Bone Mineral Density Is a Predictor of Mortality in Female Patients with Cholangiocellular Carcinoma Undergoing Palliative Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Study Patients
2.2. Patient Parameters
2.3. Analysis of Bone Mineral Density
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Patients
3.2. Relation between Bone Mineral Density, Age, and Serum Calcium Concentrations
3.3. Higher Bone Mineral Density Is Associated with Improved Survival in Patients Undergoing Palliative Treatment for CCA
3.4. Bone Mineral Density of the First Lumbar Vertebra Is an Independent Prognostic Factor in Patients Undergoing Palliative Treatment for CCA
3.5. Bone Mineral Density of the First Lumbar Vertebra Is a Sex Specific Predictor of Overall Survival in Patients Undergoing Palliative Treatment for CCA
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rizvi, S.; Khan, S.A.; Hallemeier, C.L.; Kelley, R.K.; Gores, G.J. Cholangiocarcinoma—Evolving concepts and therapeutic strategies. Nat. Rev. Clin. Oncol. 2018, 15, 95–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razumilava, N.; Gores, G.J. Cholangiocarcinoma. Lancet 2014, 383, 2168–2179. [Google Scholar] [CrossRef] [Green Version]
- Kelley, R.K.; Bridgewater, J.; Gores, G.J.; Zhu, A.X. Systemic therapies for intrahepatic cholangiocarcinoma. J. Hepatol. 2020, 72, 353–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordens, M.S.; Wittig, L.; Heinrichs, L.; Keitel, V.; Schulze-Hagen, M.; Antoch, G.; Knoefel, W.T.; Fluegen, G.; Luedde, T.; Loberg, C.; et al. Sarcopenia and Myosteatosis as prognostic markers in patients with advanced cholangiocarcinoma undergoing palliative treatment. J. Clin. Med. 2021, 10, 4340. [Google Scholar] [CrossRef] [PubMed]
- Schulze-Hagen, M.F.; Roderburg, C.; Wirtz, T.H.; Jordens, M.S.; Bundgens, L.; Abu Jhaisha, S.; Hohlstein, P.; Brozat, J.F.; Bruners, P.; Loberg, C.; et al. Decreased bone mineral density is a predictor of poor survival in critically Ill patients. J. Clin. Med. 2021, 10, 3741. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Parikh, N.D.; Yu, J.; Barman, P.; Derstine, B.A.; Sonnenday, C.J.; Wang, S.C.; Su, G.L. Bone mineral density predicts posttransplant survival among hepatocellular carcinoma liver transplant recipients. Liver Transpl. 2016, 22, 1092–1098. [Google Scholar] [CrossRef] [Green Version]
- Loosen, S.H.; van den Bosch, V.; Gorgulho, J.; Schulze-Hagen, M.; Kandler, J.; Jordens, M.S.; Tacke, F.; Loberg, C.; Antoch, G.; Brummendorf, T.; et al. Progressive sarcopenia correlates with poor response and outcome to immune checkpoint inhibitor therapy. J. Clin. Med. 2021, 10, 1361. [Google Scholar] [CrossRef]
- Budczies, J.; Klauschen, F.; Sinn, B.V.; Gyorffy, B.; Schmitt, W.D.; Darb-Esfahani, S.; Denkert, C. Cutoff Finder: A comprehensive and straightforward Web application enabling rapid biomarker cutoff optimization. PLoS ONE 2012, 7, e51862. [Google Scholar] [CrossRef] [Green Version]
- Marshall, D.; Johnell, O.; Wedel, H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 1996, 312, 1254–1259. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, J.J.; Anderson, P.A.; Rosas, H.G.; Buchholz, A.L.; Au, A.G. Hounsfield units for assessing bone mineral density and strength: A tool for osteoporosis management. J. Bone Jt. Surg. Am. 2011, 93, 1057–1063. [Google Scholar] [CrossRef]
- Pickhardt, P.J.; Pooler, B.D.; Lauder, T.; del Rio, A.M.; Bruce, R.J.; Binkley, N. Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann. Intern. Med. 2013, 158, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kiel, D.P.; Kreger, B.E.; Cupples, L.A.; Ellison, R.C.; Dorgan, J.F.; Schatzkin, A.; Levy, D.; Felson, D.T. Bone mass and the risk of breast cancer among postmenopausal women. N. Engl. J. Med. 1997, 336, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Nelson, R.L.; Turyk, M.; Kim, J.; Persky, V. Bone mineral density and the subsequent risk of cancer in the NHANES I follow-up cohort. BMC Cancer 2002, 2, 22. [Google Scholar] [CrossRef] [Green Version]
- van der Klift, M.; de Laet, C.E.; Coebergh, J.W.; Hofman, A.; Pols, H.A.; Rotterdam, S. Bone mineral density and the risk of breast cancer: The Rotterdam Study. Bone 2003, 32, 211–216. [Google Scholar] [CrossRef]
- Ganry, O.; Tramier, B.; Fardellone, P.; Raverdy, N.; Dubreuil, A. High bone-mass density as a marker for breast cancer in post-menopausal women. Breast 2001, 10, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, L.; Ross, R.K. Endogenous hormones and breast cancer risk. Epidemiol. Rev. 1993, 15, 48–65. [Google Scholar] [CrossRef]
- Tremollieres, F.; Ribot, C. Bone mineral density and prediction of non-osteoporotic disease. Maturitas 2010, 65, 348–351. [Google Scholar] [CrossRef]
- Tanko, L.B.; Christiansen, C.; Cox, D.A.; Geiger, M.J.; McNabb, M.A.; Cummings, S.R. Relationship between osteoporosis and cardiovascular disease in postmenopausal women. J. Bone Miner. Res. 2005, 20, 1912–1920. [Google Scholar] [CrossRef] [Green Version]
- Sakuma, K.; Aoi, W.; Yamaguchi, A. Molecular mechanism of sarcopenia and cachexia: Recent research advances. Pflugers Arch. 2017, 469, 573–591. [Google Scholar] [CrossRef]
- Jones, D.H.; Nakashima, T.; Sanchez, O.H.; Kozieradzki, I.; Komarova, S.V.; Sarosi, I.; Morony, S.; Rubin, E.; Sarao, R.; Hojilla, C.V.; et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature 2006, 440, 692–696. [Google Scholar] [CrossRef] [Green Version]
- De Simone, V.; Franze, E.; Ronchetti, G.; Colantoni, A.; Fantini, M.C.; Di Fusco, D.; Sica, G.S.; Sileri, P.; MacDonald, T.T.; Pallone, F.; et al. Th17-type cytokines, IL-6 and TNF-alpha synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene 2015, 34, 3493–3503. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Ouyang, Y.; Lu, N.; Li, N. The NF-kappaB signaling pathway, the microbiota, and gastrointestinal tumorigenesis: Recent advances. Front. Immunol. 2020, 11, 1387. [Google Scholar] [CrossRef] [PubMed]
- Montalvo, R.N.; Counts, B.R.; Carson, J.A. Understanding sex differences in the regulation of cancer-induced muscle wasting. Curr. Opin. Support. Palliat. Care 2018, 12, 394–403. [Google Scholar] [CrossRef]
- Szulc, P.; Duboeuf, F.; Marchand, F.; Delmas, P.D. Hormonal and lifestyle determinants of appendicular skeletal muscle mass in men: The MINOS study. Am. J. Clin. Nutr. 2004, 80, 496–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cauley, J.A.; Gutai, J.P.; Sandler, R.B.; LaPorte, R.E.; Kuller, L.H.; Sashin, D. The relationship of endogenous estrogen to bone density and bone area in normal postmenopausal women. Am. J. Epidemiol. 1986, 124, 752–761. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, J.S.; Brockwell, S.E.; Mehta, V.; Greendale, G.A.; Sowers, M.R.; Ettinger, B.; Lo, J.C.; Johnston, J.M.; Cauley, J.A.; Danielson, M.E.; et al. Bone mineral density changes during the menopause transition in a multiethnic cohort of women. J. Clin. Endocrinol. Metab. 2008, 93, 861–868. [Google Scholar] [CrossRef]
- Harman, S.M.; Metter, E.J.; Tobin, J.D.; Pearson, J.; Blackman, M.R. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J. Clin. Endocrinol. Metab. 2001, 86, 724–731. [Google Scholar] [CrossRef]
- Finkelstein, J.S.; Lee, H.; Leder, B.Z.; Burnett-Bowie, S.A.; Goldstein, D.W.; Hahn, C.W.; Hirsch, S.C.; Linker, A.; Perros, N.; Servais, A.B.; et al. Gonadal steroid-dependent effects on bone turnover and bone mineral density in men. J. Clin. Investig. 2016, 126, 1114–1125. [Google Scholar] [CrossRef]
- Longcope, C.; Kato, T.; Horton, R. Conversion of blood androgens to estrogens in normal adult men and women. J. Clin. Investig. 1969, 48, 2191–2201. [Google Scholar] [CrossRef] [Green Version]
- Khosla, S.; Melton, L.J., 3rd; Atkinson, E.J.; O’Fallon, W.M.; Klee, G.G.; Riggs, B.L. Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: A key role for bioavailable estrogen. J. Clin. Endocrinol. Metab. 1998, 83, 2266–2274. [Google Scholar] [CrossRef] [Green Version]
Parameter | Study Cohort |
---|---|
CCA patients | n = 75 |
Gender (%): | |
male | 53.3 (40) |
female | 46.7 (35) |
Age (years, median, and range) | 70 (30–87) |
BMI class (kg/m2, %) | |
BMI < 20 | 9.3 (7) |
BMI 20–25 | 45.3 (34) |
BMI 25–30 | 28 (21) |
BMI > 30 | 17.3 (13) |
Systemic therapy (%) | |
Yes | 85.3 (64) |
No | 14.7 (11) |
Chemotherapy regimen (%) | |
Gemcitabine + Cisplatin | 81.3 (52) |
Gemcitabine + Oxaliplatin | 4.7 (3) |
Carboplatin + Paclitaxel | 1.6 (1) |
Capecitabine Mono | 1.6 (1) |
Gemcitabine Mono | 10.9 (7) |
Tumor progression during follow-up? (%) | |
Yes | 28 (21) |
No | 72 (54) |
Localization of tumor metastasis (%) | |
Lymphatic | 20 (15) |
Vascular | 8 (6) |
Pulmonary | 18.7 (14) |
Bone | 10.7 (8) |
Suprarenal gland | 1.3 (1) |
Peritoneum | 22.7 (17) |
Other | 16 (12) |
Pre-existing medical conditions (%) | |
Preceded tumor disease | 24 (18) |
Preceded systemic chemotherapy | 1.3 (1) |
Diabetes mell. Typ 2 | 29.3 (22) |
Arterial hypertension | 58.7 (44) |
Hepatitis B | 6.7 (5) |
Hepatitis C | 5.3 (4) |
Alcohol abuse | 1.3 (1) |
Primary biliary cholangitis | 2.7 (2) |
Primary sclerosing cholangitis | 1.3 (1) |
Nonalcoholic steatohepatitis | 2.7 (2) |
Inflammatory bowel disease | 1.3 (1) |
Gastritis | 24 (18) |
Overall survival (days, median, and range) | 224 (3–1059) |
Progression-free survival (days, median, and range) | 132 (3–916) |
Bone mineral density (HU, median, and range) | 144 (57.65–258) |
AFP (mean, range) | 1025.5 (1.0–31,496) ng/mL (49) |
CEA (mean, range) | 38.8 (0.7–653.5) ng/mL (54) |
Ca19-9 (mean, range) | 1584.8 (0.6–10,000) U/mL (56) |
Parameter | p-Value | Hazard Ratio (95% CI) |
---|---|---|
Gender | 0.645 | 1.145 (0.644–2.037) |
Height | 0.205 | 0.978 (0.945–1.012) |
Bodyweight | 0.225 | 0.988 (0.969–1.008) |
BMI | 0.468 | 0.979 (0.942–1.037) |
Age | 0.196 | 1.018 (0.991–1.045) |
Preceded malignancy | 0.383 | 1.364 (0.679–2.741) |
Diabetes | 0.785 | 1.092 (0.582–2.049) |
Arterial hypertension | 0.381 | 0.774 (0.435–1.374) |
Hepatitis B | 0.645 | 0.784 (0.278–2.209) |
Hepatitis C | 0.085 | 0.402 (0.143–1.133) |
Alcohol abuse | 0.971 | 0.963 (0.132–7.051) |
PBC | 0.709 | 0.683 (0.092–5.054) |
PSC | 0.564 | 1.800 (0.244–13.299) |
CIBD | 0.582 | 0.571 (0.078–4.199) |
Gastritis | 0.400 | 1.336 (0.680–2.626) |
Lymphatic metastasis | 0.574 | 1.246 (0.578–2.688) |
Vascular metastasis | 0.880 | 1.082 (0.388–3.022) |
Pulmonary metastasis | 0.704 | 0.872 (0.430–1.767) |
Osseus metastasis | 0.403 | 1.488 (0.587–3.773) |
Suprarenal gland metastasis | 0.618 | 0.602 (0.082–4.421) |
Peritoneal metastasis | 0.003 | 0.372 (0.194–0.713) |
Other metastasis | 0.006 | 0.362 (0.174–0.752) |
Sodium | 0.127 | 0.926 (0.838–1.022) |
Potassium | 0.275 | 1.454 (0.742–2.849) |
Calcium | 0.230 | 0.287 (0.037–2.203) |
Creatinine | 0.649 | 0.979 (0.895–1.071) |
Urea | <0.001 | 1.024 (1.010–1.038) |
GFR | 0.198 | 0.992 (0.979–1.004) |
Uric acid | 0.784 | 1.033 (0.818–1.305) |
Bilirubin | 0.318 | 1.066 (0.940–1.209) |
ALT | 0.897 | 1.000 (0.997–1.003) |
AST | 0.938 | 1.000 (0.996–1.004) |
γGT | 0.603 | 1.000 (0.999–1.001) |
CRP | 0.002 | 1.124 (1.044–1.211) |
Albumin | 0.207 | 0.646 (0.328–1.274) |
Leukocytes | 0.003 | 1.095 (1.030–1.165) |
Hemoglobin | 0.174 | 0.902 (0.778–1.046) |
MCV | 0.664 | 1.010 (0.967–1.054) |
MCH | 0.824 | 0.987 (0.880–1.107) |
Thrombocytes | 0.030 | 1.003 (1.000–1.006) |
Quick | 0.605 | 1.006 (0.983–1.029) |
INR | 0.841 | 0.918 (0.396–2.125) |
aPTT | 0.754 | 1.009 (0.955–1.066) |
AFP | 0.861 | 1.000 (1.000–1.000) |
CEA | 0.174 | 1.001 (0.999–1.004) |
CA19-9 | 0.087 | 1.000 (1.000–1.000) |
Bone mineral density | 0.102 | 0.995 (0.989–1.001) |
Bone mineral density cut-off 167 | 0.016 | 2.313 (1.170–4.575) |
Parameter | p-Value | Hazard Ratio (95% CI) |
---|---|---|
Age | 0.714 | 0.991 (0.945–1.0939) |
Body mass index | 0.432 | 1.032 (0.954–1.115) |
Calcium | 0.980 | 0.965 (0.064–14.512) |
Bilirubin | 0.964 | 1.008 (0.706–1.439) |
AFP | 0.933 | 1.000 (1.000–1.000) |
CA19-9 | 0.653 | 1.000 (1.000–1.000) |
Bone mineral density cut-off 167 HU | 0.025 | 4.143 (1.197–14.343) |
Parameter | Sex | p-Value | Hazard Ratio (95% CI) |
---|---|---|---|
Height | M | 0.163 | 0.960 (0.906–1.017) |
F | 0.174 | 0.957 (0.898–1.020) | |
Bodyweight | M | 0.364 | 0.984 (0.951–1.019) |
F | 0.591 | 0.993 (0.966–1.020) | |
BMI | M | 0.766 | 0.984 (0.883–1.096) |
F | 0.850 | 0.993 (0.926–1.065) | |
Age | M | 0.238 | 1.021 (0.986–1.056) |
F | 0.351 | 1.020 (0.978–1.064) | |
Preceded malignancy | M | 0.427 | 1.631 (0.487–5.459) |
F | 0.840 | 1.098 (0.445–2.710) | |
Diabetes | M | 0.497 | 1.325 (0.588–2.987) |
F | 0.717 | 0.829 (0.301–2.285) | |
Arterial hypertension | M | 0.804 | 0.905 (0.410–1.995) |
F | 0.247 | 0.602 (0.255–1.422) | |
Hepatitis B | M | 0.728 | 1.300 (0.297–5.702) |
F | 0.747 | 0.717 (0.095–5.437) | |
Hepatitis C | M | 0.220 | 0.463 (0.136–1.583) |
F | 0.065 | 0.127 (0.014–1.136) | |
Gastritis | M | 0.633 | 1.250 (0.500–3.123) |
F | 0.324 | 1.734 (0.581–5.179) | |
Lymphatic metastasis | M | 0.947 | 1.038 (0.345–3.119) |
F | 0.690 | 1.250 (0.417–3.752) | |
Vascular metastasis | M | 0.842 | 1.132 (0.335–3.829) |
F | 0.849 | 1.217 (0.162–9.163) | |
Pulmonary metastasis | M | 0.726 | 0.861 (0.371–2.002) |
F | 0.764 | 1.254 (0.285–5.522) | |
Osseus metastasis | M | 0.197 | 2.034 (0.692–5.983) |
F | 0.664 | 0.638 (0.084–4.847) | |
Peritoneal metastasis | M | 0.004 | 0.211 (0.072–0.615) |
F | 0.062 | 0.423 (0.172–1.045) | |
Other metastasis | M | 0.004 | 0.195 (0.065–0.589) |
F | 0.203 | 0.512 (0.182–1.435) | |
Sodium | M | 0.525 | 0.951 (0.814–1.110) |
F | 0.098 | 0.902 (0.799–1.019) | |
Potassium | M | 0.252 | 1.827 (0.651–5.127) |
F | 0.999 | 1.000 (0.417–2.401) | |
Calcium | M | 0.383 | 0.302 (0.021–4.431) |
F | 0.442 | 0.333 (0.020–5.484) | |
Creatinine | M | 0.056 | 1.687 (0.986–2.886) |
F | 0.675 | 0.956 (0.774–1.180) | |
Urea | M | 0.005 | 1.026 (1.008–1.045) |
F | 0.056 | 1.041 (0.999–1.084) | |
GFR | M | 0.263 | 0.990 (0.973–1.008) |
F | 0.452 | 0.992 (0.973–1.012) | |
Uric acid | M | 0.873 | 1.034 (0.688–1.554) |
F | 0.811 | 1.041 (0.748–1.450) | |
Bilirubin | M | 0.052 | 1.143 (0.999–1.309) |
F | 0.801 | 0.967 (0.746–1.254) | |
AST | M | 0.094 | 0.994 (0.988–1.001) |
F | 0.260 | 1.004 (0.997–1.010) | |
ALT | M | 0.146 | 0.995 (0.988–1.002) |
F | 0.425 | 1.003 (0.996–1.011) | |
γGT | M | 0.710 | 1.000 (0.999–1.001) |
F | 0.501 | 1.000 (0.999–1.002) | |
AP | M | 0.605 | 0.999 (0.997–1.002) |
F | 0.961 | 1.000 (0.997–1.003) | |
CRP | M | 0.045 | 1.120 (1.003–1.250) |
F | 0.018 | 1.140 (1.023–1,269) | |
Albumin | M | 0.991 | 1.006 (0.394–2.569) |
F | 0.025 | 0.269 (0.086–0.846) | |
Leukocytes | M | 0.192 | 1.092 (0.957–1.245) |
F | 0.003 | 1.117 (1.038–1.201) | |
Hemoglobin | M | 0.023 | 0.767 (0.611–0.963) |
F | 0.532 | 0.926 (0.728–1.178) | |
MCV | M | 0.098 | 1.048 (0.991–1.109) |
F | 0.204 | 0.951 (0.881–1.027) | |
MCH | M | 0.349 | 1.077 (0.922–1.258) |
F | 0.080 | 0.857 (0.722–1.019) | |
Thrombocytes | M | 0.141 | 1.003 (0.999–1.007) |
F | 0.047 | 1.004 (1.000–1.007) | |
Quick | M | 0.495 | 1.009 (0.984–1.033) |
F | 0.299 | 1.032 (0.973–1.094) | |
INR | M | 0.667 | 0.823 (0.340–1.995) |
F | 0.710 | 0.351 (0.001–86.963) | |
aPTT | M | 0.945 | 0.998 (0.936–1.064) |
F | 0.806 | 0.975 (0.800–1.189) | |
AFP | M | 0.973 | 1.000 (1.000–1.000) |
F | 0.281 | 1.002 (0.999–1.005) | |
CEA | M | 0.717 | 1.001 (0.997–1.004) |
F | 0.167 | 1.002 (0.999–1.005) | |
CA19-9 | M | 0.956 | 1.000 (1.000–1.000) |
F | 0.015 | 1.000 (1.000–1.000) | |
Bone mineral density | M | 0.337 | 0.996 (0.989–1.004) |
F | 0.075 | 0.990 (0.979–1.001) | |
Bone mineral density optimal cut-off 167 | M | 0.244 | 1.619 (0.720–3.641) |
F | 0.039 | 3.761 (1.067–13.261) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jördens, M.S.; Wittig, L.; Loberg, C.; Heinrichs, L.; Keitel, V.; Schulze-Hagen, M.; Antoch, G.; Knoefel, W.T.; Fluegen, G.; Loosen, S.H.; et al. Bone Mineral Density Is a Predictor of Mortality in Female Patients with Cholangiocellular Carcinoma Undergoing Palliative Treatment. Biomedicines 2022, 10, 1660. https://doi.org/10.3390/biomedicines10071660
Jördens MS, Wittig L, Loberg C, Heinrichs L, Keitel V, Schulze-Hagen M, Antoch G, Knoefel WT, Fluegen G, Loosen SH, et al. Bone Mineral Density Is a Predictor of Mortality in Female Patients with Cholangiocellular Carcinoma Undergoing Palliative Treatment. Biomedicines. 2022; 10(7):1660. https://doi.org/10.3390/biomedicines10071660
Chicago/Turabian StyleJördens, Markus S., Linda Wittig, Christina Loberg, Lisa Heinrichs, Verena Keitel, Maximilian Schulze-Hagen, Gerald Antoch, Wolfram T. Knoefel, Georg Fluegen, Sven H. Loosen, and et al. 2022. "Bone Mineral Density Is a Predictor of Mortality in Female Patients with Cholangiocellular Carcinoma Undergoing Palliative Treatment" Biomedicines 10, no. 7: 1660. https://doi.org/10.3390/biomedicines10071660
APA StyleJördens, M. S., Wittig, L., Loberg, C., Heinrichs, L., Keitel, V., Schulze-Hagen, M., Antoch, G., Knoefel, W. T., Fluegen, G., Loosen, S. H., Roderburg, C., & Luedde, T. (2022). Bone Mineral Density Is a Predictor of Mortality in Female Patients with Cholangiocellular Carcinoma Undergoing Palliative Treatment. Biomedicines, 10(7), 1660. https://doi.org/10.3390/biomedicines10071660