Circulating and Urinary Concentrations of Malondialdehyde in Aging Humans in Health and Disease: Review and Discussion
Abstract
:1. Introduction
2. Malondialdehyde in Young and Elderly Male and Female People
3. Malondialdehyde in Kidney Disease
4. Malondialdehyde in COVID-19
4.1. Malondialdehyde in Acute, Long, Ex and Hospitalized COVID-19 Humans
4.2. Potential Effects of Age, Gender, and Serum Creatinine Concentrations on MDA Serum Concentration in COVID-19
5. Malondialdehyde and Erectile Dysfunction
6. Malondialdehyde and Telomere Length
7. Adducted Malondialdehyde
8. Rarely Considered Issues of Malondialdehyde—Potential (Dual) Effects of Drugs
9. Supplementation of the Antioxidant N-Acetyl-L-cysteine
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsikas, D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem. 2017, 524, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Tsikas, D. GC-MS and GC-MS/MS measurement of malondialdehyde (MDA) in clinical studies: Pre-analytical and clinical considerations. J. Mass Spectrom. Adv. Clin. Lab. 2023, 30, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Tsikas, D. Malondialdehyde-Induced Post-Translational Modification of Human Hemoglobin. J. Proteome Res. 2023, 22, 2141–2143. [Google Scholar] [CrossRef] [PubMed]
- Montuschi, P.; Barnes, P.J.; Roberts, L.J., 2nd. Isoprostanes: Markers and mediators of oxidative stress. FASEB J. 2004, 18, 1791–1800. [Google Scholar] [CrossRef]
- Giustarini, D.; Dalle-Donne, I.; Tsikas, D.; Rossi, R. Oxidative stress and human diseases: Origin, link, measurement, mechanisms, and biomarkers. Crit. Rev. Clin. Lab. Sci. 2009, 46, 241–281. [Google Scholar]
- Ashok, B.T.; Ali, R. The aging paradox: Free radical theory of aging. Exp. Gerontol. 1999, 34, 293–303. [Google Scholar] [CrossRef]
- Harman, D. Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 1956, 11, 298–300. [Google Scholar] [CrossRef]
- Harman, D. The aging process. Proc. Natl. Acad. Sci. USA 1981, 78, 7124–7128. [Google Scholar] [CrossRef]
- Inglés, M.; Gambini, J.; Carnicero, J.A.; García-García, F.J.; Rodríguez-Mañas, L.; Olaso-González, G.; Dromant, M.; Borrás, C.; Viña, J. Oxidative stress is related to frailty, not to age or sex, in a geriatric population: Lipid and protein oxidation as biomarkers of frailty. J. Am. Geriatr. Soc. 2014, 62, 1324–1328. [Google Scholar] [CrossRef]
- Nielsen, F.; Mikkelsen, B.B.; Nielsen, J.B.; Andersen, H.R.; Grandjean, P. Plasma malondialdehyde as biomarker for oxidative stress: Reference interval and effects of life-style factors. Clin. Chem. 1997, 43, 1209–1214. [Google Scholar] [CrossRef]
- Miller, E.R., 3rd; Appel, L.J.; Jiang, L.; Risby, T.H. Association between cigarette smoking and lipid peroxidation in a controlled feeding study. Circulation 1997, 96, 1097–1101. [Google Scholar] [CrossRef] [PubMed]
- Bridges, A.B.; Scott, N.A.; Parry, G.J.; Belch, J.J. Age, sex, cigarette smoking and indices of free radical activity in healthy humans. Eur. J. Med. 1993, 2, 205–208. [Google Scholar] [PubMed]
- Campesi, I.; Occhioni, S.; Tonolo, G.; Cherchi, S.; Basili, S.; Carru, C.; Zinellu, A.; Franconi, F. Ageing/Menopausal Status in Healthy Women and Ageing in Healthy Men Differently Affect Cardiometabolic Parameters. Int. J. Med. Sci. 2016, 13, 124–132. [Google Scholar] [CrossRef]
- Kielstein, A.; Tsikas, D.; Galloway, G.P.; Mendelson, J.E. Asymmetric dimethylarginine (ADMA)—A modulator of nociception in opiate tolerance and addiction? Nitric Oxide 2007, 17, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Miquel, J.; Ramirez-Boscá, A.; Soler, A.; Díez, A.; Carrión-Gutiérrez, M.A.; Díaz-Alperi, J.; Quintanilla-Ripoll, E.; Bernd, A.; Quintanilla-Almagro, E. Increase with age of serum lipid peroxides: Implications for the prevention of atherosclerosis. Mech. Ageing Dev. 1998, 100, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Huerta, J.M.; González, S.; Fernández, S.; Patterson, A.M.; Lasheras, C. Lipid peroxidation, antioxidant status and survival in institutionalised elderly: A five-year longitudinal study. Free Radic. Res. 2006, 40, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Marniemi, J.; Järvisalo, J.; Toikka, T.; Räihä, I.; Ahotupa, M.; Sourander, L. Blood vitamins, mineral elements and inflammation markers as risk factors of vascular and non-vascular disease mortality in an elderly population. Int. J. Epidemiol. 1998, 27, 799–807. [Google Scholar] [CrossRef]
- Toto, A.; Wild, P.; Graille, M.; Turcu, V.; Crézé, C.; Hemmendinger, M.; Sauvain, J.-J.; Bergamaschi, E.; Canu, I.G.; Hopf, N.B. Urinary Malondialdehyde (MDA) Concentrations in the General Population—A Systematic Literature Review and Meta-Analysis. Toxics 2022, 10, 160. [Google Scholar] [CrossRef]
- Li, G.; Chen, Y.; Hu, H.; Liu, L.; Hu, X.; Wang, J.; Shi, W.; Yin, D. Association between age-related decline of kidney function and plasma malondialdehyde. Rejuvenation Res. 2012, 15, 257–264. [Google Scholar] [CrossRef]
- Yepes-Calderón, M.; Sotomayor, C.G.; Gans, R.O.B.; Berger, S.P.; Leuvenink, H.G.D.; Tsikas, D.; Rodrigo, R.; Navis, G.J.; Bakker, S.J.L. Post-transplantation plasma malondialdehyde is associated with cardiovascular mortality in renal transplant recipients: A prospective cohort study. Nephrol. Dial. Transplant. 2020, 35, 512–519. [Google Scholar] [CrossRef]
- Sotomayor, C.G.; Eisenga, M.F.; Gomes Neto, A.W.; Ozyilmaz, A.; Gans, R.O.B.; Jong, W.H.A.; Zelle, D.M.; Berger, S.P.; Gaillard, C.A.J.M.; Navis, G.J.; et al. Vitamin C Depletion and All-Cause Mortality in Renal Transplant Recipients. Nutrients 2017, 9, 568. [Google Scholar] [CrossRef] [PubMed]
- Heidland, A.; Sebekova, K.; Schinzel, R. Advanced glycation end products and the progressive course of renal disease. Am. J. Kidney Dis. 2001, 38 (Suppl. S1), S100–S106. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.H.; Choi, D.H.; Lee, S.H. Serum malondialdehyde and coronary artery disease in hemodialysis patients. Am. J. Nephrol. 2004, 24, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Jun, M.; Venkataraman, V.; Razavian, M.; Cooper, B.; Zoungas, S.; Ninomiya, T.; Webster, A.C.; Perkovic, V. Antioxidants for chronic kidney disease. Cochrane Database Syst. Rev. 2012, 10, CD008176. [Google Scholar] [CrossRef] [PubMed]
- Sinning, J.; Funk, N.D.; Soerensen-Zender, I.; Wulfmeyer, V.C.; Liao, C.M.; Haller, H.; Hinze, C.; Schmidt-Ott, K.M.; Melk, A.; Schmitt, R. The aging kidney is characterized by tubuloinflammaging, a phenotype associated with MHC-II gene expression. Front. Immunol. 2023, 14, 1222339. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Agra, N.; Marques-Afonso, A.T.; Cruces-Sande, A.; Novo-Veleiro, I.; Pose-Reino, A.; Mendez-Alvarez, E.; Soto-Otero, R.; Hermida-Ameijeiras, A. Assessment of oxidative stress markers in elderly patients with SARS-CoV-2 infection and potential prognostic implications in the medium and long term. PLoS ONE 2022, 17, e0268871. [Google Scholar] [CrossRef] [PubMed]
- Orea-Tejada, A.; Sánchez-Moreno, C.; Aztatzi-Aguilar, O.G.; Sierra-Vargas, M.P.; González-Islas, D.; Debray-García, Y.; Ortega-Romero, M.S.; Keirns-Davis, C.; Cornejo-Cornejo, L.; Aguilar-Meza, J. Plasma Endothelial and Oxidative Stress Biomarkers Associated with Late Mortality in Hospitalized COVID-19 Patients. J. Clin. Med. 2022, 11, 3950. [Google Scholar] [CrossRef]
- Lalosevic, M.; Kotur-Stevuljevic, J.; Vekic, J.; Rizzo, M.; Kosanovic, T.; Blagojevic, I.P.; Zeljkovic, A.; Jeremic, D.; Mihajlovic, M.; Petkovic, A.; et al. Alteration in Redox Status and Lipoprotein Profile in COVID-19 Patients with Mild, Moderate, and Severe Pneumonia. Oxid. Med. Cell. Longev. 2022, 2022, 8067857. [Google Scholar] [CrossRef]
- Žarković, N.; Łuczaj, W.; Jarocka-Karpowicz, I.; Orehovec, B.; Baršić, B.; Tarle, M.; Kmet, M.; Lukšić, I.; Biernacki, M.; Skrzydlewska, E. Diversified Effects of COVID-19 as a Consequence of the Differential Metabolism of Phospholipids and Lipid Peroxidation Evaluated in the Plasma of Survivors and Deceased Patients upon Admission to the Hospital. Int. J. Mol. Sci. 2022, 23, 11810. [Google Scholar] [CrossRef]
- Skesters, A.; Kustovs, D.; Lece, A.; Moreino, E.; Petrosina, E.; Rainsford, K.D. Selenium, selenoprotein P, and oxidative stress levels in SARS-CoV-2 patients during illness and recovery. Inflammopharmacology 2022, 30, 499–503. [Google Scholar] [CrossRef]
- Šķesters, A.; Lece, A.; Kustovs, D.; Zolovs, M. Selenium Status and Oxidative Stress in SARS-CoV-2 Patients. Medicina 2023, 59, 527. [Google Scholar] [CrossRef] [PubMed]
- Peleman, C.; Van Coillie, S.; Ligthart, S.; Choi, S.M.; De Waele, J.; Depuydt, P.; Benoit, D.; Schaubroeck, H.; Francque, S.M.; Dams, K.; et al. Ferroptosis and pyroptosis signatures in critical COVID-19 patients. Cell Death Differ. 2023, 30, 2066–2077. [Google Scholar] [CrossRef] [PubMed]
- Hirschhorn, T.; Stockwell, B.R. The development of the concept of ferroptosis. Free Radic. Biol. Med. 2019, 133, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Mikuteit, M.; Baskal, S.; Klawitter, S.; Dopfer-Jablonka, A.; Behrens, G.M.N.; Müller, F.; Schröder, D.; Klawonn, F.; Steffens, S.; Tsikas, D. Amino acids, post-translational modifications, nitric oxide, and oxidative stress in serum and urine of long COVID and ex COVID human subjects. Amino Acids. 2013, 55, 1173–1188. [Google Scholar] [CrossRef] [PubMed]
- Feldman, H.A.; Goldstein, I.; Hatzichristou, D.G.; Krane, R.J.; McKinlay, J.B. Impotence and its medical and psychosocial correlates: Results of the Massachusetts Male Aging Study. J. Urol. 1994, 151, 54–61. [Google Scholar] [CrossRef]
- Aytac, I.A.; McKinlay, J.B.; Krane, R.J. The likely worldwide increase in erectile dysfunction between 1995 and 2025 and some possible policy consequences. BJU Int. 1999, 84, 50–56. [Google Scholar] [CrossRef]
- Kandeel, F.R.; Koussa, V.K.T.; Swerdloff, R.S. Male sexual function and its disorders: Physiology, pathophysiology, clinical investigation, and treatment. Endocr. Rev. 2001, 22, 342–388. [Google Scholar] [CrossRef]
- Andersson, K.E. Erectile physiological and pathophysiological pathways involved in erectile dysfunction. J. Urol. 2003, 170, S6–S14. [Google Scholar] [CrossRef]
- Stief, C.G.; Ückert, S.; Jonas, U. Strategies in the oral pharmacotherapy of male erectile dysfunction viewed from bench and bedside (Part I). J. Mens Health Gend. 2005, 2, 87–94. [Google Scholar] [CrossRef]
- Argiolas, A.; Argiolas, F.M.; Argiolas, G.; Melis, M.R. Erectile dysfunction: Treatments, advances and new therapeutic strategies. Brain Sci. 2023, 13, 802. [Google Scholar] [CrossRef]
- Jin, L.; Burnett, A.L. NADPH oxidase: Recent evidence for its role in erectile dysfunction. Asian J. Androl. 2008, 10, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Nandipati, K.C.; Sharma, R.K.; Zippe, C.D.; Raina, R. Role of oxidative stress in the pathophysiological mechanism of erectile dysfunction. J. Androl. 2006, 27, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.C.; Kim, I.K.; Seo, K.K.; Baek, K.J.; Lee, M.Y. Involvement of superoxide radical in the impaired endothelium-dependent relaxation of cavernous smooth muscle in hypercholesterolemic rabbits. Urol. Res. 1997, 25, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.P.; Craig, J.R., Jr.; Myers, J.B.; Brant, W.O.; Hotaling, J.M. Serum Biomarkers of Erectile Dysfunction in Diabetes Mellitus: A Systematic Review of Current Literature. Sex. Med. Rev. 2017, 5, 339–348. [Google Scholar] [CrossRef]
- Tuncayengin, A.; Biri, H.; Onaran, M.; Sen, I.; Tuncayengin, O.; Polat, F.; Erbaş, D.; Bozkirli, I. Cavernosal tissue nitrite, nitrate, malondialdehyde and glutathione levels in diabetic and non-diabetic erectile dysfunction. Int. J. Androl. 2003, 26, 250–254. [Google Scholar] [CrossRef]
- El-Latif, M.A.; Makhlouf, A.A.; Moustafa, Y.M.; Gouda, T.E.; Niederberger, C.S.; Elhanbly, S.M. Diagnostic value of nitric oxide, lipoprotein(a), and malondialdehyde levels in the peripheral venous and cavernous blood of diabetics with erectile dysfunction. Int. J. Impot. Res. 2006, 18, 544–549. [Google Scholar] [CrossRef]
- Hamdan, F.B.; Al-Matubsi, H.Y. Assessment of erectile dysfunction in diabetic patients. Int. J. Androl. 2009, 32, 176–185. [Google Scholar] [CrossRef]
- Serefoglu, E.C.; Erdamar, H.; Ozdemir, A.T.; Atmaca, A.F.; Berktas, M.; Balbay, M.D. Penile blood cyclic guanosin monophosphate level is associated with penile Doppler ultrasound findings. Int. J. Impot. Res. 2009, 21, 51–56. [Google Scholar] [CrossRef]
- Muniz, J.J.; Lacchini, R.; Sertório, J.T.; Jordão, A.A., Jr.; Nobre, Y.T.; Tucci, S., Jr.; Martins, A.C.; Tanus-Santos, J.E. Low nitric oxide bioavailability is associated with better responses to sildenafil in patients with erectile dysfunction. Naunyn Schmiedebergs Arch. Pharmacol. 2013, 386, 805–811. [Google Scholar] [CrossRef]
- Adam, D.R.; Alem, M.M. Erectile dysfunction: Pharmacological pathways with understudied potentials. Biomedicines 2023, 11, 46. [Google Scholar] [CrossRef]
- Adefegha, S.A.; Oboh, G.; Ejakpovi, I.I.; Oyeleye, S.I. Antioxidant and anti-diabetic effects of gallic and protocatechuic acids: A structure-function perspective. Comp. Clin. Pathol. 2015, 24, 1579–1585. [Google Scholar] [CrossRef]
- Vaiserman, A.; Krasnienkov, D. Telomere length as a marker of biological age: State-of-the-art, open issues, and future perspectives. Front. Genet. 2020, 11, 630186. [Google Scholar] [CrossRef]
- Reichert, S.; Stier, A. Does oxidative stress shorten telomeres in vivo? A review. Biol. Lett. 2017, 13, 20170164. [Google Scholar] [CrossRef] [PubMed]
- Demissie, S.; Levy, D.; Benjamin, E.J.; Cupples, L.A.; Gardner, J.P.; Herbert, A.; Kimura, M.; Larson, M.G.; Meigs, J.B.; Keaney, J.F.; et al. Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham Heart Study. Aging Cell 2006, 5, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Epel, E.S.; Blackburn, E.H.; Lin, J.; Dhabhar, F.S.; Adler, N.E.; Morrow, J.D.; Cawthon, R.M. Accelerated telomere shortening in response to life stress. Proc. Natl. Acad. Sci. USA 2004, 101, 17312–17315. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Maurya, P.K. Correlation between Telomere Length and Biomarkers of Oxidative Stress in Human Aging. Rejuvenation Res. 2022, 25, 25–29. [Google Scholar] [CrossRef]
- Siu, G.M.; Draper, H.H. Metabolism of malonaldehyde in vivo and in vitro. Lipids 1982, 17, 349–355. [Google Scholar] [CrossRef]
- Draper, H.H.; McGirr, L.G.; Hadley, M. The metabolism of malondialdehyde. Lipids 1986, 21, 305–307. [Google Scholar] [CrossRef]
- Draper, H.H.; Hadley, M. A review of recent studies on the metabolism of exogenous and endogenous malondialdehyde. Xenobiotica 1990, 20, 901–907. [Google Scholar] [CrossRef]
- Draper, H.H.; Hadley, M. Malondialdehyde derivatives in urine. Basic Life Sci. 1988, 49, 199–202. [Google Scholar] [CrossRef]
- McGirr, L.G.; Hadley, M.; Draper, H.H. Identification of N alpha-acetyl-epsilon-(2-propenal)lysine as a urinary metabolite of malondialdehyde. J. Biol. Chem. 1985, 260, 15427–15431. [Google Scholar] [CrossRef] [PubMed]
- Hadley, M.; Draper, H.H. Identification of N-(2-propenal) serine as a urinary metabolite of malondialdehyde. FASEB J. 1988, 2, 138–140. [Google Scholar] [CrossRef] [PubMed]
- Draper, H.H.; Hadley, M.; Lissemore, L.; Laing, N.M.; Cole, P.D. Identification of N-epsilon-(2-propenal)lysine as a major urinary metabolite of malondialdehyde. Lipids 1988, 23, 626–628. [Google Scholar] [CrossRef] [PubMed]
- Hadley, M.; Draper, H.H. Identification of N-(2-propenal)ethanolamine as a urinary metabolite of malondialdehyde. Free Radic. Biol. Med. 1989, 6, 49–52. [Google Scholar] [CrossRef]
- Hadley, M.; Draper, H.H. Isolation of a guanine-malondialdehyde adduct from rat and human urine. Lipids 1990, 25, 82–85. [Google Scholar] [CrossRef]
- Agarwal, S.; Wee, J.J.; Hadley, M.; Draper, H.H. Identification of a deoxyguanosine-malondialdehyde adduct in rat and human urine. Lipids 1994, 29, 429–432. [Google Scholar] [CrossRef]
- Jové, M.; Mota-Martorell, N.; Pradas, I.; Martín-Gari, M.; Ayala, V.; Pamplona, R. The Advanced Lipoxidation End-Product Malondialdehyde-Lysine in Aging and Longevity. Antioxidants 2020, 9, 1132. [Google Scholar] [CrossRef]
- Girón-Calle, J.; Alaiz, M.; Millán, F.; Ruiz-Gutiérrez, V.; Vioque, E. Bound malondialdehyde in foods: Bioavailability of the N-2-propenals of lysine. J. Agric. Food Chem. 2002, 50, 6194–6198. [Google Scholar] [CrossRef]
- Szczeklik, A.; Gryglewski, R.J.; Grodzińska, L.; Musiał, J.; Serwońska, M.; Marcinkiewicz, E. Platelet aggregability, thromboxane A2 and malonaldehyde formation following administration of aspirin to man. Thromb. Res. 1979, 15, 405–413. [Google Scholar] [CrossRef]
- De Monte, C.; Carradori, S.; Gentili, A.; Mollica, A.; Trisciuoglio, D.; Supuran, C.T. Dual Cyclooxygenase and Carbonic Anhydrase Inhibition by Nonsteroidal Anti-Inflammatory Drugs for the Treatment of Cancer. Curr. Med. Chem. 2015, 22, 2812–2818. [Google Scholar] [CrossRef]
- Oishi, M.; Mochizuki, Y. Cerebrovascular acetazolamide reactivity and platelet function in asymptomatic cerebral thrombosis. J. Neurol. Sci. 1999, 166, 81–84. [Google Scholar] [CrossRef]
- Linneweh, F.; Ehrlich, M.; Bickel, H. On the variable effect of acetazolamide (Diamox) on the excretion of amino acids in normal persons and in cystinuria. Klin. Wochenschr. 1961, 39, 354–358. [Google Scholar] [CrossRef]
- Gougoux, A.; Vinay, P.; Zizian, L.; Tejedor, A.; Noel, J. Effect of acetazolamide on renal metabolism and ammoniagenesis in the dog. Kidney Int. 1987, 31, 1279–1290. [Google Scholar] [CrossRef]
- Chobanyan-Jürgens, K.; Schwarz, A.; Böhmer, A. Renal carbonic anhydrases are involved in the reabsorption of endogenous nitrite. Nitric Oxide 2012, 26, 126–131. [Google Scholar] [CrossRef]
- Hanff, E.; Eisenga, M.F.; Beckmann, B.; Bakker, S.J.; Tsikas, D. Simultaneous pen tafluorobenzyl derivatization and GC-ECNICI-MS measurement of nitrite and malondialdehyde in human urine: Close positive correlation between these disparate oxidative stress biomarkers. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1043, 167–175. [Google Scholar] [CrossRef]
- Miura, T.; Sakuyama, A.; Xu, L.; Qiu, J.; Namai-Takahashi, A.; Ogawa, Y.; Kohzuki, M.; Ito, O. Febuxostat ameliorates high salt intake-induced hypertension and renal damage in Dahl salt-sensitive rats. J. Hypertens. 2022, 40, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Sun, J. Febuxostat Improves Uric Acid Levels and Renal Function in Patients with Chronic Kidney Disease and Hyperuricemia: A Meta-Analysis. Appl. Bionics Biomech. 2022, 2022, 9704862. [Google Scholar] [CrossRef] [PubMed]
- Lambadiari, V.; Pavlidis, G.; Kousathana, F.; Varoudi, M.; Vlastos, D.; Maratou, E.; Georgiou, D.; Andreadou, I.; Parissis, J.; Triantafyllidi, H.; et al. Effects of 6-month treatment with the glucagon like peptide-1 analogue liraglutide on arterial stiffness, left ventricular myocardial deformation and oxidative stress in subjects with newly diagnosed type 2 diabetes. Cardiovasc. Diabetol. 2018, 17, 8. [Google Scholar] [CrossRef] [PubMed]
- Ikonomidis, I.; Katogiannis, K.; Kyriakou, E.; Taichert, M.; Katsimaglis, G.; Tsoumani, M.; Andreadou, I.; Maratou, E.; Lambadiari, V.; Kousathana, F.; et al. β-Amyloid and mitochondrial-derived peptide-c are additive predictors of adverse outcome to high-on-treatment platelet reactivity in type 2 diabetics with revascularized coronary artery disease. J. Thromb. Thrombolysis 2020, 49, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Hadi, N.R.; Mohammad, B.I.; Ajeena, I.M.; Sahib, H.H. Antiatherosclerotic potential of clopidogrel: Antioxidant and anti-inflammatory approaches. BioMed Res. Int. 2013, 2013, 790263. [Google Scholar] [CrossRef]
- Demirtas, S.; Karahan, O.; Yazıcı, S.; Guclu, O.; Calıskan, A.; Tezcan, O.; Kaplan, I.; Yavuz, C. Investigation of possible prophylactic, renoprotective, and cardioprotective effects of thromboprophylactic drugs against ischemia-reperfusion injury. Kaohsiung J. Med. Sci. 2015, 31, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Taher, M.A.; Nassir, E.S. Beneficial effects of clopidogrel on glycemic indices and oxidative stress in patients with type 2 diabetes. Saudi Pharm. J. 2011, 19, 107–113. [Google Scholar] [CrossRef]
- Zhang, Y.; Peti-Peterdi, J.; Müller, C.E.; Carlson, N.G.; Baqi, Y.; Strasburg, D.L.; Heiney, K.M.; Villanueva, K.; Kohan, D.E.; Kishore, B.K. P2Y12 Receptor Localizes in the Renal Collecting Duct and Its Blockade Augments Arginine Vasopressin Action and Alleviates Nephrogenic Diabetes Insipidus. J. Am. Soc. Nephrol. 2015, 26, 2978–2987. [Google Scholar] [CrossRef] [PubMed]
- Egea, J.; Fabregat, I.; Frapart, Y.M.; Ghezzi, P.; Görlach, A.; Kietzmann, T.; Kubaichuk, K.; Knaus, U.G.; Lopez, M.G.; Olaso-Gonzalez, G.; et al. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol. 2017, 13, 94–162. [Google Scholar] [CrossRef] [PubMed]
- Görlach, A.; Dimova, E.Y.; Petry, A.; Martínez-Ruiz, A.; Hernansanz-Agustín, P.; Rolo, A.P.; Palmeira, C.M.; Kietzmann, T. Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved? Redox Biol. 2015, 6, 372–385. [Google Scholar] [CrossRef] [PubMed]
- Tsikas, D.; Mikuteit, M. N-Acetyl-L-cysteine in human rheumatoid arthritis and its effects on nitric oxide (NO) and malondialdehyde (MDA): Analytical and clinical considerations. Amino Acids 2022, 54, 1251–1260. [Google Scholar] [CrossRef]
- Tsikas, D.; Suchy, M.T.; Niemann, J.; Tossios, P.; Schneider, Y.; Rothmann, S.; Gutzki, F.M.; Frölich, J.C.; Stichtenoth, D.O. Glutathione promotes prostaglandin H synthase (cyclooxygenase)-dependent formation of malondialdehyde and 15(S)-8-iso-prostaglandin F2α. FEBS Lett. 2012, 586, 3723–3730. [Google Scholar] [CrossRef]
- Lizzo, G.; Migliavacca, E.; Lamers, D.; Frézal, A.; Corthesy, J.; Vinyes-Parès, G.; Bosco, N.; Karagounis, L.G.; Hövelmann, U.; Heise, T.; et al. A Randomized Controlled Clinical Trial in Healthy Older Adults to Determine Efficacy of Glycine and N-Acetylcysteine Supplementation on Glutathione Redox Status and Oxidative Damage. Front. Aging 2022, 3, 852569. [Google Scholar] [CrossRef]
- Tsikas, D.; Maassen, N.; Thorns, A.; Finkel, A.; Lützow, M.; Röhrig, M.A.; Blau, L.S.; Dimina, L.; Mariotti, F.; Beckmann, B.; et al. Short-Term Supplementation of Sodium Nitrate vs. Sodium Chloride Increases Homoarginine Synthesis in Young Men Independent of Exercise. Int. J. Mol. Sci. 2022, 23, 10649. [Google Scholar] [CrossRef]
- Davies, D.F.; Shock, N.W. Age changes in glomerular filtration rate, effective renal plasma flow, and tubular excretory capacity in adult males. J. Clin. Investig. 1950, 29, 496–507. [Google Scholar] [CrossRef]
Search Term | No. of Articles | Search Term | No. of Articles |
---|---|---|---|
Malondialdehyde | 71,143 | Malondialdehyde fatigue | 319 |
MDA | 80,647 | Malondialdehyde erectile dysfunction | 105 |
TBARS | 19,557 | Malondialdehyde COVID-19 | 84 |
TBARS MDA | 1045 | Malondialdehyde serum | 16,845 |
Malondialdehyde oxidative stress | 38,780 | Malondialdehyde plasma | 11,108 |
Malondialdehyde peroxidation | 22,513 | Malondialdehyde urine | 1812 |
Malondialdehyde biomarker | 8606 | Malondialdehyde saliva | 239 |
Malondialdehyde aging | 2533 | Malondialdehyde human serum | 5413 |
Oxidative stress | 312,577 | Malondialdehyde human plasma | 5338 |
Oxidative stress aging | 25,793 | Malondialdehyde human urine | 855 |
Malondialdehyde liver | 14,271 | Malondialdehyde human saliva | 157 |
Malondialdehyde brain | 8410 | Malondialdehyde humans | 913 |
Malondialdehyde cardiovascular | 7761 | Malondialdehyde human serum | 184 |
Malondialdehyde kidney | 7149 | Malondialdehyde human plasma | 230 |
Malondialdehyde diabetes | 5369 | Malondialdehyde human urine | 23 |
Malondialdehyde cancer | 4296 | Malondialdehyde human sex | 836 |
Malondialdehyde lung | 3596 | Malondialdehyde human gender | 1103 |
Malondialdehyde hypertension | 1582 | Malondialdehyde antioxidants | 48,227 |
Malondialdehyde transplantation | 1547 | Malondialdehyde drugs | 9114 |
Malondialdehyde pregnancy | 1522 | Malondialdehyde nutrition | 6105 |
Malondialdehyde stroke | 1023 | Malondialdehyde supplementation | 5513 |
Malondialdehyde Alzheimer’s disease | 1001 | Malondialdehyde cyclooxygenase | 1263 |
Malondialdehyde Parkinson | 556 | Malondialdehyde sport | 1189 |
Malondialdehyde rheumatism | 397 | Malondialdehyde ferroptosis | 555 |
Model | Dependent Variable | Age (Years) | Gender | Creatinine (µM) | N | R2 |
---|---|---|---|---|---|---|
1 | MDA (µM) | 0.005 ** (0.002) a | −0.146 ** (0.048) a | 133 | 0.135 | |
2 | MDA (µM) | 0.003 * (0.001) a | −0.047 (0.063) a | 0.005 ** (0.002) a | 133 | 0.196 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsikas, D.; Tsikas, S.A.; Mikuteit, M.; Ückert, S. Circulating and Urinary Concentrations of Malondialdehyde in Aging Humans in Health and Disease: Review and Discussion. Biomedicines 2023, 11, 2744. https://doi.org/10.3390/biomedicines11102744
Tsikas D, Tsikas SA, Mikuteit M, Ückert S. Circulating and Urinary Concentrations of Malondialdehyde in Aging Humans in Health and Disease: Review and Discussion. Biomedicines. 2023; 11(10):2744. https://doi.org/10.3390/biomedicines11102744
Chicago/Turabian StyleTsikas, Dimitrios, Stefanos A. Tsikas, Marie Mikuteit, and Stefan Ückert. 2023. "Circulating and Urinary Concentrations of Malondialdehyde in Aging Humans in Health and Disease: Review and Discussion" Biomedicines 11, no. 10: 2744. https://doi.org/10.3390/biomedicines11102744
APA StyleTsikas, D., Tsikas, S. A., Mikuteit, M., & Ückert, S. (2023). Circulating and Urinary Concentrations of Malondialdehyde in Aging Humans in Health and Disease: Review and Discussion. Biomedicines, 11(10), 2744. https://doi.org/10.3390/biomedicines11102744