Enhanced Recovery Care versus Traditional Care after Surgery in Pediatric Patients with Inflammatory Bowel Disease: A Retrospective Case-Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. ERAS Program
2.2. Population
2.3. Data Collection
2.4. Outcome Measures
2.5. Statistical Analysis
3. Results
3.1. ERAS vs. non-ERAS
3.2. Nutritional Intervention
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nordenvall, C.; Rosvall, O.; Bottai, M.; Everhov, Å.H.; Malmborg, P.; Smedby, K.E.; Ekbom, A.; Askling, J.; Ludvigsson, J.F.; Myrelid, P.; et al. Surgical treatment in childhood-onset inflammatory bowel disease-a nationwide register-based study of 4695 incident patients in Sweden 2002–2014. J. Crohn’s Colitis 2018, 12, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, C.; Bartek, J., Jr.; Wewer, V.; Vind, I.; Munkholm, P.; Grøn, R.; Paerregaard, A. Differences in phenotype and disease course in adult and paediatric inflammatory bowel disease-a population-based study. Aliment. Pharmacol. Ther. 2011, 34, 1217–1224. [Google Scholar] [CrossRef] [PubMed]
- Turunen, P.; Ashorn, M.; Auvinen, A.; Iltanen, S.; Huhtala, H.; Kolho, K.L. Long-term health outcomes in pediatric inflammatory bowel disease: A population-based study. Inflamm. Bowel. Dis. 2009, 15, 56–62. [Google Scholar] [CrossRef]
- Dipasquale, V.; Catena, M.A.; Paiano, L.; Trimarchi, G.; Romeo, C.; Navarra, G.; Mattioli, G.; Romano, C. Colectomy and health-related quality of life in children with ulcerative colitis. Minerva Pediatr. 2020. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Dipasquale, V.; Antonelli, E.; Cannavò, L.; Cavatoi, G.; Romeo, C.; Trimarchi, G.; Navarra, G.; Romano, C. Surgery-related quality of life of pediatric patients with Crohn’s disease. Front. Pediatr. 2020, 8, 608370. [Google Scholar] [CrossRef] [PubMed]
- Kain, Z.N.; Mayes, L.C.; Caldwell-Andrews, A.A.; Karas, D.E.; McClain, B.C. Preoperative anxiety, postoperative pain, and behavioral recovery in young children undergoing surgery. Pediatrics 2006, 118, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Wilmore, D.W.; Kehlet, H. Management of patients in fast track surgery. BMJ 2001, 322, 473–476. [Google Scholar] [CrossRef] [PubMed]
- Rafeeqi, T.; Pearson, E.G. Enhanced recovery after surgery in children. Transl. Gastroenterol. Hepatol. 2021, 6, 46. [Google Scholar] [CrossRef]
- Ljungqvist, O.; Scott, M.; Fearon, K.C. Enhanced recovery after surgery: A review. JAMA Surg. 2017, 152, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Thiele, R.H.; Rea, K.M.; Turrentine, F.E.; Friel, C.M.; Hassinger, T.E.; Goudreau, B.J.; Umapathi, B.A.; Kron, I.L.; Sawyer, R.G.; Hedrick, T.L.; et al. Standardization of care: Impact of an enhanced recovery protocol on length of stay, complications, and direct costs after colorectal surgery. J. Am. Coll. Surg. 2015, 220, 430–443. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.E.; Thacker, J.K.; White, W.D.; Mantyh, C.; Migaly, J.; Jin, J.; Roche, A.M.; Eisenstein, E.L.; Edwards, R.; Anstrom, K.J.; et al. Reduced length of hospital stay in colorectal surgery after implementation of an enhanced recovery protocol. Anesth. Analg. 2014, 118, 1052–1061. [Google Scholar] [CrossRef]
- Lee, G.C.; Hodin, R.A. Applying enhanced recovery pathways to unique patient populations. Clin. Colon. Rectal. Surg. 2019, 32, 134–137. [Google Scholar] [CrossRef]
- Levine, A.; Koletzko, S.; Turner, D.; Escher, J.C.; Cucchiara, S.; de Ridder, L.; Kolho, K.L.; Veres, G.; Russell, R.K.; Paerregaard, A.; et al. European Society of Pediatric Gastroenterology, Hepatology, and Nutrition. ESPGHAN revised Porto criteria for the diagnosis of inflammatory bowel disease in children and adolescents. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 795–806. [Google Scholar]
- Short, H.L.; Taylor, N.; Piper, K.; Raval, M.V. Appropriateness of a pediatric-specific enhanced recovery protocol using a modified Delphi process and multidisciplinary expert panel. J. Pediatr. Surg. 2018, 53, 592–598. [Google Scholar] [CrossRef]
- Gao, R.; Yang, H.; Li, Y.; Meng, L.; Li, Y.; Sun, B.; Zhang, G.; Yue, M.; Guo, F. Enhanced recovery after surgery in pediatric gastrointestinal surgery. J. Int. Med. Res. 2019, 47, 4815–4826. [Google Scholar] [CrossRef]
- Waitzberg, D.L.; Saito, H.; Plank, L.D.; Jamieson, G.G.; Jagannath, P.; Hwang, T.L.; Mijares, J.M.; Bihari, D. Postsurgical infections are reduced with specialized nutrition support. World J. Surg. 2006, 30, 1592–1604. [Google Scholar] [CrossRef]
- Drover, J.W.; Dhaliwal, R.; Weitzel, L.; Wischmeyer, P.E.; Ochoa, J.B.; Heyland, D.K. Perioperative use of arginine-supplemented diets: A systematic review of the evidence. J. Am. Coll. Surg. 2011, 212, 385–399.e1. [Google Scholar] [CrossRef]
- Phillips, M.R.; Adamson, W.T.; McLean, S.E.; Hance, L.; Lupa, M.C.; Pittenger, S.L.; Dave, P.; McNaull, P.P. Implementation of a pediatric enhanced recovery pathway decreases opioid utilization and shortens time to full feeding. J. Pediatr. Surg. 2020, 55, 101–105. [Google Scholar] [CrossRef]
- Short, S.S.; Rollins, M.D.; Zobell, S.; Torres, H.; Guthery, S. Decreased ER visits and readmission after implementation of a standardized perioperative toolkit for children with IBD. J. Pediatr. Surg. 2022, 57, 604–609. [Google Scholar] [CrossRef]
- West, M.A.; Horwood, J.F.; Staves, S.; Jones, C.; Goulden, M.R.; Minford, J.; Lamont, G.; Baillie, C.T.; Rooney, P.S. Potential benefits of fast-track concepts in paediatric colorectal surgery. J. Pediatr. Surg. 2013, 48, 1924–1930. [Google Scholar] [CrossRef]
- Baxter, K.J.; Short, H.L.; Wetzel, M.; Steinberg, R.S.; Heiss, K.F.; Raval, M.V. Decreased opioid prescribing in children using an enhanced recovery protocol. J. Pediatr. Surg. 2019, 54, 1104–1107. [Google Scholar] [CrossRef] [PubMed]
ERAS Protocol | Non-ERAS Protocol | |
---|---|---|
Preoperative management | ||
Counseling | Education and illustration | Informed consent |
Nutrition evaluation | Proper assessment | No requirement |
Fasting | Fasting 6 h, water 2 h | Fasting 12 h, water 4 h |
Sedative preanesthetic | No | Yes, if required |
Intraoperative management | ||
Antibiotic prophylaxis | Yes | No requirement |
Surgical approach | Minimally invasive | No requirement |
Abdominal drainage tubes | Only if necessary | Routinely used |
Pain | Comprehensive analgesic regimen | NSAIDs |
Maintenance of normothermia | Always | No requirement |
Postoperative management | ||
Diet | Day 1 | After recanalization |
Removal of urinary catheter | Day 1 | No requirement |
Removal of wound drainage | Day 2 | Day 2–3 |
Nausea and vomiting prophylaxis | 5-HT receptor antagonist | No requirement |
Mobilization | Day 1 | No requirement |
Preoperative | Intraoperative | Postoperative |
---|---|---|
Education | Maintenance of body temperature | Pain treatment |
Evaluation of nutrition | Drainages only if necessary | Early feeding after anesthesia awareness |
No prolonged fasting | Early removal of catheters | |
Preventive antibiotics | Early mobilization | |
Nausea and vomiting prophylaxis | ||
Compliance and follow-up |
Variable | Total (n = 61) |
---|---|
Age at surgery, y, median (range) | 13.6 (4.6–17.8) |
Age at IBD onset, y, median (range) | 10.2 (0.6–16.8) |
BMI, n (%) | |
<−2 SD | 14 (23) |
−1.9–+1.9 SD | 46 (75.4) |
>+2 SD | 1 (1.6) |
Indication, n (%) | |
UC | 28 (45.9) |
CD | 28 (45.9) |
CD-like IBDU | 3 (4.9) |
UC-like IBDU | 2 (3.3) |
Drugs, n (%) | |
None | 27 (44.3) |
Steroids | 6 (9.8) |
Biologics a | 18 (29.5) |
Both | 10 (16.4) |
Nutritional support, n (%) | |
No | 47 (77) |
Enteral nutrition b | 8 (13.1) |
Parenteral nutrition | 4 (6.6) |
Both | 2 (3.3) |
Approach, n (%) | |
Laparoscopy | 57 (93.4) |
Laparotomy | 4 (6.6) |
Type, n (%) | |
Proctocolectomies with ileal pouch anal-anastomosis with ileostomy | 19 |
Ileostomy closures | 16 |
Subtotal colectomies with ileostomy | 14 |
Terminal ileostomies | 5 |
Ileocecal resections without ileostomy | 5 |
Ileocecal resection with ileostomy | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dipasquale, V.; Laganà, F.; Arrigo, S.; Trimarchi, G.; Romeo, C.; Navarra, G.; Mattioli, G.; Gandullia, P.; Romano, C. Enhanced Recovery Care versus Traditional Care after Surgery in Pediatric Patients with Inflammatory Bowel Disease: A Retrospective Case-Control Study. Biomedicines 2022, 10, 2209. https://doi.org/10.3390/biomedicines10092209
Dipasquale V, Laganà F, Arrigo S, Trimarchi G, Romeo C, Navarra G, Mattioli G, Gandullia P, Romano C. Enhanced Recovery Care versus Traditional Care after Surgery in Pediatric Patients with Inflammatory Bowel Disease: A Retrospective Case-Control Study. Biomedicines. 2022; 10(9):2209. https://doi.org/10.3390/biomedicines10092209
Chicago/Turabian StyleDipasquale, Valeria, Francesca Laganà, Serena Arrigo, Giuseppe Trimarchi, Carmelo Romeo, Giuseppe Navarra, Girolamo Mattioli, Paolo Gandullia, and Claudio Romano. 2022. "Enhanced Recovery Care versus Traditional Care after Surgery in Pediatric Patients with Inflammatory Bowel Disease: A Retrospective Case-Control Study" Biomedicines 10, no. 9: 2209. https://doi.org/10.3390/biomedicines10092209
APA StyleDipasquale, V., Laganà, F., Arrigo, S., Trimarchi, G., Romeo, C., Navarra, G., Mattioli, G., Gandullia, P., & Romano, C. (2022). Enhanced Recovery Care versus Traditional Care after Surgery in Pediatric Patients with Inflammatory Bowel Disease: A Retrospective Case-Control Study. Biomedicines, 10(9), 2209. https://doi.org/10.3390/biomedicines10092209