Association between Anti-Erythropoietin Receptor Antibodies and Cardiac Function in Patients on Hemodialysis: A Multicenter Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Patients
2.2. Evaluation of Clinical Characteristics
2.3. Measurement of Anti-EPOR Antibodies
2.4. Echocardiography
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Clinical Characteristics of Patients with and without Anti-EPOR Antibodies
3.3. Clinical Characteristics of Patients with and without LVEF < 50%
3.4. Association between the Presence of Anti-EPOR Antibodies and LVMI
3.5. Association between the Presence of Anti-EPOR Antibodies and Reduced LVEF
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Levin, A.; Foley, R.N. Cardiovascular disease in chronic renal insufficiency. Am. J. Kidney Diseases 2000, 36, S24–S30. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, J.; Floege, J.; Fliser, D.; Böhm, M.; Marx, N. Cardiovascular Disease in Chronic Kidney Disease. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef] [PubMed]
- The United States Renal Data System. 2020 USRDS Annual Data Report: Epidemiology of Kidney Disease in the United States; National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2020. [Google Scholar]
- Stewart, G.A.; Gansevoort, R.T.; Mark, P.B.; Rooney, E.; McDonagh, T.A.; Dargie, H.J.; Stuart, R.; Rodger, C.; Jardine, A.G. Electrocardiographic abnormalities and uremic cardiomyopathy. Kidney Int. 2005, 67, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Hsu, C.Y.; Li, Y.; Mishra, R.K.; Keane, M.; Rosas, S.E.; Dries, D.; Xie, D.; Chen, J.; He, J.; et al. Associations between kidney function and subclinical cardiac abnormalities in CKD. J. Am. Soc. Nephrol. 2012, 23, 1725–1734. [Google Scholar] [CrossRef]
- Bagshaw, S.M.; Cruz, D.N.; Aspromonte, N.; Daliento, L.; Ronco, F.; Sheinfeld, G.; Anker, S.D.; Anand, I.; Bellomo, R.; Berl, T.; et al. Epidemiology of cardio-renal syndromes: Workgroup statements from the 7th ADQI Consensus Conference. Nephrol. Dial. Transplant. 2010, 25, 1406–1416. [Google Scholar] [CrossRef]
- Nitta, K.; Goto, S.; Masakane, I.; Hanafusa, N.; Taniguchi, M.; Hasegawa, T.; Nakai, S.; Wada, A.; Hamano, T.; Hoshino, J.; et al. Annual dialysis data report for 2018, JSDT Renal Data Registry: Survey methods, facility data, incidence, prevalence, and mortality. Ren. Replace. Ther. 2020, 6, 41. [Google Scholar] [CrossRef]
- Harnett, J.D.; Kent, G.M.; Barre, P.E.; Taylor, R.; Parfrey, P.S. Risk factors for the development of left ventricular hypertrophy in a prospectively followed cohort of dialysis patients. J. Am. Soc. Nephrol. 1994, 4, 1486–1490. [Google Scholar] [CrossRef]
- Harnett, J.D.; Foley, R.N.; Kent, G.M.; Barre, P.E.; Murray, D.; Parfrey, P.S. Congestive heart failure in dialysis patients: Prevalence, incidence, prognosis and risk factors. Kidney Int. 1995, 47, 884–890. [Google Scholar] [CrossRef]
- Jin, B.; Luo, X.; Lin, H.; Li, J.; Shi, H. A meta-analysis of erythropoiesis-stimulating agents in anaemic patients with chronic heart failure. Eur. J. Heart Fail. 2010, 12, 249–253. [Google Scholar] [CrossRef]
- Ayus, J.C.; Go, A.S.; Valderrabano, F.; Verde, E.; De Vinuesa, S.G.; Achinger, S.G.; Lorenzo, V.; Arieff, A.I.; Luao, J. Effects of erythropoietin on left ventricular hypertrophy in adults with severe chronic renal failure and hemoglobin <10 g/dL. Kidney Int. 2005, 68, 788–795. [Google Scholar] [CrossRef] [Green Version]
- Frank, H.; Heusser, K.; Höffken, B.; Huber, P.; Schmieder, R.E.; Schobel, H.P. Effect of erythropoietin on cardiovascular prognosis parameters in hemodialysis patients. Kidney Int. 2004, 66, 832–840. [Google Scholar] [CrossRef] [PubMed]
- Cannella, G.; La Canna, G.; Sandrini, M.; Gaggiotti, M.; Nordio, G.; Movilli, E.; Mombelloni, S.; Visioli, O.; Maiorca, R. Reversal of left ventricular hypertrophy following recombinant human erythropoietin treatment of anaemic dialysed uraemic patients. Nephrol. Dial. Transplant. 1991, 6, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, D.S.; Wexler, D.; Blum, M.; Keren, G.; Sheps, D.; Leibovitch, E.; Brosh, D.; Laniado, S.; Schwartz, D.; Yachnin, T.; et al. The use of subcutaneous erythropoietin and intravenous iron for the treatment of the anemia of severe, resistant congestive heart failure improves cardiac and renal function and functional cardiac class, and markedly reduces hospitalizations. J. Am. Coll. Cardiol. 2000, 35, 1737–1744. [Google Scholar] [CrossRef]
- Asaumi, Y.; Kagaya, Y.; Takeda, M.; Yamaguchi, N.; Tada, H.; Ito, K.; Ohta, J.; Shiroto, T.; Shirato, K.; Minegishi, N.; et al. Protective Role of Endogenous Erythropoietin System in Nonhematopoietic Cells Against Pressure Overload–Induced Left Ventricular Dysfunction in Mice. Circulation 2007, 115, 2022–2032. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.L.; Hanlon, P.; Amin, K.; Steenbergen, C.; Murphy, E.; Arcasoy, M.O. Erythropoietin receptor expression in adult rat cardiomyocytes is associated with an acute cardioprotective effect for recombinant erythropoietin during ischemia-reperfusion injury. FASEB J. 2004, 18, 1031–1033. [Google Scholar] [CrossRef]
- Hara, A.; Furuichi, K.; Higuchi, M.; Iwata, Y.; Sakai, N.; Kaneko, S.; Wada, T. Autoantibodies to erythropoietin receptor in patients with immune-mediated diseases: Relationship to anaemia with erythroid hypoplasia. Br. J. Haematol. 2013, 160, 244–250. [Google Scholar] [CrossRef]
- Hara, A.; Furuichi, K.; Yamahana, J.; Yasuda, H.; Iwata, Y.; Sakai, N.; Shimizu, M.; Kaneko, S.; Wada, T. Effect of Autoantibodies to Erythropoietin Receptor in Systemic Lupus Erythematosus with Biopsy-proven Lupus Nephritis. J. Rheumatol. 2016, 43, 1328–1334. [Google Scholar] [CrossRef]
- Hara, A.; Furuichi, K.; Koshino, A.; Yasuda, H.; Tran, T.T.T.; Iwata, Y.; Sakai, N.; Shimizu, M.; Kaneko, S.; Nakamura, H.; et al. Clinical and Pathological Significance of Autoantibodies to Erythropoietin Receptor in Type 2 Diabetic Patients with CKD. Kidney Int. Rep. 2018, 3, 133–141. [Google Scholar] [CrossRef]
- Oshima, M.; Hara, A.; Toyama, T.; Jun, M.; Pollock, C.; Jardine, M.; Harrap, S.; Poulter, N.; Cooper, M.E.; Woodward, M.; et al. Comparison of Circulating Biomarkers in Predicting Diabetic Kidney Disease Progression with Autoantibodies to Erythropoietin Receptor. Kidney Int. Rep. 2021, 6, 284–295. [Google Scholar] [CrossRef]
- Tran, T.T.T.; Hara, A.; Kitagawa, K.; Kitajima, S.; Toyama, T.; Iwata, Y.; Sakai, N.; Shimizu, M.; Kaneko, S.; Furuichi, K.; et al. Relationship between autoantibodies to erythropoietin receptor and renal outcome in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Biomarkers 2020, 25, 194–200. [Google Scholar] [CrossRef]
- Hara, T.; Kimachi, M.; Akizawa, T.; Fukuhara, S.; Yamamoto, Y. Interdialytic Weight Gain Effects on Hemoglobin Concentration and Cardiovascular Events. Kidney Int. Rep. 2020, 5, 1670–1678. [Google Scholar] [CrossRef] [PubMed]
- Hara, A.; Koshino, Y.; Kurokawa, Y.; Shinozaki, Y.; Miyake, T.; Kitajima, S.; Toyama, T.; Iwata, Y.; Sakai, N.; Shimizu, M.; et al. Relationship between anti-erythropoietin receptor autoantibodies and responsiveness to erythropoiesis-stimulating agents in patients on hemodialysis: A multi-center cross-sectional study. Clin. Exp. Nephrol. 2020, 24, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Devereux, R.B.; Casale, P.N.; Hammond, I.W.; Savage, D.D.; Alderman, M.H.; Campo, E.; Alonso, D.R.; Laragh, J.H. Echocardiographic detection of pressure-overload left ventricular hypertrophy: Effect of criteria and patient population. J. Clin. Hypertens. 1987, 3, 66–78. [Google Scholar] [PubMed]
- Schiller, N.B.; Shah, P.M.; Crawford, M.; DeMaria, A.; Devereux, R.; Feigenbaum, H.; Gutgesell, H.; Reichek, N.; Sahn, D.; Schnittger, I.; et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J. Am. Soc. Echocardiogr. 1989, 2, 358–367. [Google Scholar] [CrossRef]
- Ie, E.H.; Zietse, R. Evaluation of cardiac function in the dialysis patient--a primer for the non-expert. Nephrol. Dial. Transplant. 2006, 21, 1474–1481. [Google Scholar] [CrossRef]
- Foley, R.N.; Curtis, B.M.; Randell, E.W.; Parfrey, P.S. Left ventricular hypertrophy in new hemodialysis patients without symptomatic cardiac disease. Clin. J. Am. Soc. Nephrol. 2010, 5, 805–813. [Google Scholar] [CrossRef]
- Rutherford, E.; Ireland, S.; Mangion, K.; Stewart, G.A.; MacGregor, M.S.; Roditi, G.; Woodward, R.; Gandy, S.J.; Houston, J.G.; Jardine, A.G.; et al. A Randomized, Controlled Trial of the Effect of Allopurinol on Left Ventricular Mass Index in Hemodialysis Patients. Kidney Int. Rep. 2021, 6, 146–155. [Google Scholar] [CrossRef]
- Cannella, G.; Paoletti, E.; Delfino, R.; Peloso, G.; Rolla, D.; Molinari, S. Prolonged therapy with ACE inhibitors induces a regression of left ventricular hypertrophy of dialyzed uremic patients independently from hypotensive effects. Am. J. Kidney Dis. 1997, 30, 659–664. [Google Scholar] [CrossRef]
- Longenecker, J.C.; Coresh, J.; Powe, N.R.; Levey, A.S.; Fink, N.E.; Martin, A.; Klag, M.J. Traditional cardiovascular disease risk factors in dialysis patients compared with the general population: The CHOICE Study. J. Am. Soc. Nephrol. 2002, 13, 1918–1927. [Google Scholar] [CrossRef]
- House, A.A.; Wanner, C.; Sarnak, M.J.; Pina, I.L.; McIntyre, C.W.; Komenda, P.; Kasiske, B.L.; Deswal, A.; deFilippi, C.R.; Cleland, J.G.F.; et al. Heart failure in chronic kidney disease: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2019, 95, 1304–1317. [Google Scholar] [CrossRef] [Green Version]
- Suresh, S.; Wright, E.C.; Wright, D.G.; Abbott, K.C.; Noguchi, C.T. Erythropoietin treatment and the risk of hip fractures in hemodialysis patients. J. Bone Miner. Res. 2021, 36, 1211–1219. [Google Scholar] [CrossRef] [PubMed]
- Zafiriou, M.P.; Noack, C.; Unsöld, B.; Didie, M.; Pavlova, E.; Fischer, H.J.; Reichardt, H.M.; Bergmann, M.W.; El-Armouche, A.; Zimmermann, W.-H.; et al. Erythropoietin Responsive Cardiomyogenic Cells Contribute to Heart Repair Post Myocardial Infarction. Stem Cells 2014, 32, 2480–2491. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Kong, G.; Yang, C.; Ming, Y. Erythropoietin and its derivatives: From tissue protection to immune regulation. Cell Death Dis. 2020, 11, 79. [Google Scholar] [CrossRef] [PubMed]
- Silva, I.; Alipio, C.; Pinto, R.; Mateus, V. Potential anti-inflammatory effect of erythropoietin in non-clinical studies in vivo: A systematic review. Biomed. Pharmacother. 2021, 139, 111558. [Google Scholar] [CrossRef]
- Agoro, R.; Park, M.Y.; Henaff, C.L.; Jankauskas, S.; Gaias, A.; Chen, G.; Mohammadi, M.; Sitara, D. C-FGF23 peptide alleviates hypoferremia during acute inflammation. Haematologica 2021, 106, 391–403. [Google Scholar] [CrossRef]
- Fukuma, S.; Yamaguchi, T.; Hashimoto, S.; Nakai, S.; Iseki, K.; Tsubakihara, Y.; Fukuhara, S. Erythropoiesis-stimulating agent responsiveness and mortality in hemodialysis patients: Results from a cohort study from the dialysis registry in Japan. Am. J. Kidney Dis. 2012, 59, 108–116. [Google Scholar] [CrossRef]
- Nitta, K. Fibroblast growth factor 23 and cardiovascular disease in patients with chronic kidney disease. Ren. Replace. Ther. 2018, 4, 31. [Google Scholar] [CrossRef]
- Matsui, I.; Oka, T.; Kusunoki, Y.; Mori, D.; Hashimoto, N.; Matsumoto, A.; Shimada, K.; Yamaguchi, S.; Kubota, K.; Yonemoto, S.; et al. Cardiac hypertrophy elevates serum levels of fibroblast growth factor 23. Kidney Int. 2018, 94, 60–71. [Google Scholar] [CrossRef]
- Sharma, S.; Hanudel, M.R.; Ix, J.H.; Salusky, I.B.; Ganz, T.; Nguyen, K.-L. Elevated Fibroblast Growth Factor 23 Levels Are Associated with Greater Diastolic Dysfunction in ESRD. Kidney Int. Rep. 2019, 4, 1748–1751. [Google Scholar] [CrossRef]
- Yajima, T.; Yajima, K.; Takahashi, H. Association of the erythropoiesis-stimulating agent resistance index and the geriatric nutritional risk index with cardiovascular mortality in maintenance hemodialysis patients. PLoS ONE 2021, 16, e0245625. [Google Scholar] [CrossRef]
- Kilpatrick, R.D.; Critchlow, C.W.; Fishbane, S.; Besarab, A.; Stehman-Breen, C.; Krishnan, M.; Bradbury, B.D. Greater epoetin alfa responsiveness is associated with improved survival in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2008, 3, 1077–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Anti-EPOR Antibodies | ||||
---|---|---|---|---|
Total (n = 377) | Negative (n = 360) | Positive (n = 17) | p-Value | |
Age, y | 70 (60–77) | 70 (60–77) | 73 (67–79) | 0.22 |
Male, % | 267 (70.8) | 255 (70.8) | 12 (70.6) | 1.0 |
Dialysis duration, months | 60 (27–124) | 60 (27–125) | 48 (27–79) | 0.21 |
Comorbidity | ||||
DM, % | 195 (51.7) | 185 (51.4) | 10 (58.8) | 0.62 |
HT, % | 357 (94.7) | 340 (94.4) | 17 (100.0) | 1.00 |
Dyslipidemia, % | 351 (93.1) | 335 (93.1) | 16 (94.1) | 1.00 |
Vascular disease, % | 186 (49.3) | 179 (49.7) | 7 (41.2) | 0.62 |
IHD, % | 99 (26.3) | 93 (25.8) | 6 (35.3) | 0.4 |
stroke, % | 54 (14.3) | 54 (15.0) | 0 (0.0) | 0.15 |
PAD, % | 82 (21.8) | 79 (21.9) | 3 (17.6) | 1.0 |
BMI, kg/m2 | 21.3 (19.0–23.8) | 21.3 (19.1–23.9) | 21.5 (17.8–22.8) | 0.33 |
RAS inhibitor, % | 217 (57.6) | 209 (58.1) | 8 (47.1) | 0.45 |
SBP, mmHg | 144 ± 24 | 144 ± 24 | 142 ± 24 | 0.69 |
DBP, mmHg | 75 ± 13 | 75 ± 13 | 76 ± 15 | 0.70 |
Pulse pressure, mmHg | 69 ± 18 | 69 ±18 | 65 ± 13 | 0.42 |
WBC, /µL | 5400 (4300–6900) | 5400 (4325–6900) | 5700 (4300–6700) | 0.95 |
RBC, ×104/µL | 365 ± 53 | 365 ± 53 | 345 ± 542 | 0.12 |
MCV, fL | 94.2 ± 7.1 | 94.2 ± 7.2 | 93.3 ± 5.1 | 0.75 |
Hb, g/dL | 11.0 (10.2–11.9) | 11.1 (10.2–12.0) | 10.5 (9.6–11.0) | 0.009 |
Albumin, g/dL | 3.5 (3.3–3.7) | 3.5 (3.3–3.7) | 3.3 (2.9–3.7) | 0.053 |
Triglyceride, mg/dL | 89 (64–123) | 90 (63–125) | 82 (72–116) | 0.85 |
LDL-Cho, mg/dL | 78 (63–97) | 78 (63–98) | 72 (57–80) | 0.12 |
HDL-Cho, mg/dL | 43 (35–58) | 43 (35–58) | 40 (34–49) | 0.42 |
CRP, mg/dL | 0.16 (0.049–0.54) | 0.15 (0.047–0.53) | 0.33 (0.12–1.83) | 0.028 |
β2-Microglobulin, µg/L | 27.5 ± 6.1 | 27.5 ± 6.1 | 25.7 ± 6.0 | 0.45 |
ERI | 6.10 (2.32–12.25) | 5.75 (2.30–11.57) | 13.00 (5.38–21.65) | 0.026 |
EPO dose | 4000 (1350–7500) | 4000 (1250–7500) | 7500 (2500–12,000) | 0.049 |
LVEF ≥ 50% | LVEF < 50% | p-Value | |
---|---|---|---|
n = 315 | n = 62 | ||
Anti-EPOR antibody, % | 11 (3.5) | 6 (9.7) | 0.044 |
Age, y | 70 (60–78) | 69 (62–77) | 0.49 |
Male, % | 214 (67.9) | 53 (85.5) | 0.006 |
Dialysis duration, months | 63 (28–128) | 52 (22–111) | 0.078 |
Comorbidity | |||
DM, % | 155 (49.2) | 40 (64.5) | 0.036 |
HT, % | 296 (94.3) | 60 (96.8) | 0.55 |
Dyslipidemia, % | 295 (93.7) | 56 (90.3) | 0.41 |
Vascular disease, % | |||
IHD, % | 67 (21.3%) | 32 (51.6%) | <0.001 |
stroke, % | 46 (14.6%) | 8 (12.9%) | 0.84 |
PAD, % | 68 (21.6%) | 14 (22.6%) | 0.87 |
BMI, kg/m2 | 21.4 (19.0–23.7) | 21.3 (19.0–24.7) | 0.6 |
RAS inhibitor, % | 151 (47.9) | 23 (37.1) | 0.13 |
SBP, mmHg | 144 ± 24 | 144 ± 27 | 0.97 |
DBP, mmHg | 75 ± 13 | 77 ± 15 | 0.26 |
Pulse pressure, mmHg | 69 ± 18 | 67 ± 18 | 0.42 |
WBC, /µL | 5500 (4400–6800) | 4950 (3730–7100) | 0.36 |
RBC, ×104/µL | 361 ± 48 | 383 ± 71 | 0.002 |
MCV, fL | 94.3 ± 7.0 | 93.3 ± 7.8 | 0.38 |
Hb, g/dL | 11.0 (10.2–11.8) | 11.3 (10.5–12.1) | 0.18 |
Albumin, g/dL | 3.5 (3.3–3.8) | 3.5 (3.1–3.7) | 0.057 |
Triglyceride, mg/dL | 86 (63–123) | 101 (72–125) | 0.14 |
LDL-Cho, mg/dL | 78 (63–98) | 76 (63–92) | 0.34 |
HDL-Cho, mg/dL | 45 (35–60) | 41 (34–46) | 0.016 |
CRP, mg/dL | 0.14 (0.04–0.52) | 0.215 (0.084–0.63) | 0.016 |
β2-microglobulin, µg/L | 27.9 (23.8–31.0) | 26.9 (22.6–32.1) | 0.64 |
ERI | 6.12 (2.45–12.15) | 5.91 (1.49–12.61) | 0.61 |
EPO dose | 4000 (2000–7500) | 4000 (1000–8000) | 0.82 |
LVMI, g/m2 | 112 (92–1235) | 141 (125–169) | <0.001 |
Univariable | Multivariable Model 1 | Multivariable Model 2 | ||||
---|---|---|---|---|---|---|
Coefficient (95%CI) | p | Coefficient (95%CI) | p | Coefficient (95%CI) | p | |
Presence of anti-EPOR antibody | 16.7% (0.6–35.4%) | 0.041 | 15.9% (0.03–35.0%) | 0.049 | 16.7% (0.7–35.2%) | 0.043 |
Age, y | 0.2% (–0.4–0.1%) | 0.169 | −0.2% (−0.5–0.1%) | 0.129 | −0.2% (−0.5–0.1%) | 0.126 |
Male | 9.4% (2.0–16.2%) | 0.007 | 8.3% (12.0–15.0%) | 0.021 | 10.2% (2.0–17.4%) | 0.012 |
Dialysis duration, months | 1.0% (1.0–1.0%) | 0.919 | - | - | 1.0% (1.0–1.0%) | 0.334 |
DM | 7.3% (1.0–13.9%) | 0.018 | 6.0% (−1.0–12.7%) | 0.074 | 6.2% (−1.0–12.7%) | 0.082 |
IHD | 6.2% (−1.0–12.7%) | 0.114 | 4.9% (−2.0–12.7%) | 0.178 | 5.1% (−2.0–12.7%) | 0.197 |
BMI, kg/m2 | 0.1% (−1.0–0. 1%) | 0.900 | −0.5% (−13–0.3%) | 0.255 | −0.3% (−10.5–0.6%) | 0.531 |
RAS inhibitor use | 6.2% (0–12.7%) | 0.055 | - | - | 4.1% (−2.0–10.5%) | 0.187 |
SBP, mmHg | 0.1% (0.0–0.2%) | 0.032 | 0.1% (0.0–0.2%) | 0.069 | 0.1% (−0.1–0.2%) | 0.094 |
Hb, g/dL | 0.2% (−0.2–2.5%) | 0.85 | - | - | 1.0% (−2.0–3.0%) | 0.607 |
Alb, d/dL | −0.3% (−10.2–5.1%) | 0.487 | - | - | −7.3% (–17.4–1.0%) | 0.090 |
Dyslipidemia | −7.3% (−20.9–5.1%) | 0.251 | - | - | −4.1% (–17.4–8.3%) | 0.475 |
CRP, mg/dL | −1.5% (−3.7–0.7%) | 0.186 | - | - | −3.0% (–5.1–−0.2%) | 0.035 |
Univariable | Multivariable | |||||
---|---|---|---|---|---|---|
Covariates | OR | 95% CI | p-Value | OR | 95% CI | p-Value |
Presence of anti-EPOR antibody | 2.96 | 1.05–8.33 | 0.040 | 3.20 | 1.05–9.73 | 0.041 |
Age, y | 0.99 | 0.97–1.01 | 0.433 | 0.98 | 0.95–1.00 | 0.123 |
Male | 2.78 | 1.32–5.86 | 0.007 | 2.32 | 1.06–5.05 | 0.035 |
BMI, kg/m2 | 1.04 | 0.97–1.12 | 0.222 | 1.01 | 0.94–1.09 | 0.340 |
IHD | 3.95 | 2.24–6.96 | <0.001 | 3.73 | 2.03–6.84 | <0.001 |
DM | 1.88 | 1.07–3.30 | 0.029 | 1.46 | 0.79–2.70 | 0.225 |
SBP, mmHg | 1.00 | 0.99–1.01 | 0.972 | 1.00 | 0.99–1.01 | 0.970 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mochida, Y.; Hara, A.; Oka, M.; Maesato, K.; Ishioka, K.; Moriya, H.; Oshima, M.; Toyama, T.; Kitajima, S.; Iwata, Y.; et al. Association between Anti-Erythropoietin Receptor Antibodies and Cardiac Function in Patients on Hemodialysis: A Multicenter Cross-Sectional Study. Biomedicines 2022, 10, 2092. https://doi.org/10.3390/biomedicines10092092
Mochida Y, Hara A, Oka M, Maesato K, Ishioka K, Moriya H, Oshima M, Toyama T, Kitajima S, Iwata Y, et al. Association between Anti-Erythropoietin Receptor Antibodies and Cardiac Function in Patients on Hemodialysis: A Multicenter Cross-Sectional Study. Biomedicines. 2022; 10(9):2092. https://doi.org/10.3390/biomedicines10092092
Chicago/Turabian StyleMochida, Yasuhiro, Akinori Hara, Machiko Oka, Kyoko Maesato, Kunihiro Ishioka, Hidekazu Moriya, Megumi Oshima, Tadashi Toyama, Shinji Kitajima, Yasunori Iwata, and et al. 2022. "Association between Anti-Erythropoietin Receptor Antibodies and Cardiac Function in Patients on Hemodialysis: A Multicenter Cross-Sectional Study" Biomedicines 10, no. 9: 2092. https://doi.org/10.3390/biomedicines10092092
APA StyleMochida, Y., Hara, A., Oka, M., Maesato, K., Ishioka, K., Moriya, H., Oshima, M., Toyama, T., Kitajima, S., Iwata, Y., Sakai, N., Shimizu, M., Koshino, Y., Ohtake, T., Hidaka, S., Kobayashi, S., & Wada, T. (2022). Association between Anti-Erythropoietin Receptor Antibodies and Cardiac Function in Patients on Hemodialysis: A Multicenter Cross-Sectional Study. Biomedicines, 10(9), 2092. https://doi.org/10.3390/biomedicines10092092