyleMecocci, Samanta, Livia De Paolis, Roberto Zoccola, Floriana Fruscione, Chiara Grazia De Ciucis, Elisabetta Chiaradia, Valentina Moccia, Alessia Tognoloni, Luisa Pascucci, Simona Zoppi, and et al. 2022. "Antimicrobial and Immunomodulatory Potential of Cow Colostrum Extracellular Vesicles (ColosEVs) in an Intestinal In Vitro Model" Biomedicines 10, no. 12: 3264. https://doi.org/10.3390/biomedicines10123264
APA StyleMecocci, S., De Paolis, L., Zoccola, R., Fruscione, F., De Ciucis, C. G., Chiaradia, E., Moccia, V., Tognoloni, A., Pascucci, L., Zoppi, S., Zappulli, V., Chillemi, G., Goria, M., Cappelli, K., & Razzuoli, E. (2022). Antimicrobial and Immunomodulatory Potential of Cow Colostrum Extracellular Vesicles (ColosEVs) in an Intestinal In Vitro Model. Biomedicines, 10(12), 3264. https://doi.org/10.3390/biomedicines10123264