UMOD Mutations in Chronic Kidney Disease in Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. CKD Individuals and DNA Preparation
2.2. Exome Sequencing and Bioinformatics Analysis
2.3. Cell Culture and Transient Transfection
2.4. Site-Directed Mutagenesis
2.5. ELISA and Fractionation
2.6. Immunoblotting Analysis
2.7. Protein Structure Prediction
2.8. Statistic Analysis
3. Results
4. Discussion
5. Conlusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hart, T.C.; Gorry, M.C.; Hart, P.S.; Woodard, A.S.; Shihabi, Z.; Sandhu, J.; Shirts, B.; Xu, L.; Zhu, H.; Barmada, M.M.; et al. Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J. Med Genet. 2002, 39, 882–892. [Google Scholar] [CrossRef] [PubMed]
- Knaup, K.X.; Hackenbeck, T.; Popp, B.; Stoeckert, J.; Wenzel, A.; Buttner-Herold, M.; Pfister, F.; Schueler, M.; Seven, D.; May, A.M.; et al. Biallelic Expression of Mucin-1 in Autosomal Dominant Tubulointerstitial Kidney Disease: Implications for Nongenetic Disease Recognition. J. Am. Soc. Nephrol. 2018, 29, 2298–2309. [Google Scholar] [CrossRef] [PubMed]
- Bingham, C.; Ellard, S.; van’t Hoff, W.G.; Simmonds, H.A.; Marinaki, A.M.; Badman, M.K.; Winocour, P.H.; Stride, A.; Lockwood, C.R.; Nicholls, A.J.; et al. Atypical familial juvenile hyperuricemic nephropathy associated with a hepatocyte nuclear factor-1beta gene mutation. Kidney Int. 2003, 63, 1645–1651. [Google Scholar] [CrossRef]
- Zivna, M.; Hulkova, H.; Matignon, M.; Hodanova, K.; Vylet’al, P.; Kalbacova, M.; Baresova, V.; Sikora, J.; Blazkova, H.; Zivny, J.; et al. Dominant renin gene mutations associated with early-onset hyperuricemia, anemia, and chronic kidney failure. Am. J. Hum. Genet. 2009, 85, 204–213. [Google Scholar] [CrossRef]
- Bolar, N.A.; Golzio, C.; Zivna, M.; Hayot, G.; Van Hemelrijk, C.; Schepers, D.; Vandeweyer, G.; Hoischen, A.; Huyghe, J.R.; Raes, A.; et al. Heterozygous Loss-of-Function SEC61A1 Mutations Cause Autosomal-Dominant Tubulo-Interstitial and Glomerulocystic Kidney Disease with Anemia. Am. J. Hum. Genet. 2016, 99, 174–187. [Google Scholar] [CrossRef]
- Olinger, E.; Hofmann, P.; Kidd, K.; Dufour, I.; Belge, H.; Schaeffer, C.; Kipp, A.; Bonny, O.; Deltas, C.; Demoulin, N.; et al. Clinical and genetic spectra of autosomal dominant tubulointerstitial kidney disease due to mutations in UMOD and MUC1. Kidney Int. 2020, 98, 717–731. [Google Scholar] [CrossRef]
- Gast, C.; Marinaki, A.; Arenas-Hernandez, M.; Campbell, S.; Seaby, E.G.; Pengelly, R.J.; Gale, D.P.; Connor, T.M.; Bunyan, D.J.; Hodanova, K.; et al. Autosomal dominant tubulointerstitial kidney disease-UMOD is the most frequent non polycystic genetic kidney disease. BMC Nephrol. 2018, 19, 301. [Google Scholar] [CrossRef]
- Groopman, E.E.; Marasa, M.; Cameron-Christie, S.; Petrovski, S.; Aggarwal, V.S.; Milo-Rasouly, H.; Li, Y.; Zhang, J.; Nestor, J.; Krithivasan, P.; et al. Diagnostic Utility of Exome Sequencing for Kidney Disease. N. Engl. J. Med. 2019, 380, 142–151. [Google Scholar] [CrossRef]
- Devuyst, O.; Olinger, E.; Rampoldi, L. Uromodulin: From physiology to rare and complex kidney disorders. Nat. Rev. Nephrol. 2017, 13, 525–544. [Google Scholar] [CrossRef] [PubMed]
- Tokonami, N.; Takata, T.; Beyeler, J.; Ehrbar, I.; Yoshifuji, A.; Christensen, E.I.; Loffing, J.; Devuyst, O.; Olinger, E.G. Uromodulin is expressed in the distal convoluted tubule, where it is critical for regulation of the sodium chloride cotransporter NCC. Kidney Int. 2018, 94, 701–715. [Google Scholar] [CrossRef] [Green Version]
- Schaeffer, C.; Santambrogio, S.; Perucca, S.; Casari, G.; Rampoldi, L. Analysis of uromodulin polymerization provides new insights into the mechanisms regulating ZP domain-mediated protein assembly. Mol. Biol. Cell 2009, 20, 589–599. [Google Scholar] [CrossRef] [PubMed]
- Brunati, M.; Perucca, S.; Han, L.; Cattaneo, A.; Consolato, F.; Andolfo, A.; Schaeffer, C.; Olinger, E.; Peng, J.; Santambrogio, S.; et al. The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin. Elife 2015, 4, e08887. [Google Scholar] [CrossRef] [PubMed]
- Santambrogio, S.; Cattaneo, A.; Bernascone, I.; Schwend, T.; Jovine, L.; Bachi, A.; Rampoldi, L. Urinary uromodulin carries an intact ZP domain generated by a conserved C-terminal proteolytic cleavage. Biochem. Biophys. Res. Commun. 2008, 370, 410–413. [Google Scholar] [CrossRef] [PubMed]
- Mo, L.; Huang, H.Y.; Zhu, X.H.; Shapiro, E.; Hasty, D.L.; Wu, X.R. Tamm-Horsfall protein is a critical renal defense factor protecting against calcium oxalate crystal formation. Kidney Int. 2004, 66, 1159–1166. [Google Scholar] [CrossRef]
- Mo, L.; Zhu, X.H.; Huang, H.Y.; Shapiro, E.; Hasty, D.L.; Wu, X.R. Ablation of the Tamm-Horsfall protein gene increases susceptibility of mice to bladder colonization by type 1-fimbriated Escherichia coli. Am. J. Physiol. Physiol. 2004, 286, F795–F802. [Google Scholar] [CrossRef]
- Raffi, H.S.; Bates, J.M., Jr.; Laszik, Z.; Kumar, S. Tamm-horsfall protein protects against urinary tract infection by proteus mirabilis. J. Urol. 2009, 181, 2332–2338. [Google Scholar] [CrossRef]
- Darisipudi, M.N.; Thomasova, D.; Mulay, S.R.; Brech, D.; Noessner, E.; Liapis, H.; Anders, H.J. Uromodulin triggers IL-1beta-dependent innate immunity via the NLRP3 inflammasome. J. Am. Soc. Nephrol. 2012, 23, 1783–1789. [Google Scholar] [CrossRef]
- Schaeffer, C.; Devuyst, O.; Rampoldi, L. Uromodulin: Roles in Health and Disease. Annu. Rev. Physiol. 2021, 83, 477–501. [Google Scholar] [CrossRef]
- Trudu, M.; Janas, S.; Lanzani, C.; Debaix, H.; Schaeffer, C.; Ikehata, M.; Citterio, L.; Demaretz, S.; Trevisani, F.; Ristagno, G.; et al. Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression. Nat. Med. 2013, 19, 1655–1660. [Google Scholar] [CrossRef]
- Rampoldi, L.; Caridi, G.; Santon, D.; Boaretto, F.; Bernascone, I.; Lamorte, G.; Tardanico, R.; Dagnino, M.; Colussi, G.; Scolari, F.; et al. Allelism of MCKD, FJHN and GCKD caused by impairment of uromodulin export dynamics. Hum. Mol. Genet. 2003, 12, 3369–3384. [Google Scholar] [CrossRef] [Green Version]
- Williams, S.E.; Reed, A.A.; Galvanovskis, J.; Antignac, C.; Goodship, T.; Karet, F.E.; Kotanko, P.; Lhotta, K.; Moriniere, V.; Williams, P.; et al. Uromodulin mutations causing familial juvenile hyperuricaemic nephropathy lead to protein maturation defects and retention in the endoplasmic reticulum. Hum. Mol. Genet. 2009, 18, 2963–2974. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, C.; Merella, S.; Pasqualetto, E.; Lazarevic, D.; Rampoldi, L. Mutant uromodulin expression leads to altered homeostasis of the endoplasmic reticulum and activates the unfolded protein response. PLoS ONE 2017, 12, e0175970. [Google Scholar] [CrossRef]
- Utami, S.B.; Mahati, E.; Li, P.; Maharani, N.; Ikeda, N.; Bahrudin, U.; Munemura, C.; Hosoyamada, M.; Yamamoto, Y.; Yoshida, A.; et al. Apoptosis induced by an uromodulin mutant C112Y and its suppression by topiroxostat. Clin. Exp. Nephrol. 2015, 19, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Lhotta, K.; Gehringer, A.; Jennings, P.; Kronenberg, F.; Brezinka, C.; Andersone, I.; Strazdins, V. Familial juvenile hyperuricemic nephropathy: Report on a new mutation and a pregnancy. Clin. Nephrol. 2009, 71, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Onoe, T.; Hara, S.; Yamada, K.; Zoshima, T.; Mizushima, I.; Ito, K.; Mori, T.; Daimon, S.; Muramoto, H.; Shimizu, M.; et al. Significance of kidney biopsy in autosomal dominant tubulointerstitial kidney disease-UMOD: Is kidney biopsy truly nonspecific? BMC Nephrol. 2021, 22, 1–11. [Google Scholar] [CrossRef]
- Hwang, S.J.; Tsai, J.C.; Chen, H.C. Epidemiology, impact and preventive care of chronic kidney disease in Taiwan. Nephrology 2010, 15 (Suppl. S2), 3–9. [Google Scholar] [CrossRef]
- Rodrigues, C.H.; Pires, D.E.; Ascher, D.B. DynaMut: Predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Res. 2018, 46, W350–W355. [Google Scholar] [CrossRef]
- Ferre, F.; Clote, P. Disulfide connectivity prediction using secondary structure information and diresidue frequencies. Bioinformatics 2005, 21, 2336–2346. [Google Scholar] [CrossRef]
- Ferre, F.; Clote, P. DiANNA: A web server for disulfide connectivity prediction. Nucleic Acids Res. 2005, 33, W230–W232. [Google Scholar] [CrossRef]
- Ferre, F.; Clote, P. DiANNA 1.1: An extension of the DiANNA web server for ternary cysteine classification. Nucleic Acids Res. 2006, 34, W182–W185. [Google Scholar] [CrossRef] [Green Version]
- Bernascone, I.; Vavassori, S.; Di Pentima, A.; Santambrogio, S.; Lamorte, G.; Amoroso, A.; Scolari, F.; Ghiggeri, G.M.; Casari, G.; Polishchuk, R.; et al. Defective intracellular trafficking of uromodulin mutant isoforms. Traffic 2006, 7, 1567–1579. [Google Scholar] [CrossRef] [PubMed]
- Bleyer, A.J.; Kidd, K.; Zivna, M.; Kmoch, S. Autosomal Dominant Tubulointerstitial Kidney Disease—UMOD. In GeneReviews((R)); Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Mirzaa, G.M., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- de Boer, I.H.; Alpers, C.E.; Azeloglu, E.U.; Balis, U.G.J.; Barasch, J.M.; Barisoni, L.; Blank, K.N.; Bomback, A.S.; Brown, K.; Dagher, P.C.; et al. Rationale and design of the Kidney Precision Medicine Project. Kidney Int. 2021, 99, 498–510. [Google Scholar] [CrossRef] [PubMed]
- Kidd, K.; Vylet’al, P.; Schaeffer, C.; Olinger, E.; Zivna, M.; Hodanova, K.; Robins, V.; Johnson, E.; Taylor, A.; Martin, L.; et al. Genetic and Clinical Predictors of Age of ESKD in Individuals With Autosomal Dominant Tubulointerstitial Kidney Disease Due to UMOD Mutations. Kidney Int. Rep. 2020, 5, 1472–1485. [Google Scholar] [CrossRef]
- Bollee, G.; Dahan, K.; Flamant, M.; Moriniere, V.; Pawtowski, A.; Heidet, L.; Lacombe, D.; Devuyst, O.; Pirson, Y.; Antignac, C.; et al. Phenotype and outcome in hereditary tubulointerstitial nephritis secondary to UMOD mutations. Clin. J. Am. Soc. Nephrol. 2011, 6, 2429–2438. [Google Scholar] [CrossRef]
- Liu, M.; Chen, Y.; Liang, Y.; Liu, Y.; Wang, S.; Hou, P.; Zhang, H.; Zhao, M. Novel UMOD mutations in familial juvenile hyperuricemic nephropathy lead to abnormal uromodulin intracellular trafficking. Gene 2013, 531, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Xu, R.; Yang, Z.; Li, Z.; Liao, Y.; Johnson, R.J.; Yu, X.; Chen, W. Novel uromodulin mutation in familial juvenile hyperuricemic nephropathy. Am. J. Nephrol. 2012, 36, 114–120. [Google Scholar] [CrossRef]
- Lee, D.H.; Kim, J.K.; Oh, S.E.; Noh, J.W.; Lee, Y.K. A case of familial juvenile hyperuricemic nephropathy with novel uromodulin gene mutation, a novel heterozygous missense mutation in Korea. J. Korean Med Sci. 2010, 25, 1680–1682. [Google Scholar] [CrossRef]
- Carucci, N.S.; Caridi, G.; Lugani, F.; Barone, C.; Conti, G. A novel UMOD gene mutation associated with chronic kidney failure at a young age. Clin. Nephrol. 2019, 92, 151–155. [Google Scholar] [CrossRef]
- Vylet’al, P.; Kublova, M.; Kalbacova, M.; Hodanova, K.; Baresova, V.; Stiburkova, B.; Sikora, J.; Hulkova, H.; Zivny, J.; Majewski, J.; et al. Alterations of uromodulin biology: A common denominator of the genetically heterogeneous FJHN/MCKD syndrome. Kidney Int. 2006, 70, 1155–1169. [Google Scholar] [CrossRef]
- Padmanabhan, S.; Graham, L.; Ferreri, N.R.; Graham, D.; McBride, M.; Dominiczak, A.F. Uromodulin, an emerging novel pathway for blood pressure regulation and hypertension. Hypertension 2014, 64, 918–923. [Google Scholar] [CrossRef] [Green Version]
- Kreft, B.; Jabs, W.J.; Laskay, T.; Klinger, M.; Solbach, W.; Kumar, S.; van Zandbergen, G. Polarized expression of Tamm-Horsfall protein by renal tubular epithelial cells activates human granulocytes. Infect. Immun. 2002, 70, 2650–2656. [Google Scholar] [CrossRef] [PubMed]
- Rampoldi, L.; Scolari, F.; Amoroso, A.; Ghiggeri, G.; Devuyst, O. The rediscovery of uromodulin (Tamm-Horsfall protein): From tubulointerstitial nephropathy to chronic kidney disease. Kidney Int. 2011, 80, 338–347. [Google Scholar] [CrossRef]
- Piret, S.E.; Olinger, E.; Reed, A.A.C.; Nesbit, M.A.; Hough, T.A.; Bentley, L.; Devuyst, O.; Cox, R.D.; Thakker, R.V. A mouse model for inherited renal fibrosis associated with endoplasmic reticulum stress. Dis. Model. Mech. 2017, 10, 773–786. [Google Scholar] [CrossRef] [PubMed]
- Micanovic, R.; LaFavers, K.; Garimella, P.S.; Wu, X.R.; El-Achkar, T.M. Uromodulin (Tamm-Horsfall protein): Guardian of urinary and systemic homeostasis. Nephrol. Dial. Transplant. 2020, 35, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.J.; Stacey, J.M.; Harding, B.; Kotanko, P.; Lhotta, K.; Puig, J.G.; Roberts, I.; Torres, R.J.; Thakker, R.V. UROMODULIN mutations cause familial juvenile hyperuricemic nephropathy. J. Clin. Endocrinol. Metab. 2003, 88, 1398–1401. [Google Scholar] [CrossRef]
- Serafini-Cessi, F.; Malagolini, N.; Hoops, T.C.; Rindler, M.J. Biosynthesis and oligosaccharide processing of human Tamm-Horsfall glycoprotein permanently expressed in HeLa cells. Biochem. Biophys. Res. Commun. 1993, 194, 784–790. [Google Scholar] [CrossRef]
Family | Nucleotide Change | Amino Acid Change | ACMG Classification | Final Verdict | Clin Var | In Vitro Function | dbSNP | Allele Frequency |
---|---|---|---|---|---|---|---|---|
WG | c.121T > C | p.Cys41Arg | LP 1 | LP | Delayed maturation and decreased extracellular excretion | |||
DY5 | c.179G > A | p.Gly60Asp | VUS 2 | LP | Delayed maturation and decreased extracellular excretion | |||
CKD401 | c.817G > T | p.Val273Phe | VUS 3 | LP | LP | Not performed | rs121917774 | 0.00006 (1/16760, 8.3KJPN) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.-D.; Yu, C.-C.; Yang, I.-H.; Hung, C.-C.; Kuo, M.-C.; Tarng, D.-C.; Chang, J.-M.; Hwang, D.-Y. UMOD Mutations in Chronic Kidney Disease in Taiwan. Biomedicines 2022, 10, 2265. https://doi.org/10.3390/biomedicines10092265
Chen H-D, Yu C-C, Yang I-H, Hung C-C, Kuo M-C, Tarng D-C, Chang J-M, Hwang D-Y. UMOD Mutations in Chronic Kidney Disease in Taiwan. Biomedicines. 2022; 10(9):2265. https://doi.org/10.3390/biomedicines10092265
Chicago/Turabian StyleChen, Huan-Da, Chih-Chuan Yu, I-Hsiao Yang, Chi-Chih Hung, Mei-Chuan Kuo, Der-Cherng Tarng, Jer-Ming Chang, and Daw-Yang Hwang. 2022. "UMOD Mutations in Chronic Kidney Disease in Taiwan" Biomedicines 10, no. 9: 2265. https://doi.org/10.3390/biomedicines10092265
APA StyleChen, H. -D., Yu, C. -C., Yang, I. -H., Hung, C. -C., Kuo, M. -C., Tarng, D. -C., Chang, J. -M., & Hwang, D. -Y. (2022). UMOD Mutations in Chronic Kidney Disease in Taiwan. Biomedicines, 10(9), 2265. https://doi.org/10.3390/biomedicines10092265