Intraductal Papillary Mucinous Neoplasms in Hereditary Cancer Syndromes
Abstract
:1. Introduction
2. Origins of PDAC
- (i)
- Sequential pathway—sequential acquisition of driver and tumor suppressor gene mutations in IPMNs leading to PDACs;
- (ii)
- Branch-off pathway—after acquisition of key early genetic alterations, PDAC acquires new mutations not present in the IPMN;
- (iii)
- De novo pathway—Distinct PDAC that has unique mutations compared with the concomitant IPMN.
3. Pancreatic Cancer Screening
4. IPMNs in FPC
HRI | Total | IPMNs | PC | |
---|---|---|---|---|
Canto et al. 2002 [65] | FPC or PJS | 38 | 1 (PJS) | 1 (FPC) |
Canto et al. 2006 [14] | FPC or PJS | 78 (72 FPC + 6 PJS) 149 controls | 7 1 cyst in control | 2 |
Poley et al. 2009 [67] | FPC or genetic predisposition syndromes | 45 (13 FAMMM + 21 FPC + 3 HP + 2 PJS + 3 BRCA1 + 2 BRCA2 + 1 p53) | 7 | 2 |
Verna et al. 2010 [68] | 3 BRs or 2 FDRs or 2 BRs with 1 FDR or genetic predisposition syndrome | 24 | 3 | 2 |
Ludwig et al. 2011 [66] | 1 FDR or 2 BRs or BRCA with FH of PC | 109 | 5 | 1 (FDR) |
Al-Sukhni et al. 2012 [69] | 2 FPCs or genetic predisposition syndromes or HP or FDR of double primary cancer patient | 262 (159 FPC + 7 PJS + 68 BRCA2 + 11 p16 + 5 BRCA1 + 2 HP + 10 double primary) | 15 (9 FPC, 4 BRCA2, 1 HP, 1 double primary) | 3 (2 FPC and 1 BRCA2) |
Sud et al. 2014 [70] | 2 FDRs or 3 BRs or HP or PJS or p16 or Lynch with FH of PC | 16 | 1 | 2 |
Chang et al. 2017 [71] | Any BR | 303 | 47 | 7/18 (pathological diagnosis) |
Gangi et al. 2018 [72] | 2 BRs (including 1 FDR) or PJS or HP or FAMMM or BRCA2 mutations with FH | 58 (48 ≥ 1 FDR + 9 BRCA2 + 1 PJS) | 1 (2 FDR) | 0 |
5. IPMNs in Hereditary Genetic Predisposition Syndromes
5.1. McCune Albright Syndrome (MAS)
5.2. Lynch Syndrome/Hereditary Non-Polyposis Colorectal Cancer
5.3. Peutz Jeghers Syndrome (PJS)
5.4. Hereditary Breast and Ovarian Cancer Syndrome (HBOC)
5.5. Familial Atypical Multiple Mole Melanoma (FAMMM)
5.6. Familial Adenomatosis Polyposis (FAP)
5.7. Carney Complex (CNC)
6. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Kamisawa, T.; Wood, L.D.; Itoi, T.; Takaori, K. Pancreatic cancer. Lancet 2016, 388, 73–85. [Google Scholar] [CrossRef]
- Raphael, B.J.; Hruban, R.H.; Aguirre, A.J.; Moffitt, R.A.; Yeh, J.J.; Stewart, C.; Robertson, A.G.; Cherniack, A.D.; Gupta, M.; Getz, G. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 2017, 32, 185–203.e113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhen, D.B.; Rabe, K.G.; Gallinger, S.; Syngal, S.; Schwartz, A.G.; Goggins, M.G.; Hruban, R.H.; Cote, M.L.; McWilliams, R.R.; Roberts, N.J.; et al. BRCA1, BRCA2, PALB2, and CDKN2A mutations in familial pancreatic cancer: A PACGENE study. Genet. Med. 2015, 17, 569–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiripi, E.; Bermejo, J.L.; Li, X.; Sundquist, J.; Hemminki, K. Familial association of pancreatic cancer with other malignancies in Swedish families. Br. J. Cancer 2009, 101, 1792–1797. [Google Scholar] [CrossRef] [Green Version]
- Brune, K.A.; Lau, B.; Palmisano, E.; Canto, M.; Goggins, M.G.; Hruban, R.H.; Klein, A.P. Importance of age of onset in pancreatic cancer kindreds. J. Natl. Cancer Inst. 2010, 102, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Canto, M.I.; Harinck, F.; Hruban, R.H.; Offerhaus, G.J.; Poley, J.-W.; Kamel, I.; Nio, Y.; Schulick, R.S.; Bassi, C.; Kluijt, I.; et al. International Cancer of the Pancreas Screening (CAPS) Consortium summit on the management of patients with increased risk for familial pancreatic cancer. Gut 2013, 62, 339–347. [Google Scholar] [CrossRef]
- Aslanian, H.R.; Lee, J.H.; Canto, M.I. AGA Clinical Practice Update on Pancreas Cancer Screening in High-Risk Individuals: Expert Review. Gastroenterology 2020, 159, 358–362. [Google Scholar] [CrossRef]
- Syngal, S.; Brand, R.E.; Church, J.M.; Giardiello, F.M.; Hampel, H.L.; Burt, R.W. ACG clinical guideline: Genetic testing and management of hereditary gastrointestinal cancer syndromes. Am. J. Gastroenterol. 2015, 110, 223–263. [Google Scholar] [CrossRef] [Green Version]
- Ryan, D.P.; Hong, T.S.; Bardeesy, N. Pancreatic adenocarcinoma. N. Engl. J. Med. 2014, 371, 1039–1049. [Google Scholar] [CrossRef]
- Riall, T.S.; Stager, V.M.; Nealon, W.H.; Townsend, C.M.; Kuo, Y.-F.; Goodwin, J.S.; Freeman, J.L. Incidence of Additional Primary Cancers in Patients with Invasive Intraductal Papillary Mucinous Neoplasms and Sporadic Pancreatic Adenocarcinomas. J. Am. Coll. Surg. 2007, 204, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Lubezky, N.; Ben-Haim, M.; Nakache, R.; Lahat, G.; Blachar, A.; Brazowski, E.; Santo, E.; Klausner, J.M. Clinical presentation can predict disease course in patients with intraductal papillary mucinous neoplasm of the pancreas. World J. Surg. 2010, 34, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Singhi, A.D.; Koay, E.J.; Chari, S.T.; Maitra, A. Early Detection of Pancreatic Cancer: Opportunities and Challenges. Gastroenterology 2019, 156, 2024–2040. [Google Scholar] [CrossRef] [Green Version]
- Canto, M.I.; Goggins, M.; Hruban, R.H.; Petersen, G.M.; Giardiello, F.M.; Yeo, C.; Fishman, E.K.; Brune, K.; Axilbund, J.; Griffin, C.; et al. Screening for Early Pancreatic Neoplasia in High-Risk Individuals: A Prospective Controlled Study. Clin. Gastroenterol. Hepatol. 2006, 4, 766–781. [Google Scholar] [CrossRef]
- Shi, C.; Klein, A.P.; Goggins, M.; Maitra, A.; Canto, M.; Ali, S.; Schulick, R.; Palmisano, E.; Hruban, R.H. Increased prevalence of precursor lesions in familial pancreatic cancer patients. Clin. Cancer Res. 2009, 15, 7737–7743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paiella, S.; Capurso, G.; Butturini, G.; Pezzilli, R.; Carrara, S.; Falconi, M.; Zerbi, A. Surveillance for pancreatic cancer in high-risk individuals: First-round screening results of a multicentric italian program. Pancreatology 2017, 17, S2. [Google Scholar] [CrossRef]
- Shah, I.; Silva-Santisteban, A.; Germansky, K.A.; Wadhwa, V.; Tung, N.; Huang, D.C.; Kandasamy, C.; Mlabasati, J.; Bilal, M.; Sawhney, M.S. Incidence and Prevalence of Intraductal Papillary Mucinous Neoplasms in Individuals with BRCA1 and BRCA2 Pathogenic Variant. J. Clin. Gastroenterol. 2022. [Google Scholar] [CrossRef]
- Singh, M.; Maitra, A. Precursor Lesions of Pancreatic Cancer: Molecular Pathology and Clinical Implications. Pancreatology 2007, 7, 9–19. [Google Scholar] [CrossRef]
- Singhi, A.D.; Maitra, A. The molecular pathology of precursor lesions of pancreatic cancer. In Pancreatic Cancer; Springer: Berlin/Heidelberg, Germany, 2018; pp. 147–176. [Google Scholar]
- Basturk, O.; Hong, S.-M.; Wood, L.D.; Adsay, N.V.; Albores-Saavedra, J.; Biankin, A.V.; Brosens, L.A.; Fukushima, N.; Goggins, M.; Hruban, R.H. A revised classification system and recommendations from the Baltimore consensus meeting for neoplastic precursor lesions in the pancreas. Am. J. Surg. Pathol. 2015, 39, 1730. [Google Scholar] [CrossRef]
- Yamao, K.; Yanagisawa, A.; Takahashi, K.; Kimura, W.; Doi, R.; Fukushima, N.; Ohike, N.; Shimizu, M.; Hatori, T.; Nobukawa, B. Clinicopathological features and prognosis of mucinous cystic neoplasm with ovarian-type stroma: A multi-institutional study of the Japan pancreas society. Pancreas 2011, 40, 67–71. [Google Scholar] [CrossRef]
- Kanda, M.; Matthaei, H.; Wu, J.; Hong, S.M.; Yu, J.; Borges, M.; Hruban, R.H.; Maitra, A.; Kinzler, K.; Vogelstein, B. Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology 2012, 142, 730–733.e739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feldmann, G.; Beaty, R.; Hruban, R.H.; Maitra, A. Molecular genetics of pancreatic intraepithelial neoplasia. J. Hepato Biliary Pancreat. Surg. 2007, 14, 224–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caldas, C.; Hahn, S.A.; da Costa, L.T.; Redston, M.S.; Schutte, M.; Seymour, A.B.; Weinstein, C.L.; Hruban, R.H.; Yeo, C.J.; Kern, S.E. Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat. Genet. 1994, 8, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Springer, S.; Wang, Y.; Dal Molin, M.; Masica, D.L.; Jiao, Y.; Kinde, I.; Blackford, A.; Raman, S.P.; Wolfgang, C.L.; Tomita, T. A combination of molecular markers and clinical features improve the classification of pancreatic cysts. Gastroenterology 2015, 149, 1501–1510. [Google Scholar] [CrossRef] [PubMed]
- Vege, S.S.; Ziring, B.; Jain, R.; Moayyedi, P.; Adams, M.A.; Dorn, S.D.; Dudley-Brown, S.L.; Flamm, S.L.; Gellad, Z.F.; Gruss, C.B. American gastroenterological association institute guideline on the diagnosis and management of asymptomatic neoplastic pancreatic cysts. Gastroenterology 2015, 148, 819–822. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, M.; Fernández-del Castillo, C.; Kamisawa, T.; Jang, J.Y.; Levy, P.; Ohtsuka, T.; Salvia, R.; Shimizu, Y.; Tada, M.; Wolfgang, C.L. Revisions of international consensus Fukuoka guidelines for the management of IPMN of the pancreas. Pancreatology 2017, 17, 738–753. [Google Scholar] [CrossRef]
- Elta, G.H.; Enestvedt, B.K.; Sauer, B.G.; Lennon, A.M. ACG clinical guideline: Diagnosis and management of pancreatic cysts. Off. J. Am. Coll. Gastroenterol. ACG 2018, 113, 464–479. [Google Scholar] [CrossRef]
- European Study Group on Cystic Tumours of the Pancreas. European evidence-based guidelines on pancreatic cystic neoplasms. Gut 2018, 67, 789–804. [Google Scholar] [CrossRef]
- Megibow, A.J.; Baker, M.E.; Morgan, D.E.; Kamel, I.R.; Sahani, D.V.; Newman, E.; Brugge, W.R.; Berland, L.L.; Pandharipande, P.V. Management of incidental pancreatic cysts: A white paper of the ACR Incidental Findings Committee. J. Am. Coll. Radiol. 2017, 14, 911–923. [Google Scholar] [CrossRef]
- Tanaka, M. Intraductal Papillary Mucinous Neoplasm of the Pancreas as the Main Focus for Early Detection of Pancreatic Adenocarcinoma. Pancreas 2018, 47, 544–550. [Google Scholar] [CrossRef]
- Omori, Y.; Ono, Y.; Tanino, M.; Karasaki, H.; Yamaguchi, H.; Furukawa, T.; Enomoto, K.; Ueda, J.; Sumi, A.; Katayama, J.; et al. Pathways of Progression from Intraductal Papillary Mucinous Neoplasm to Pancreatic Ductal Adenocarcinoma Based on Molecular Features. Gastroenterology 2019, 156, 647–661.e642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, C.G.; Wood, L.D. From somatic mutation to early detection: Insights from molecular characterization of pancreatic cancer precursor lesions. J. Pathol. 2018, 246, 395–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Matthaei, H.; Maitra, A.; Dal Molin, M.; Wood, L.D.; Eshleman, J.R.; Goggins, M.; Canto, M.I.; Schulick, R.D.; Edil, B.H.; et al. Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci. Transl. Med. 2011, 3, 92ra66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, K.; Ohtsuka, T.; Date, K.; Fujimoto, T.; Matsunaga, T.; Kimura, H.; Watanabe, Y.; Miyazaki, T.; Ohuchida, K.; Takahata, S.; et al. Distinction of Invasive Carcinoma Derived from Intraductal Papillary Mucinous Neoplasms from Concomitant Ductal Adenocarcinoma of the Pancreas Using Molecular Biomarkers. Pancreas 2016, 45, 826–835. [Google Scholar] [CrossRef]
- Tan, M.C.; Basturk, O.; Brannon, A.R.; Bhanot, U.; Scott, S.N.; Bouvier, N.; LaFemina, J.; Jarnagin, W.R.; Berger, M.F.; Klimstra, D.; et al. GNAS and KRAS Mutations Define Separate Progression Pathways in Intraductal Papillary Mucinous Neoplasm-Associated Carcinoma. J. Am. Coll. Surg. 2015, 220, 845–854.e841. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, T.; Kuboki, Y.; Tanji, E.; Yoshida, S.; Hatori, T.; Yamamoto, M.; Shibata, N.; Shimizu, K.; Kamatani, N.; Shiratori, K. Whole-exome sequencing uncovers frequent GNAS mutations in intraductal papillary mucinous neoplasms of the pancreas. Sci. Rep. 2011, 1, 161. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, K.; Kanemitsu, S.; Hatori, T.; Maguchi, H.; Shimizu, Y.; Tada, M.; Nakagohri, T.; Hanada, K.; Osanai, M.; Noda, Y.; et al. Pancreatic ductal adenocarcinoma derived from IPMN and pancreatic ductal adenocarcinoma concomitant with IPMN. Pancreas 2011, 40, 571–580. [Google Scholar] [CrossRef]
- Uemura, K.; Hiyama, E.; Murakami, Y.; Kanehiro, T.; Ohge, H.; Sueda, T.; Yokoyama, T. Comparative analysis of K-ras point mutation, telomerase activity, and p53 overexpression in pancreatic tumours. Oncol. Rep. 2003, 10, 277–283. [Google Scholar] [CrossRef]
- Schönleben, F.; Qiu, W.; Bruckman, K.C.; Ciau, N.T.; Li, X.; Lauerman, M.H.; Frucht, H.; Chabot, J.A.; Allendorf, J.D.; Remotti, H.E. BRAF and KRAS gene mutations in intraductal papillary mucinous neoplasm/carcinoma (IPMN/IPMC) of the pancreas. Cancer Lett. 2007, 249, 242–248. [Google Scholar] [CrossRef] [Green Version]
- Reid, M.D.; Saka, B.; Balci, S.; Goldblum, A.S.; Adsay, N.V. Molecular genetics of pancreatic neoplasms and their morphologic correlates: An update on recent advances and potential diagnostic applications. Am. J. Clin. Pathol. 2014, 141, 168–180. [Google Scholar] [CrossRef] [Green Version]
- Amato, E.; Molin, M.D.; Mafficini, A.; Yu, J.; Malleo, G.; Rusev, B.; Fassan, M.; Antonello, D.; Sadakari, Y.; Castelli, P. Targeted next-generation sequencing of cancer genes dissects the molecular profiles of intraductal papillary neoplasms of the pancreas. J. Pathol. 2014, 233, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, H.; Kuboki, Y.; Hatori, T.; Yamamoto, M.; Sugiyama, M.; Shibata, N.; Shimizu, K.; Shiratori, K.; Furukawa, T. Clinicopathological significance of somatic RNF43 mutation and aberrant expression of ring finger protein 43 in intraductal papillary mucinous neoplasms of the pancreas. Mod. Pathol. 2015, 28, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Fukushima, N.; Brune, K.; Boehm, C.; Sato, N.; Matsubayashi, H.; Canto, M.; Petersen, G.M.; Hruban, R.H.; Goggins, M. Genome-wide allelotypes of familial pancreatic adenocarcinomas and familial and sporadic intraductal papillary mucinous neoplasms. Clin. Cancer Res. 2007, 13, 6019–6025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueller, J.; Gansauge, S.; Mattfeldt, T. P53 mutation but not p16/MTS1 mutation occurs in intraductal papillary mucinous tumors of the pancreas. Hepatogastroenterology 2003, 50, 541–544. [Google Scholar]
- Noë, M.; Niknafs, N.; Fischer, C.G.; Hackeng, W.M.; Beleva Guthrie, V.; Hosoda, W.; Debeljak, M.; Papp, E.; Adleff, V.; White, J.R.; et al. Genomic characterization of malignant progression in neoplastic pancreatic cysts. Nat. Commun. 2020, 11, 4085. [Google Scholar] [CrossRef]
- Ren, R.; Krishna, S.G.; Chen, W.; Frankel, W.L.; Shen, R.; Zhao, W.; Avenarius, M.R.; Garee, J.; Caruthers, S.; Jones, D. Activation of the RAS pathway through uncommon BRAF mutations in mucinous pancreatic cysts without KRAS mutation. Mod. Pathol. 2021, 34, 438–444. [Google Scholar] [CrossRef]
- Attiyeh, M.; Zhang, L.; Iacobuzio-Donahue, C.; Allen, P.; Imam, R.; Basturk, O.; Klimstra, D.S.; Sigel, C.S. Simple mucinous cysts of the pancreas have heterogeneous somatic mutations. Hum. Pathol. 2020, 101, 1–9. [Google Scholar] [CrossRef]
- Fischer, C.G.; Beleva Guthrie, V.; Braxton, A.M.; Zheng, L.; Wang, P.; Song, Q.; Griffin, J.F.; Chianchiano, P.E.; Hosoda, W.; Niknafs, N.; et al. Intraductal Papillary Mucinous Neoplasms Arise from Multiple Independent Clones, Each with Distinct Mutations. Gastroenterology 2019, 157, 1123–1137.e1122. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Cameron, J.L.; Ahuja, N.; Makary, M.A.; Hirose, K.; Choti, M.A.; Schulick, R.D.; Hruban, R.H.; Pawlik, T.M.; Wolfgang, C.L. Is it necessary to follow patients after resection of a benign pancreatic intraductal papillary mucinous neoplasm? J. Am. Coll. Surg. 2013, 216, 657–665. [Google Scholar] [CrossRef] [Green Version]
- Miyasaka, Y.; Ohtsuka, T.; Tamura, K.; Mori, Y.; Shindo, K.; Yamada, D.; Takahata, S.; Ishigami, K.; Ito, T.; Tokunaga, S.; et al. Predictive Factors for the Metachronous Development of High-risk Lesions in the Remnant Pancreas After Partial Pancreatectomy for Intraductal Papillary Mucinous Neoplasm. Ann. Surg. 2016, 263, 1180–1187. [Google Scholar] [CrossRef]
- Tanaka, M.; Fernández-del Castillo, C.; Adsay, V.; Chari, S.; Falconi, M.; Jang, J.-Y.; Kimura, W.; Levy, P.; Pitman, M.B.; Schmidt, C.M. International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas. Pancreatology 2012, 12, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Munigala, S.; Gelrud, A.; Agarwal, B. Risk of pancreatic cancer in patients with pancreatic cyst. Gastrointest. Endosc. 2016, 84, 81–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rooney, S.L.; Shi, J. Intraductal tubulopapillary neoplasm of the pancreas: An update from a pathologist’s perspective. Arch. Pathol. Lab. Med. 2016, 140, 1068–1073. [Google Scholar] [CrossRef] [Green Version]
- Basturk, O.; Adsay, V.; Askan, G.; Dhall, D.; Zamboni, G.; Shimizu, M.; Cymes, K.; Carneiro, F.; Balci, S.; Sigel, C. Intraductal tubulopapillary neoplasm of the pancreas: A clinicopathologic and immunohistochemical analysis of 33 cases. Am. J. Surg. Pathol. 2017, 41, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi, H.; Kuboki, Y.; Hatori, T.; Yamamoto, M.; Shiratori, K.; Kawamura, S.; Kobayashi, M.; Shimizu, M.; Ban, S.; Koyama, I. Somatic mutations in PIK3CA and activation of AKT in intraductal tubulopapillary neoplasms of the pancreas. Am. J. Surg. Pathol. 2011, 35, 1812–1817. [Google Scholar] [CrossRef] [PubMed]
- Adsay, N.V.; Adair, C.F.; Heffess, C.S.; Klimstra, D.S. Intraductal oncocytic papillary neoplasms of the pancreas. Am. J. Surg. Pathol. 1996, 20, 980–994. [Google Scholar] [CrossRef]
- Marchegiani, G.; Mino-Kenudson, M.; Ferrone, C.R.; Warshaw, A.L.; Lillemoe, K.D.; Fernández-del Castillo, C. Oncocytic-type intraductal papillary mucinous neoplasms: A unique malignant pancreatic tumor with good long-term prognosis. J. Am. Coll. Surg. 2015, 220, 839–844. [Google Scholar] [CrossRef]
- Owens, D.K.; Davidson, K.W.; Krist, A.H.; Barry, M.J.; Cabana, M.; Caughey, A.B.; Curry, S.J.; Doubeni, C.A.; Epling, J.W.; Kubik, M. Screening for pancreatic cancer: US preventive services task force reaffirmation recommendation statement. JAMA 2019, 322, 438–444. [Google Scholar]
- Tempero, M.A. NCCN Guidelines Updates: Pancreatic Cancer. J. Natl. Compr. Cancer Netw. J. Natl. Compr. Cancer Netw. 2019, 17, 603–605. [Google Scholar] [CrossRef]
- Tempero, M.A.; Malafa, M.P.; Al-Hawary, M.; Behrman, S.W.; Benson, A.B.; Cardin, D.B.; Chiorean, E.G.; Chung, V.; Czito, B.; Del Chiaro, M.; et al. Pancreatic Adenocarcinoma, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2021, 19, 439–457. [Google Scholar] [CrossRef]
- Mandelker, D.; Zhang, L.; Kemel, Y.; Stadler, Z.K.; Joseph, V.; Zehir, A.; Pradhan, N.; Arnold, A.; Walsh, M.F.; Li, Y.; et al. Mutation Detection in Patients with Advanced Cancer by Universal Sequencing of Cancer-Related Genes in Tumor and Normal DNA vs Guideline-Based Germline Testing. JAMA 2017, 318, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Denost, Q.; Chafai, N.; Arrive, L.; Mourra, N.; Paye, F. Hereditary intraductal papillary mucinous neoplasm of the pancreas. Clin. Res. Hepatol. Gastroenterol. 2012, 36, e23–e25. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.P.; Brune, K.A.; Petersen, G.M.; Goggins, M.; Tersmette, A.C.; Offerhaus, G.J.; Griffin, C.; Cameron, J.L.; Yeo, C.J.; Kern, S.; et al. Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res. 2004, 64, 2634–2638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canto, M.I.; Goggins, M.; Yeo, C.J.; Griffin, C.; Axilbund, J.E.; Brune, K.; Ali, S.Z.; Jagannath, S.; Petersen, G.M.; Fishman, E.K.; et al. Screening for pancreatic neoplasia in high-risk individuals: An EUS-based approach. Clin. Gastroenterol. Hepatol. 2004, 2, 606–621. [Google Scholar] [CrossRef]
- Ludwig, E.; Olson, S.H.; Bayuga, S.; Simon, J.; Schattner, M.A.; Gerdes, H.; Allen, P.J.; Jarnagin, W.R.; Kurtz, R.C. Feasibility and yield of screening in relatives from familial pancreatic cancer families. Am. J. Gastroenterol. 2011, 106, 946–954. [Google Scholar] [CrossRef] [Green Version]
- Poley, J.-W.; Kluijt, I.; Gouma, D.J.; Harinck, F.; Wagner, A.; Aalfs, C.; Van Eijck, C.; Cats, A.; Kuipers, E.; Nio, Y. The yield of first-time endoscopic ultrasonography in screening individuals at a high risk of developing pancreatic cancer. Off. J. Am. Coll. Gastroenterol. ACG 2009, 104, 2175–2181. [Google Scholar] [CrossRef]
- Verna, E.C.; Hwang, C.; Stevens, P.D.; Rotterdam, H.; Stavropoulos, S.N.; Sy, C.D.; Prince, M.A.; Chung, W.K.; Fine, R.L.; Chabot, J.A.; et al. Pancreatic Cancer Screening in a Prospective Cohort of High-Risk Patients: A Comprehensive Strategy of Imaging and Genetics. Clin. Cancer Res. 2010, 16, 5028. [Google Scholar] [CrossRef] [Green Version]
- Al-Sukhni, W.; Borgida, A.; Rothenmund, H.; Holter, S.; Semotiuk, K.; Grant, R.; Wilson, S.; Moore, M.; Narod, S.; Jhaveri, K. Screening for pancreatic cancer in a high-risk cohort: An eight-year experience. J. Gastrointest. Surg. 2012, 16, 771–783. [Google Scholar] [CrossRef]
- Sud, A.; Wham, D.; Catalano, M.; Guda, N.M. Promising Outcomes of Screening for Pancreatic Cancer by Genetic Testing and Endoscopic Ultrasound. Pancreas 2014, 43, 458–461. [Google Scholar] [CrossRef]
- Chang, M.-C.; Wu, C.-H.; Yang, S.-H.; Liang, P.-C.; Chen, B.-B.; Jan, I.S.; Chang, Y.-T.; Jeng, Y.-M. Pancreatic cancer screening in different risk individuals with family history of pancreatic cancer-a prospective cohort study in Taiwan. Am. J. Cancer Res. 2017, 7, 357–369. [Google Scholar]
- Gangi, A.; Malafa, M.; Klapman, J. Endoscopic Ultrasound–Based Pancreatic Cancer Screening of High-Risk Individuals: A Prospective Observational Trial. Pancreas 2018, 47, 586–591. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Mukai, M.; Sasaki, M.; Kitao, A.; Yoneda, N.; Kobayashi, D.; Imamura, Y.; Nakanuma, Y. Intraductal papillary–mucinous neoplasm of the pancreas associated with polycystic liver and kidney disease. Pathol. Int. 2009, 59, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Pipaliya, N.; Rathi, C.; Parikh, P.; Patel, R.; Ingle, M.; Sawant, P. A Rare Case of an Intraductal Papillary Mucinous Neoplasm of Pancreas Fistulizing Into Duodenum with Adult Polycystic Kidney Disease. Gastroenterol. Res. 2015, 8, 197–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, V.X.; Decker, G.A.; Das, A.; Harrison, M.E.; Silva, A.C.; Ocal, I.T.; Collins, J.M.; Nguyen, C.C. The Natural History of a Branch Duct Intraductal Papillary Mucinous Neoplasm in a Patient with Lady Windermere Syndrome: A Case Reports. JOP J. Pancreas 2010, 11, 249–254. [Google Scholar]
- Gilshtein, H.; Mekel, M.; Kluger, Y. IPMN and Parathyroid Adenoma: An Interesting Association. JOP J. Pancreas 2012, 13, 542. [Google Scholar]
- Pagliari, D.; Saviano, A.; Serricchio, M.; Dal Lago, A.; Brizi, M.; Manfredi, R.; Costamagna, G.; Attili, F. The association of pancreatic cystosis and IPMN in cystic fibrosis: Case report and literature review. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 5179–5184. [Google Scholar]
- Bhandari, B.S.; Kaila, V.; Saad, A.B.; Khalil, E.; Som, A.; Munjal, A.; Kannadath, B.S.; Thosani, N.C. Intraductal Papillary Mucinous Neoplasm (IPMN) and BRCA Mutation: A Case Report: 2827. Off. J. Am. Coll. Gastroenterol. ACG 2017, 112, S1519. [Google Scholar] [CrossRef]
- Flanagan, M.R.; Jayaraj, A.; Xiong, W.; Yeh, M.M.; Raskind, W.H.; Pillarisetty, V.G. Pancreatic intraductal papillary mucinous neoplasm in a patient with Lynch syndrome. World J. Gastroenterol. 2015, 21, 2820–2825. [Google Scholar] [CrossRef]
- Roch, A.M.; Al-Temimi, M.H.; Nguyen, T.; House, M.G.; Zyromski, N.J.; Nakeeb, A.; Schmidt, C.M.; Ceppa, E.P. Patients with deleterious germline mutations: A heterogeneous population for pancreatic cancer screening? HPB 2020, 22, S13. [Google Scholar] [CrossRef]
- Gaujoux, S.; Salenave, S.; Ronot, M.; Rangheard, A.-S.; Cros, J.; Belghiti, J.; Sauvanet, A.; Ruszniewski, P.; Chanson, P. Hepatobiliary and Pancreatic Neoplasms in Patients With McCune-Albright Syndrome. J. Clin. Endocrinol. Metab. 2014, 99, E97–E101. [Google Scholar] [CrossRef] [Green Version]
- Robinson, C.; Estrada, A.; Zaheer, A.; Singh, V.K.; Wolfgang, C.L.; Goggins, M.G.; Hruban, R.H.; Wood, L.D.; Noë, M.; Montgomery, E.A.; et al. Clinical and Radiographic Gastrointestinal Abnormalities in McCune-Albright Syndrome. J. Clin. Endocrinol. Metab. 2018, 103, 4293–4303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaujoux, S.; Pasmant, E.; Silve, C.; Mehsen-Cetre, N.; Coriat, R.; Rouquette, A.; Douset, B.; Prat, F.; Leroy, K. McCune Albright syndrome is a genetic predisposition to intraductal papillary and mucinous neoplasms of the pancreas associated pancreatic cancer in relation with GNAS somatic mutation—a case report. Medicine 2019, 98, e18102. [Google Scholar] [CrossRef] [PubMed]
- Sparr, J.A.; Bandipalliam, P.; Redston, M.S.; Syngal, S. Intraductal papillary mucinous neoplasm of the pancreas with loss of mismatch repair in a patient with Lynch syndrome. Am. J. Surg. Pathol. 2009, 33, 309–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H.; Kim, W.Y.; Hwang, D.-Y.; Han, H.S. Intraductal papillary mucinous neoplasm of the ileal heterotopic pancreas in a patient with hereditary non-polyposis colorectal cancer: A case report. World J. Gastroenterol. 2015, 21, 7916–7920. [Google Scholar] [CrossRef]
- Hackeng, W.M.; de Guerre, L.E.V.M.; Kuypers, K.C.; Snoek, A.M.; Morsink, F.H.; Offerhaus, G.J.A.; Brosens, L.A.A. Pseudomyxoma Peritonei After a Total Pancreatectomy for Intraductal Papillary Mucinous Neoplasm with Colloid Carcinoma in Lynch Syndrome. Pancreas 2019, 48, 135–138. [Google Scholar] [CrossRef]
- Leoz, M.L.; Sánchez, A.; Carballal, S.; Ruano, L.; Ocaña, T.; Pellisé, M.; Castells, A.; Balaguer, F.; Moreira, L. Hereditary gastric and pancreatic cancer predisposition syndromes. Gastroenterol. Y Hepatol. 2016, 39, 481–493. [Google Scholar] [CrossRef]
- Kastrinos, F.; Mukherjee, B.; Tayob, N.; Wang, F.; Sparr, J.; Raymond, V.M.; Bandipalliam, P.; Stoffel, E.M.; Gruber, S.B.; Syngal, S. Risk of pancreatic cancer in families with Lynch syndrome. JAMA 2009, 302, 1790–1795. [Google Scholar] [CrossRef]
- Sato, N.; Rosty, C.; Jansen, M.; Fukushima, N.; Ueki, T.; Yeo, C.J.; Cameron, J.L.; Iacobuzio-Donahue, C.A.; Hruban, R.H.; Goggins, M. STK11/LKB1 Peutz-Jeghers Gene Inactivation in Intraductal Papillary-Mucinous Neoplasms of the Pancreas. Am. J. Pathol. 2001, 159, 2017–2022. [Google Scholar] [CrossRef] [Green Version]
- Giardiello, F.M.; Brensinger, J.D.; Tersmette, A.C.; Goodman, S.N.; Petersen, G.M.; Booker, S.V.; Cruz-Correa, M.; Offerhaus, J.A. Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology 2000, 119, 1447–1453. [Google Scholar] [CrossRef] [Green Version]
- Chetty, R.; Salahshor, S.; Bapat, B.; Berk, T.; Croitoru, M.; Gallinger, S. Intraductal papillary mucinous neoplasm of the pancreas in a patient with attenuated familial adenomatous polyposis. J. Clin. Pathol. 2005, 58, 97–101. [Google Scholar] [CrossRef]
- Maire, F.; Hammel, P.; Terris, B.; Olschwang, S.; O’Toole, D.; Sauvanet, A.; Palazzo, L.; Ponsot, P.; Laplane, B.; Lévy, P. Intraductal papillary and mucinous pancreatic tumour: A new extracolonic tumour in familial adenomatous polyposis. Gut 2002, 51, 446–449. [Google Scholar] [CrossRef] [PubMed]
- Sudo, T.; Murakami, Y.; Uemura, K.; Hayashidani, Y.; Takesue, Y.; Sueda, T. Development of an Intraductal Papillary-Mucinous Neoplasm of the Pancreas in a Patient With Familial Adenomatous Polyposis. Pancreas 2005, 31, 428–429. [Google Scholar] [CrossRef] [PubMed]
- Moussata, D.; Senouci, L.; Berger, F.; Scoazec, J.-Y.; Pinson, S.; Walter, T.; Lombard-Bohas, C.; Saurin, J.-C. Familial Adenomatous Polyposis and Pancreatic Cancer. Pancreas 2015, 44, 512–513. [Google Scholar] [CrossRef] [PubMed]
- Gaujoux, S.; Tissier, F.; Ragazzon, B.; Rebours, V.; Saloustros, E.; Perlemoine, K.; Vincent-Dejean, C.; Meurette, G.; Cassagnau, E.; Dousset, B.; et al. Pancreatic Ductal and Acinar Cell Neoplasms in Carney Complex: A Possible New Association. J. Clin. Endocrinol. Metab. 2011, 96, E1888–E1895. [Google Scholar] [CrossRef] [Green Version]
- Hruban, R.H.; Pitman, M.B.; Klimstra, D.S. Tumors of the Pancreas; American Registry of Pathology in Collaboration with the Armed Force: Washington, DC, USA, 2007. [Google Scholar]
- Zamboni, G.; Hirabayashi, K.; Castelli, P.; Lennon, A.M. Precancerous lesions of the pancreas. Best Pract. Res. Clin. Gastroenterol. 2013, 27, 299–322. [Google Scholar] [CrossRef]
- Vasen, H.F.; Watson, P.; Mecklin, J.P.; Lynch, H.T. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology 1999, 116, 1453–1456. [Google Scholar] [CrossRef]
- Win, A.K.; Young, J.P.; Lindor, N.M.; Tucker, K.M.; Ahnen, D.J.; Young, G.P.; Buchanan, D.D.; Clendenning, M.; Giles, G.G.; Winship, I. Colorectal and other cancer risks for carriers and noncarriers from families with a DNA mismatch repair gene mutation: A prospective cohort study. J. Clin. Oncol. 2012, 30, 958. [Google Scholar] [CrossRef] [Green Version]
- Lupinacci, R.M.; Goloudina, A.; Buhard, O.; Bachet, J.-B.; Maréchal, R.; Demetter, P.; Cros, J.; Bardier-Dupas, A.; Collura, A.; Cervera, P.; et al. Prevalence of Microsatellite Instability in Intraductal Papillary Mucinous Neoplasms of the Pancreas. Gastroenterology 2018, 154, 1061–1065. [Google Scholar] [CrossRef]
- Handra-Luca, A.; Couvelard, A.; Degott, C.; Fléjou, J.-F. Correlation between patterns of DNA mismatch repair hmlh1 and hmsh2 protein expression and progression of dysplasia in intraductal papillary mucinous neoplasms of the pancreas. Virchows Arch. 2004, 444, 235–238. [Google Scholar] [CrossRef]
- Hemminki, A.; Tomlinson, I.; Markie, D.; Järvinen, H.; Sistonen, P.; Björkqvist, A.-M.; Knuutila, S.; Salovaara, R.; Bodmer, W.; Shibata, D. Localization of a susceptibility locus for Peutz-Jeghers syndrome to 19p using comparative genomic hybridization and targeted linkage analysis. Nat. Genet. 1997, 15, 87–90. [Google Scholar] [CrossRef]
- Hemminki, A.; Markie, D.; Tomlinson, I.; Avizienyte, E.; Roth, S.; Loukola, A.; Bignell, G.; Warren, W.; Aminoff, M.; Höglund, P. A serine/threonine kinase gene defective in Peutz–Jeghers syndrome. Nature 1998, 391, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Jenne, D.E.; Reomann, H.; Nezu, J.-I.; Friedel, W.; Loff, S.; Jeschke, R.; Müller, O.; Back, W.; Zimmer, M. Peutz-Jeghers syndrome is caused by mutations in a novel serine threoninekinase. Nat. Genet. 1998, 18, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Su, G.H.; Hruban, R.H.; Bansal, R.K.; Bova, G.S.; Tang, D.J.; Shekher, M.C.; Westerman, A.M.; Entius, M.M.; Goggins, M.; Yeo, C.J.; et al. Germline and Somatic Mutations of the STK11/LKB1 Peutz-Jeghers Gene in Pancreatic and Biliary Cancers. Am. J. Pathol. 1999, 154, 1835–1840. [Google Scholar] [CrossRef] [Green Version]
- Sharan, S.K.; Morimatsu, M.; Albrecht, U.; Lim, D.-S.; Regel, E.; Dinh, C.; Sands, A.; Eichele, G.; Hasty, P.; Bradley, A. Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature 1997, 386, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Consortium, B. Cancer risks in BRCA2 mutation carriers. J. Natl. Cancer Inst. 1999, 91, 1310–1316. [Google Scholar] [CrossRef]
- Murphy, K.M.; Brune, K.A.; Griffin, C.; Sollenberger, J.E.; Petersen, G.M.; Bansal, R.; Hruban, R.H.; Kern, S.E. Evaluation of candidate genes MAP2K4, MADH4, ACVR1B, and BRCA2 in familial pancreatic cancer: Deleterious BRCA2 mutations in 17%. Cancer Res. 2002, 62, 3789–3793. [Google Scholar]
- Hahn, S.A.; Greenhalf, B.; Ellis, I.; Sina-Frey, M.; Rieder, H.; Korte, B.; Gerdes, B.; Kress, R.; Ziegler, A.; Raeburn, J.A. BRCA2 germline mutations in familial pancreatic carcinoma. J. Natl. Cancer Inst. 2003, 95, 214–221. [Google Scholar] [CrossRef]
- Goggins, M.; Schutte, M.; Lu, J.; Moskaluk, C.A.; Weinstein, C.L.; Petersen, G.M.; Yeo, C.J.; Jackson, C.E.; Lynch, H.T.; Hruban, R.H. Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas. Cancer Res. 1996, 56, 5360–5364. [Google Scholar]
- Ozcelik, H.; Schmocker, B.; Di Nicola, N.; Shi, X.; Langer, B.; Moore, M.; Taylor, B.; Narod, S.; Darlington, G.; Andrulis, I. Increased carrier rate of germline BRCA2 6174delT mutations in Jewish individuals with pancreatic cancer. Nat. Genet. 1997, 16, 17–18. [Google Scholar] [CrossRef]
- Roch, A.M.; Schneider, J.; Carr, R.A.; Lancaster, W.P.; House, M.G.; Zyromski, N.J.; Nakeeb, A.; Schmidt, C.M.; Ceppa, E.P. Are BRCA1 and BRCA2 gene mutation patients underscreened for pancreatic adenocarcinoma? J. Surg. Oncol. 2019, 119, 777–783. [Google Scholar] [CrossRef]
- Thompson, D.; Easton, D.F. Cancer incidence in BRCA1 mutation carriers. J. Natl. Cancer Inst. 2002, 94, 1358–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasen, H.; Gruis, N.; Frants, R.; van Der Velden, P.; Hille, E.; Bergman, W. Risk of developing pancreatic cancer in families with familial atypical multiple mole melanoma associated with a specific 19 deletion of p16 (p16-Leiden). Int. J. Cancer 2000, 87, 809–811. [Google Scholar] [CrossRef]
- Goldstein, A.M.; Fraser, M.C.; Struewing, J.P.; Hussussian, C.J.; Ranade, K.; Zametkin, D.P.; Fontaine, L.S.; Organic, S.M.; Dracopoli, N.C.; Clark Jr, W.H. Increased risk of pancreatic cancer in melanoma-prone kindreds with p16 INK4 mutations. N. Engl. J. Med. 1995, 333, 970–975. [Google Scholar] [CrossRef] [PubMed]
- Hille, E.T.; van Duijn, E.; Gruis, N.A.; Rosendaal, F.R.; Bergman, W.; Vandenbroucke, J.P. Excess cancer mortality in six Dutch pedigrees with the familial atypical multiple mole-melanoma syndrome from 1830 to 1994. J. Investig. Dermatol. 1998, 110, 788–792. [Google Scholar] [CrossRef] [Green Version]
- Borg, A.k.; Sandberg, T.; Nilsson, K.; Johannsson, O.; Klinker, M.; Måsbäck, A.; Westerdahl, J.; Olsson, H.k.; Ingvar, C. High frequency of multiple melanomas and breast and pancreas carcinomas in CDKN2A mutation-positive melanoma families. J. Natl. Cancer Inst. 2000, 92, 1260–1266. [Google Scholar] [CrossRef] [Green Version]
- Vasen, H.F.A.; Wasser, M.; van Mil, A.; Tollenaar, R.A.; Konstantinovski, M.; Gruis, N.A.; Bergman, W.; Hes, F.J.; Hommes, D.W.; Offerhaus, G.J.A.; et al. Magnetic Resonance Imaging Surveillance Detects Early-Stage Pancreatic Cancer in Carriers of a p16-Leiden Mutation. Gastroenterology 2011, 140, 850–856. [Google Scholar] [CrossRef]
- Giardiello, F.; Offerhaus, G.; Lee, D.; Krush, A.; Tersmette, A.; Booker, S.; Kelley, N.; Hamilton, S. Increased risk of thyroid and pancreatic carcinoma in familial adenomatous polyposis. Gut 1993, 34, 1394–1396. [Google Scholar] [CrossRef] [Green Version]
- Zerboni, G.; Signoretti, M.; Crippa, S.; Falconi, M.; Arcidiacono, P.G.; Capurso, G. Systematic review and meta-analysis: Prevalence of incidentally detected pancreatic cystic lesions in asymptomatic individuals. Pancreatology 2019, 19, 2–9. [Google Scholar] [CrossRef]
- Kromrey, M.-L.; Bülow, R.; Hübner, J.; Paperlein, C.; Lerch, M.M.; Ittermann, T.; Völzke, H.; Mayerle, J.; Kühn, J.-P. Prospective study on the incidence, prevalence and 5-year pancreatic-related mortality of pancreatic cysts in a population-based study. Gut 2018, 67, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Kitago, M.; Kosaki, K.; Yamada, M.; Iwasaki, E.; Kawasaki, S.; Mizukami, K.; Momozawa, Y.; Terao, C.; Yagi, H.; et al. Genomic analysis of familial pancreatic cancers and intraductal papillary mucinous neoplasms: A cross-sectional study. Cancer Sci. 2022, 113, 1821–1829. [Google Scholar] [CrossRef]
- Overbeek, K.A.; Goggins, M.G.; Dbouk, M.; Levink, I.J.M.; Koopmann, B.D.M.; Chuidian, M.; Konings, I.C.A.W.; Paiella, S.; Earl, J.; Fockens, P.; et al. Timeline of Development of Pancreatic Cancer and Implications for Successful Early Detection in High-Risk Individuals. Gastroenterology 2022, 162, 772–785.e774. [Google Scholar] [CrossRef] [PubMed]
- Miller, F.H.; Vendrami, C.L.; Recht, H.S.; Wood, C.G.; Mittal, P.; Keswani, R.N.; Gabriel, H.; Borhani, A.A.; Nikolaidis, P.; Hammond, N.A. Pancreatic Cystic Lesions and Malignancy: Assessment, Guidelines, and the Field Defect. RadioGraphics 2022, 42, 87–105. [Google Scholar] [CrossRef] [PubMed]
Lesion | Somatic Mutations [13,18,20,23,25] | Size | Risk of Development into PDAC | Prevalence of Progression to PDAC [16,17] |
---|---|---|---|---|
PanIN | KRAS, CDKN2A/p(16) (High Grade) | <1 cm | <1% (Low grade), 40% (High grade) | ~80% |
IPMN | KRAS, GNAS, CDKN2A/p16, TP53, SMAD4 | >1 cm | 6–50% (Branch duct), 36–100% (Main duct) | 15% |
MCN | ATM/GL13 | >1 cm | <1% | 5–10% |
IOPN | PRKACA, PRKACB | >1 cm | 60% | <1% |
ITPN | - | >1 cm | 50% | <1% |
Genetic Mutation | Prevalence in IPMNs |
---|---|
KRAS | 30–80% [39,40] |
GNAS | 40–79% [25,37,41,42] |
RNF43 | 14–38% [25,37,42,43] |
CDKN2A/p16, TP53, SMAD4 | 40% [44,45] |
GLI3 | 28% [46] (Combined prevalence in IPMNs/MCNs) |
ATM | 17% [46] (Combined prevalence in IPMNs/MCNs) |
Hereditary Genetic Predisposition Syndromes | Affected Family Members | ||
---|---|---|---|
No FH | 1 FDR | 2 BR | |
Peutz Jeghers syndrome | CAPS/AGA/ACG | ||
FAMMM (CDKN2A/p16) | CAPS/AGA/ACG | ||
Hereditary pancreatitis (PRSS1) | AGA/ACG | ||
BRCA2 | CAPS/AGA/ACG | ||
BRCA1 | AGA/ACG | ||
PALB2 | CAPS/AGA/ACG | ||
ATM | CAPS/AGA/ACG | ||
Lynch syndrome | CAPS/AGA/ACG | ||
None | ACG | CAPS */AGA |
Gene Mutation | IPMNs | PC | |
---|---|---|---|
MAS | GNAS | 16–46% [81,82] | 1 case [83] |
Lynch | MLH1, MSH2, MSH6 | 3 cases [84,85,86] | 0.7–3.7% [87,88] |
PJS | STK11/LKB1 | 100% [89] | 11–36% [90] |
FAP | APC, MUTYH | 3 cases [91,92,93] | 3% (4/127 including 2 endocrine carcinomas, 1 acinar cell carcinoma, 1 pancreatoblastoma) [94] |
CNC | PRKAR1A | 0.8% [95] | 1.7% (6/354 with only 1 PDAC) [95] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ardeshna, D.R.; Rangwani, S.; Cao, T.; Pawlik, T.M.; Stanich, P.P.; Krishna, S.G. Intraductal Papillary Mucinous Neoplasms in Hereditary Cancer Syndromes. Biomedicines 2022, 10, 1475. https://doi.org/10.3390/biomedicines10071475
Ardeshna DR, Rangwani S, Cao T, Pawlik TM, Stanich PP, Krishna SG. Intraductal Papillary Mucinous Neoplasms in Hereditary Cancer Syndromes. Biomedicines. 2022; 10(7):1475. https://doi.org/10.3390/biomedicines10071475
Chicago/Turabian StyleArdeshna, Devarshi R., Shiva Rangwani, Troy Cao, Timothy M. Pawlik, Peter P. Stanich, and Somashekar G. Krishna. 2022. "Intraductal Papillary Mucinous Neoplasms in Hereditary Cancer Syndromes" Biomedicines 10, no. 7: 1475. https://doi.org/10.3390/biomedicines10071475
APA StyleArdeshna, D. R., Rangwani, S., Cao, T., Pawlik, T. M., Stanich, P. P., & Krishna, S. G. (2022). Intraductal Papillary Mucinous Neoplasms in Hereditary Cancer Syndromes. Biomedicines, 10(7), 1475. https://doi.org/10.3390/biomedicines10071475