Single-Cell Analysis of Circulating Tumor Cells from Patients with Colorectal Cancer Captured with a Dielectrophoresis-Based Micropore System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Spike Test with a Colon Cancer Cell Line
2.3. Buffer, Reagents, and Antibodies
2.4. Enrichment of Blood Samples
2.5. Tumor Cell Entrapment with Dielectrophoresis
2.6. Immunofluorescence Staining
2.7. Mutation Analysis
2.7.1. Whole Genome Amplification from a Single Cell
2.7.2. Tissue DNA
2.7.3. Polymerase Chain Reaction and Sanger Sequencing
- KRAS
- F: AGGCCTGCTGAAAATGACTGA,R: TGTTGGATCATATTCGTCCACAA
- BRAF
- F: TGCTTGCTCTGATAGGAAAATGAG,R: GGACCCACTCCATCGAGATT
- PIK3CA
- F: TGGAAACTTGCACCCTGTTT,R: TTGTCCATCGTCTTTCACCA
2.8. Patients
2.9. Clinical and Pathological Correlation
2.10. Statistical Analysis
3. Results
3.1. Spike Test
3.2. Single-Cell Analysis of Mutations in KRAS, BRAF, and PIK3CA in CRC Cell Lines
3.3. Single-Cell Analysis in CTCs from Patients with CRC
3.4. Comparison of Mutations between CTCs and Primary Tumors
3.5. Relationship between CTC and Clinical and Pathological Parameters
4. Discussion
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittekind, C.; Neid, M. Cancer invasion and metastasis. Oncology 2005, 69 (Suppl. S1), 14–16. [Google Scholar] [CrossRef] [PubMed]
- Cremolini, C.; Rossini, D.; Dell’Aquila, E.; Lonardi, S.; Conca, E.; Del Re, M.; Busico, A.; Pietrantonio, F.; Danesi, R.; Aprile, G.; et al. Rechallenge for Patients With RAS and BRAF Wild-Type Metastatic Colorectal Cancer With Acquired Resistance to First-line Cetuximab and Irinotecan: A Phase 2 Single-Arm Clinical Trial. JAMA Oncol. 2019, 5, 343–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcuello, M.; Vymetalkova, V.; Neves, R.P.; Duran-Sanchon, S.; Vedeld, H.M.; Tham, E.; van Dalum, G.; Flügen, G.; Garcia-Barberan, V.; Fijneman, R.J.A.; et al. Circulating biomarkers for early detection and clinical management of colorectal cancer. Mol. Asp. Med. 2019, 69, 107–122. [Google Scholar] [CrossRef]
- Tarazona, N.; Gimeno-Valiente, F.; Gambardella, V.; Zuniga, S.; Rentero-Garrido, P.; Huerta, M.; Roselló, S.; Martinez-Ciarpaglini, C.; Carbonell-Asins, J.A.; Carrasco, F.; et al. Targeted next-generation sequencing of circulating-tumor DNA for tracking minimal residual disease in localized colon cancer. Ann. Oncol. 2019, 30, 1804–1812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, T.; Matsuda, A.; Koizumi, M.; Shinji, S.; Takahashi, G.; Iwai, T.; Takeda, K.; Ueda, K.; Yokoyama, Y.; Hara, K.; et al. Liquid Biopsy for the Management of Patients with Colorectal Cancer. Digestion 2019, 99, 39–45. [Google Scholar] [CrossRef]
- Tie, J.; Cohen, J.D.; Wang, Y.; Christie, M.; Simons, K.; Lee, M.; Wong, R.; Kosmider, S.; Ananda, S.; McKendrick, J.; et al. Circulating Tumor DNA Analyses as Markers of Recurrence Risk and Benefit of Adjuvant Therapy for Stage III Colon Cancer. JAMA Oncol. 2019, 5, 1710–1717. [Google Scholar] [CrossRef]
- Peeters, D.; De Laere, B.; Van den Eynden, G.; Van Laere, S.; Rothe, F.; Ignatiadis, M.; Sieuwerts, A.; Lambrechts, D.; Rutten, A.; Van Dam, P.; et al. Semiautomated isolation and molecular characterisation of single or highly purified tumour cells from CellSearch enriched blood samples using dielectrophoretic cell sorting. Br. J. Cancer 2013, 108, 1358–1367. [Google Scholar] [CrossRef] [Green Version]
- Allen, J.E.; EI-Deiry, W.S. Circulating tumor cells and colorectal cancer. Curr. Colorectal. Cancer Rep. 2010, 6, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Gao, P.; Song, Y.; Sun, J.; Chen, X.; Zhao, J.; Liu, J.; Xu, H.; Wang, Z. Relationship between circulating tumor cells and tumor response in colorectal cancer patients with chemotherapy; a meta-analysis. BMC Cancer 2014, 14, 976. [Google Scholar] [CrossRef]
- Cohen, S.J.A.; Punt, C.J.; Iannotti, N.; Saidman, B.H.; Sabbath, K.D.; Gabrail, N.Y.; Picus, J.; Morse, M.; Mitchell, E.; Miller, M.C.; et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J. Clin. Oncol. 2008, 26, 3213–3221. [Google Scholar] [CrossRef] [PubMed]
- De Bono, J.S.; Scher, H.I.; Montgomery, R.B.; Parker, C.; Miller, M.C.; Tissing, H.; Doyle, G.V.; Terstappen, L.W.; Pienta, K.J.; Raghavan, D. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin. Cancer Res. 2008, 14, 6302–6309. [Google Scholar] [CrossRef] [Green Version]
- Cristofanilli, M.; Budd, G.T.; Ellis, M.J.; Stopeck, A.; Matera, J.; Miller, M.C.; Reuben, J.M.; Doyle, G.V.; Allard, W.J.; Terstappen, L.W.; et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 2004, 351, 781–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pantel, K.; Brakenhoff, R.H.; Branbt, B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat. Rev. Cancer 2008, 8, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Cayrefourcq, L.; Mazard, T.; Joosse, S.; Solassol, J.; Ramos, J.; Assenat, E.; Schumacher, U.; Costes, V.; Maudelonde, T.; Pantel, K.; et al. Establishment and characterization of a cell line from human circulating colon cancer cells. Cancer Res. 2015, 75, 892–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasch, C.; Bauernhofer, T.; Pichler, M.; Langer-Freitag, S.; Reeh, M.; Seifert, A.M.; Mauermann, O.; Izbicki, J.R.; Pantel, K.; Riethdorf, S. Heterogeneity of epidermal growth factor receptor status and mutations of KRAS/PIK3CA in circulating tumor cells of patients with colorectal cancer. Clin. Chem. 2013, 59, 252–260. [Google Scholar] [CrossRef] [Green Version]
- Morimoto, A.; Mogami, T.; Watanabe, M.; Iijima, K.; Akiyama, Y.; Katayama, K.; Futami, T.; Yamamoto, N.; Sawada, T.; Koizumi, F.; et al. High-Density Dielectrophoretic Microwell Array for Detection, Capture, and Single-Cell Analysis of Rare Tumor Cells in Peripheral Blood. PLoS ONE 2015, 10, e0130418. [Google Scholar] [CrossRef]
- Sobin, L.H.; Gospodarowicz, M.K.; Wittekind, C. UICC TNM Classification of Malignant Tumors, 8th ed.; Wiley: New York, NY, USA, 2016. [Google Scholar]
- Fabbri, F.; Carloni, S.; Zoli, W.; Ulivi, P.; Gallerani, G.; Fici, P.; Chiadini, E.; Passardi, A.; Frassineti, G.L.; Ragazzini, A.; et al. Detection and recovery of circulating colon cancer cells using a dielectrophoresis-based device: KRAS mutation status in pure CTCs. Cancer Lett. 2013, 335, 225–231. [Google Scholar] [CrossRef]
- Gupta, V.; Jafferji, I.; Garza, M.; Melnikova, V.O.; Hasegawa, D.K.; Pethig, R.; Davis, D.W. ApoStream™, a new dielectrophoretic device for antibody independent isolation and recovery of viable cancer cells from blood. Biomicrofluidics 2012, 6, 024133. [Google Scholar] [CrossRef] [Green Version]
- Shim, S.; Stemke-Hale, K.; Tsimberidou, A.M.; Noshari, J.; Anderson, T.E.; Gascoyne, P.R.C. Antibodyindependent isolation of circulating tumor cells by continuous-flow dielectrophoresis. Biomicrofluidics 2013, 7, 011807. [Google Scholar] [CrossRef]
- Swennenhuis, J.F.; Reumers, J.; Thys, K.; Aerssens, J.; Terstappen, L.W. Efficiency of whole genome amplification of single circulating tumor cells enriched by CellSearch and sorted by FACS. Genome 2013, 5, 106. [Google Scholar] [CrossRef] [Green Version]
- Satelli, A.; Mitra, A.; Brownlee, Z.; Xia, X.; Bellister, S.; Overman, M.J.; Kopetz, S.; Ellis, L.M.; Meng, Q.H.; Li, S. Epithelial-Mesenchymal Transitioned Circulating Tumor Cells Capture for Detecting Tumor Progression. Clin. Cancer Res. 2015, 21, 899–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, Y.; Hayashi, K.; Kawakami, K.; Miwa, Y.; Hayashi, H.; Yamamoto, M. KRAS mutation analysis of single circulating tumor cells from patients with metastatic colorectal cancer. BMC Cancer 2017, 17, 311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidess-Sigal, E.; Liu, H.E.; Triboulet, M.M.; Che, J.; Ramani, V.C.; Visser, B.C.; Poultsides, G.A.; Longacre, T.A.; Marziali, A.; Vysotskaia, V.; et al. Enumeration and targeted analysis of KRAS, BRAF and PIK3CA mutations in CTCs captured by a label-free platform: Comparison to ctDNA and tissue in metastatic colorectal cancer. Oncotarget 2016, 7, 85349–85364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noura, S.; Yamamoto, H.; Miyake, Y.; Kim, B.N.; Takayama, O.; Seshimo, I.; Ikenaga, M.; Ikeda, M.; Sekimoto, M.; Matsuura, N.; et al. Immunohistochemical assessment of localization and frequency of micrometastases in lymph nodes of colorectal cancer. Clin. Cancer Res. 2002, 8, 759–767. [Google Scholar]
- Yokobori, T.; Iinuma, H.; Shimamura, T.; Imoto, S.; Sugimachi, K.; Ishii, H.; Iwatsuki, M.; Ota, D.; Ohkuma, M.; Iwaya, T.; et al. Plastin3 is novel marker for circulating tumor cells undergoing the epithelial-mesenchymal transition and is associated with colorectal cancer prognosis. Cancer Res. 2013, 73, 2059–2069. [Google Scholar] [CrossRef] [Green Version]
- Alix-Panabieres, C.; Pantel, K. Challenges in circulating tumour cell research. Nat. Rev. Cancer 2014, 14, 623–631. [Google Scholar] [CrossRef]
- Mani, S.A.; Guo, W.; Liao, M.-J.; Eaton, E.N.; Ayyanan, A.; Zhou, A.Y.; Brooks, M.; Reinhard, F.; Zhang, C.C.; Shipitsin, M.; et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008, 133, 704–715. [Google Scholar] [CrossRef] [Green Version]
- Tam, W.L.; Weinberg, R.A. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat. Med. 2013, 19, 1438–1449. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, T.; Yoshino, T.; Uetake, H.; Yamazaki, K.; Ishiguro, M.; Kurokawa, T.; Saijo, N.; Ohashi, Y.; Sugihara, K. KRAS mutational status in Japanese patients with colorectal cancer: Results from a nationwide, multicenter, cross-sectional study. Jpn. J. Clin. Oncol. 2013, 43, 706–712. [Google Scholar] [CrossRef] [Green Version]
- Qin, B.-D.; Jiao, X.-D.; Liu, K.; Wu, Y.; He, X.; Liu, J.; Qin, W.-X.; Wang, Z.; Zang, Y.-S. Basket Trials for Intractable Cancer. Front. Oncol. 2019, 12, 229. [Google Scholar] [CrossRef] [PubMed]
- Colin, M.C.; Jacob, S.A.; Shonan, S.; Shuang, H.; Qingyu, L.; Carolyn, H.; Min, S.; Xinfang, L.; Matthew, M.R.; Zev, A.W.; et al. Reality of Single Circulating Tumor Cell Sequencing for Molecular Diagnostics in Pancreatic Cancer. J. Mol. Diagn. 2016, 18, 688–696. [Google Scholar]
- Sjöblom, T.; Jones, S.; Wood, L.D.; Parsons, D.W.; Lin, J.; Barber, T.D.; Mandelker, D.; Leary, R.J.; Ptak, J.; Silliman, N.; et al. The consensus coding sequences of human breast and colorectal cancers. Science 2006, 314, 268–274. [Google Scholar] [CrossRef] [PubMed]
Cell Line | Mutation | Pool | Single Cell | |||
---|---|---|---|---|---|---|
① | ② | ③ | ④ | |||
DLD-1 | KRAS | G13D(he) | wt | wt | G13D(he) | G13D |
BRAF | wt | wt | wt | wt | wt | |
PIK3CA | wt | wt | N.D | wt | wt | |
① | ② | ③ | ④ | |||
RKO | KRAS | wt | wt | wt | wt | wt |
BRAF | V600E(he) | V600E(he) | V600E(he) | wt | wt | |
PIK3CA | H1047R(he) | wt | H1047R | H1047R(he) | H1047R(he) | |
① | ② | ③ | ④ | |||
HCT116 | KRAS | G13D(he) | G13D | wt | G13D | wt |
BRAF | wt | wt | wt | wt | wt | |
PIK3CA | H1047R(he) | wt | wt | wt | H1047R |
Pt. | Location | Differentiation | TNM | Stage | Synchronous Meta. /Metachronous Meta. | Metastasis at Other Sites | CK(+) Cell Number | CK(−) Cell Number |
---|---|---|---|---|---|---|---|---|
1 | Rb | muc | T3N2M0 | IIIB | metachronous | Liver, Bone | 0 | - |
2 | A | tub2 | T4bN2M0 | IIIC | - | - | 0 | - |
3 | Ra | - | - | IV | synchronous | Liver | 0 | - |
4 | Rb | tub2 | T3N2M0 | IIIB | metachronous | LN | 0 | - |
5 | S | tub2 | T3N0M0 | IIA | metachronous | Liver, Peritoneum | 3 | - |
6 | RS | - | - | IV | synchronous | Liver, Lung, Bone | 5 | - |
7 | T | tub1 | T3N1M1 | IV | synchronous | Lung | 3 | - |
8 | V | tub1 | T4bN1M1 | IV | synchronous | Liver | 4 | - |
9 | A | tub2 | T4aN1M1 | IV | synchronous | Liver | 0 | - |
10 | S | tub1 | T3N1M1 | IV | synchronous | Liver | 0 | - |
11 | S | tub2 | T2N1M0 | IIIA | metachronous | Liver | 0 | - |
12 | Rb | tub2 | T3N0M1 | IV | synchronous | Liver | 1 | - |
13 | S | tub2 | T4aN1M1 | IV | synchronous | Liver | 0 | - |
14 | RS | tub2 | T2N1M0 | IIIA | - | - | 0 | - |
15 | A | no data | T3N1M1 | IV | synchronous | Liver | 1 | - |
16 | S | tub2 | T3N2M0 | IIIB | metachronous | Lung, LN | 0 | 2 |
17 | S | tub2 | T3N1M0 | IIIB | metachronous | Lung | 1 | 2 |
18 | A | tub2 | T4bN2M0 | IIIC | metachronous | Liver | 0 | 1 |
19 | Rb | tub1 | T3N0M1 | IV | synchronous | Liver | 0 | 4 |
20 | Rb | tub1 | T3N0M1 | IV | synchronous | Liver | 0 | 5 |
21 | C | tub2 | T3N1M0 | IIIB | metachronous | Liver | 0 | 2 |
22 | A | tub1 | T3N1M0 | IIIB | metachronous | Liver | 0 | 3 |
23 | RS | tub2 | T3N0M0 | IIA | - | - | 0 | 5 |
24 | RS | tub2 | T4bN2M1 | IV | synchronous | Liver, Lung, Peritoneum | 0 | 1 |
CK | Pt. No. | Cell. No. | Chemotherapy | CTC | Primary Tumor | ||||
---|---|---|---|---|---|---|---|---|---|
KRAS | BRAF | PIK3CA | KRAS | BRAF | PIK3CA | ||||
Positive | 5 | 1 | yes | wt | wt | wt | wt | wt | wt |
2 | wt | wt | wt | ||||||
6 | 1 | no | wt | wt | wt | wt | wt | wt | |
2 | wt | wt | wt | ||||||
7 | 1 | no | wt | wt | wt | G12D(he) | wt | wt | |
2 | wt | wt | wt | ||||||
3 | wt | wt | wt | ||||||
8 | 1 | no | wt | wt | H1047R(he) | wt | wt | wt | |
2 | wt | wt | H1047R(he) | ||||||
3 | wt | wt | wt | ||||||
4 | wt | wt | wt | ||||||
12 | 1 | yes | wt | wt | H1047R(he) | G12D(he) | wt | wt | |
15 | 1 | yes | wt | wt | wt | Not available | |||
17 | 1 | no | wt | wt | wt | wt | wt | wt | |
Negative | 16 | 1 | yes | wt | wt | wt | wt | wt | wt |
2 | wt | wt | wt | ||||||
17 | 2 | no | wt | wt | H1047R(he) | wt | wt | wt | |
3 | |||||||||
wt | wt | wt | |||||||
18 | 1 | no | wt | wt | wt | wt | wt | wt | |
19 | 1 | yes | wt | wt | wt | wt | wt | wt | |
2 | wt | wt | wt | ||||||
3 | G13S | wt | wt | ||||||
4 | wt | wt | wt | ||||||
20 | 1 | yes | wt | wt | wt | wt | wt | wt | |
2 | wt | wt | wt | ||||||
3 | wt | wt | wt | ||||||
4 | wt | wt | wt | ||||||
5 | wt | wt | wt | ||||||
22 | 1 | no | wt | wt | wt | Not available | |||
23 | 1 | no | wt | wt | wt | wt | wt | wt | |
2 | wt | wt | wt | ||||||
3 | wt | wt | wt | ||||||
4 | wt | wt | wt | ||||||
5 | wt | wt | wt | ||||||
24 | 1 | no | wt | wt | wt | wt | wt | wt |
N = 24 | CTC (+) N = 15 | CTC (−) N = 9 | p Value | |
---|---|---|---|---|
Age: years; median (range) | 67 (40–79) | 69 (41–79) | 59 (40–74) | 0.16 |
Sex: Male/Female | 16/8 | 10/5 | 6/3 | 1.00 |
CEA ng/mL | 22 (2–17,200) | 13 (2–391) | 161 (3–17,200) | 0.18 |
CA19-9 U/mL | 32 (2–13,301) | 31 (2–192) | 53 (2–13,301) | 0.16 |
Location: Right/Left | 8/16 | 6/9 | 2/7 | 0.36 |
Max diameter: mm; median (range) | 46.5 (15–90) | 45 (30–90) | 46.5 (15–90) | 0.78 |
* Differentiation: tub/muc | 20/1 | 13/0 | 7/1 | 0.16 |
Stage II, III/IV | 12/12 | 7/8 | 5/4 | 0.67 |
Metastatic type: Metachronous/synchronous | 9/12 | 6/8 | 3/4 | 1.00 |
History of chemotherapy yes/no | 12/12 | 6/9 | 6/3 | 0.20 |
Liver metastasis yes/no | 17/7 | 11/4 | 6/3 | 0.69 |
Lung metastasis yes/no | 5/19 | 5/10 | 0/9 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nomura, M.; Miyake, Y.; Inoue, A.; Yokoyama, Y.; Noda, N.; Kouda, S.; Hata, T.; Ogino, T.; Miyoshi, N.; Takahashi, H.; et al. Single-Cell Analysis of Circulating Tumor Cells from Patients with Colorectal Cancer Captured with a Dielectrophoresis-Based Micropore System. Biomedicines 2023, 11, 203. https://doi.org/10.3390/biomedicines11010203
Nomura M, Miyake Y, Inoue A, Yokoyama Y, Noda N, Kouda S, Hata T, Ogino T, Miyoshi N, Takahashi H, et al. Single-Cell Analysis of Circulating Tumor Cells from Patients with Colorectal Cancer Captured with a Dielectrophoresis-Based Micropore System. Biomedicines. 2023; 11(1):203. https://doi.org/10.3390/biomedicines11010203
Chicago/Turabian StyleNomura, Masatoshi, Yuichiro Miyake, Akira Inoue, Yuhki Yokoyama, Nanaka Noda, Shihori Kouda, Tsuyoshi Hata, Takayuki Ogino, Norikatsu Miyoshi, Hidekazu Takahashi, and et al. 2023. "Single-Cell Analysis of Circulating Tumor Cells from Patients with Colorectal Cancer Captured with a Dielectrophoresis-Based Micropore System" Biomedicines 11, no. 1: 203. https://doi.org/10.3390/biomedicines11010203
APA StyleNomura, M., Miyake, Y., Inoue, A., Yokoyama, Y., Noda, N., Kouda, S., Hata, T., Ogino, T., Miyoshi, N., Takahashi, H., Uemura, M., Mizushima, T., Doki, Y., Eguchi, H., & Yamamoto, H. (2023). Single-Cell Analysis of Circulating Tumor Cells from Patients with Colorectal Cancer Captured with a Dielectrophoresis-Based Micropore System. Biomedicines, 11(1), 203. https://doi.org/10.3390/biomedicines11010203