Adding MRI as a Surveillance Test for Hepatocellular Carcinoma in Patients with Liver Cirrhosis Can Improve Prognosis
Abstract
:1. Introduction
2. Materials
2.1. Patients
2.2. Image Evaluation/Surveillance Strategy
2.3. Acquisition of MRI Images
2.4. Image Analysis and Diagnostic Criteria
2.5. Outcomes and Follow-Up Assessment
2.6. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Stage of HCC and Treatment Method
3.3. Prognosis of the Patients
3.4. Inverse Probability Weighting and Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bruix, J.; Sherman, M.; American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: An update. Hepatology 2011, 53, 1020–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Association for The Study of The Liver; European Organisation for Research and Treatment of Cancer. EASL-EORTC clinical practice guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2012, 56, 908–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colli, A.; Fraquelli, M.; Casazza, G.; Massironi, S.; Colucci, A.; Conte, D.; Duca, P. Accuracy of ultrasonography, spiral CT, magnetic resonance, and alpha-fetoprotein in diagnosing hepatocellular carcinoma: A systematic review. Am. J. Gastroenterol. 2006, 101, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Pocha, C.; Dieperink, E.; McMaken, K.A.; Knott, A.; Thuras, P.; Ho, S.B. Surveillance for hepatocellular cancer with ultrasonography vs. computed tomography—A randomised study. Aliment. Pharmacol. Ther. 2013, 38, 303–312. [Google Scholar] [CrossRef]
- Granata, V.; Petrillo, M.; Fusco, R.; Setola, S.V.; de Lutio di Castelguidone, E.; Catalano, O.; Piccirillo, M.; Albino, V.; Izzo, F.; Petrillo, A. Surveillance of HCC Patients after Liver RFA: Role of MRI with Hepatospecific Contrast versus Three-Phase CT Scan-Experience of High Volume Oncologic Institute. Gastroenterol. Res. Pract. 2013, 2013, 469097. [Google Scholar] [CrossRef]
- Chanyaputhipong, J.; Low, S.C.; Chow, P.K. Gadoxetate Acid-Enhanced MR Imaging for HCC: A Review for Clinicians. Int. J. Hepatol. 2011, 2011, 489342. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Zhang, L.; Liang, M.; Bao, J.; Zhang, J.; Xia, Y.; Huang, X.; Wang, J. Magnetic resonance imaging with gadoxetic acid disodium for the detection of hepatocellular carcinoma: A meta-analysis of 18 studies. Acad. Radiol. 2014, 21, 1603–1613. [Google Scholar] [CrossRef]
- Lee, Y.J.; Lee, J.M.; Lee, J.S.; Lee, H.Y.; Park, B.H.; Kim, Y.H.; Han, J.K.; Choi, B.I. Hepatocellular carcinoma: Diagnostic performance of multidetector CT and MR imaging-a systematic review and meta-analysis. Radiology 2015, 275, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Kang, T.W.; Kong, S.Y.; Kang, D.; Kang, M.W.; Kim, Y.K.; Kim, S.H.; Sinn, D.H.; Kim, Y.A.; Choi, K.S.; Lee, E.S.; et al. Use of Gadoxetic Acid-enhanced Liver MRI and Mortality in More than 30 000 Patients with Hepatocellular Carcinoma: A Nationwide Analysis. Radiology 2020, 295, 114–124. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; An, J.; Lim, Y.S.; Han, S.; Lee, J.Y.; Byun, J.H.; Won, H.J.; Lee, S.J.; Lee, H.C.; Lee, Y.S. MRI With Liver-Specific Contrast for Surveillance of Patients with Cirrhosis at High Risk of Hepatocellular Carcinoma. JAMA Oncol. 2017, 3, 456–463. [Google Scholar] [CrossRef]
- Kim, H.L.; An, J.; Park, J.A.; Park, S.H.; Lim, Y.S.; Lee, E.K. Magnetic Resonance Imaging Is Cost-Effective for Hepatocellular Carcinoma Surveillance in High-Risk Patients with Cirrhosis. Hepatology 2019, 69, 1599–1613. [Google Scholar] [CrossRef]
- Bolondi, L.; Sofia, S.; Siringo, S.; Gaiani, S.; Casali, A.; Zironi, G.; Piscaglia, F.; Gramantieri, L.; Zanetti, M.; Sherman, M. Surveillance programme of cirrhotic patients for early diagnosis and treatment of hepatocellular carcinoma: A cost effectiveness analysis. Gut 2001, 48, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Korean Association for the Study of the Liver. KASL clinical practice guidelines: Management of chronic hepatitis B. Clin. Mol. Hepatol. 2016, 22, 18–75. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.H.; Lee, J.M.; Lee, D.H.; Joo, I.; Jeon, J.H.; Ahn, S.J.; Kim, S.T.; Cho, E.J.; Lee, J.H.; Yu, S.J.; et al. A Comparison of Biannual Two-Phase Low-Dose Liver CT and US for HCC Surveillance in a Group at High Risk of HCC Development. Liver Cancer 2020, 9, 503–517. [Google Scholar] [CrossRef]
- Heimbach, J.K.; Kulik, L.M.; Finn, R.S.; Sirlin, C.B.; Abecassis, M.M.; Roberts, L.R.; Zhu, A.X.; Murad, M.H.; Marrero, J.A. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018, 67, 358–380. [Google Scholar] [CrossRef] [Green Version]
- Marrero, J.A.; Kulik, L.M.; Sirlin, C.B.; Zhu, A.X.; Finn, R.S.; Abecassis, M.M.; Roberts, L.R.; Heimbach, J.K. Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2018, 68, 723–750. [Google Scholar] [CrossRef] [Green Version]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef] [Green Version]
- 2022 KLCA-NCC Korea practice guidelines for the management of hepatocellular carcinoma. J. Liver Cancer 2022, 28, 583–705. [CrossRef]
- Renne, S.L.; Tommaso, L.D. A clinical and pathological update on hepatocellular carcinoma. J. Liver Cancer 2022, 22, 14–22. [Google Scholar] [CrossRef]
- Llovet, J.M.; Di Bisceglie, A.M.; Bruix, J.; Kramer, B.S.; Lencioni, R.; Zhu, A.X.; Sherman, M.; Schwartz, M.; Lotze, M.; Talwalkar, J.; et al. Design and endpoints of clinical trials in hepatocellular carcinoma. J. Natl. Cancer Inst. 2008, 100, 698–711. [Google Scholar] [CrossRef] [Green Version]
- Velazquez, R.F.; Rodriguez, M.; Navascues, C.A.; Linares, A.; Perez, R.; Sotorrios, N.G.; Martinez, I.; Rodrigo, L. Prospective analysis of risk factors for hepatocellular carcinoma in patients with liver cirrhosis. Hepatology 2003, 37, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Lencioni, R.; Llovet, J.M. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin. Liver Dis. 2010, 30, 52–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, P.C.; Arthur, M.J.; Boyer, T.D.; DeLeve, L.D.; Di Bisceglie, A.M.; Hall, M.; Levin, T.R.; Provenzale, D.; Seeff, L. Screening in liver disease: Report of an AASLD clinical workshop. Hepatology 2004, 39, 1204–1212. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M. A biomathematical approach to clinical tumor growth. Cancer 1961, 14, 1272–1294. [Google Scholar] [CrossRef]
- Sheu, J.C.; Sung, J.L.; Chen, D.S.; Yang, P.M.; Lai, M.Y.; Lee, C.S.; Hsu, H.C.; Chuang, C.N.; Yang, P.C.; Wang, T.H.; et al. Growth rate of asymptomatic hepatocellular carcinoma and its clinical implications. Gastroenterology 1985, 89, 259–266. [Google Scholar] [CrossRef]
- Braitman, L.E.; Rosenbaum, P.R. Rare outcomes, common treatments: Analytic strategies using propensity scores. Ann. Intern. Med. 2002, 137, 693–695. [Google Scholar] [CrossRef]
- Liu, X.; Zou, L.; Liu, F.; Zhou, Y.; Song, B. Gadoxetic acid disodium-enhanced magnetic resonance imaging for the detection of hepatocellular carcinoma: A meta-analysis. PLoS ONE 2013, 8, e70896. [Google Scholar] [CrossRef] [Green Version]
- Chou, C.T.; Chen, Y.L.; Su, W.W.; Wu, H.K.; Chen, R.C. Characterization of cirrhotic nodules with gadoxetic acid-enhanced magnetic resonance imaging: The efficacy of hepatocyte-phase imaging. J. Magn. Reson. Imaging 2010, 32, 895–902. [Google Scholar] [CrossRef]
- Ahn, S.S.; Kim, M.J.; Lim, J.S.; Hong, H.S.; Chung, Y.E.; Choi, J.Y. Added value of gadoxetic acid-enhanced hepatobiliary phase MR imaging in the diagnosis of hepatocellular carcinoma. Radiology 2010, 255, 459–466. [Google Scholar] [CrossRef]
- Imamura, H.; Matsuyama, Y.; Tanaka, E.; Ohkubo, T.; Hasegawa, K.; Miyagawa, S.; Sugawara, Y.; Minagawa, M.; Takayama, T.; Kawasaki, S.; et al. Risk factors contributing to early and late phase intrahepatic recurrence of hepatocellular carcinoma after hepatectomy. J. Hepatol. 2003, 38, 200–207. [Google Scholar] [CrossRef]
- Poon, R.T.; Fan, S.T.; Ng, I.O.; Lo, C.M.; Liu, C.L.; Wong, J. Different risk factors and prognosis for early and late intrahepatic recurrence after resection of hepatocellular carcinoma. Cancer 2000, 89, 500–507. [Google Scholar] [CrossRef]
- Chen, Y.J.; Yeh, S.H.; Chen, J.T.; Wu, C.C.; Hsu, M.T.; Tsai, S.F.; Chen, P.J.; Lin, C.H. Chromosomal changes and clonality relationship between primary and recurrent hepatocellular carcinoma. Gastroenterology 2000, 119, 431–440. [Google Scholar] [CrossRef]
- Kim, H.D.; Lim, Y.S.; Han, S.; An, J.; Kim, G.A.; Kim, S.Y.; Lee, S.J.; Won, H.J.; Byun, J.H. Evaluation of early-stage hepatocellular carcinoma by magnetic resonance imaging with gadoxetic acid detects additional lesions and increases overall survival. Gastroenterology 2015, 148, 1371–1382. [Google Scholar] [CrossRef]
- Phongkitkarun, S.; Limsamutpetch, K.; Tannaphai, P.; Jatchavala, J. Added value of hepatobiliary phase gadoxetic acid-enhanced MRI for diagnosing hepatocellular carcinoma in high-risk patients. World J. Gastroenterol. 2013, 19, 8357–8365. [Google Scholar] [CrossRef]
- Toyoda, H.; Kumada, T.; Tada, T.; Niinomi, T.; Ito, T.; Sone, Y.; Kaneoka, Y.; Maeda, A. Non-hypervascular hypointense nodules detected by Gd-EOB-DTPA-enhanced MRI are a risk factor for recurrence of HCC after hepatectomy. J. Hepatol. 2013, 58, 1174–1180. [Google Scholar] [CrossRef]
- Lee, D.H.; Lee, J.M.; Lee, J.Y.; Kim, S.H.; Kim, J.H.; Yoon, J.H.; Kim, Y.J.; Lee, J.H.; Yu, S.J.; Han, J.K.; et al. Non-hypervascular hepatobiliary phase hypointense nodules on gadoxetic acid-enhanced MRI: Risk of HCC recurrence after radiofrequency ablation. J. Hepatol. 2015, 62, 1122–1130. [Google Scholar] [CrossRef]
- Yoon, J.H.; Lee, J.M.; Yang, H.K.; Lee, K.B.; Jang, J.J.; Han, J.K.; Choi, B.I. Non-hypervascular hypointense nodules >/=1 cm on the hepatobiliary phase of gadoxetic acid-enhanced magnetic resonance imaging in cirrhotic livers. Dig. Dis. 2014, 32, 678–689. [Google Scholar] [CrossRef]
- Danila, M.; Sporea, I. Ultrasound screening for hepatocellular carcinoma in patients with advanced liver fibrosis. An overview. Med. Ultrason. 2014, 16, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Singal, A.; Volk, M.L.; Waljee, A.; Salgia, R.; Higgins, P.; Rogers, M.A.; Marrero, J.A. Meta-analysis: Surveillance with ultrasound for early-stage hepatocellular carcinoma in patients with cirrhosis. Aliment. Pharmacol. Ther. 2009, 30, 37–47. [Google Scholar] [CrossRef]
- Singal, A.G.; Conjeevaram, H.S.; Volk, M.L.; Fu, S.; Fontana, R.J.; Askari, F.; Su, G.L.; Lok, A.S.; Marrero, J.A. Effectiveness of hepatocellular carcinoma surveillance in patients with cirrhosis. Cancer Epidemiol. Biomark. Prev. 2012, 21, 793–799. [Google Scholar] [CrossRef] [Green Version]
- Singal, A.G.; Nehra, M.; Adams-Huet, B.; Yopp, A.C.; Tiro, J.A.; Marrero, J.A.; Lok, A.S.; Lee, W.M. Detection of hepatocellular carcinoma at advanced stages among patients in the HALT-C trial: Where did surveillance fail? Am. J. Gastroenterol. 2013, 108, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Su, T.H.; Kao, J.H. Surveillance of Hepatocellular Carcinoma by Magnetic Resonance Imaging with Liver-Specific Contrast. JAMA Oncol. 2017, 3, 446–447. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Kim, B. Liver Magnetic Resonance Imaging for Hepatocellular Carcinoma Surveillance. J. Liver Cancer 2020, 20, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Ye, F.; Liu, J.; Ouyang, H. Gadolinium Ethoxybenzyl Diethylenetriamine Pentaacetic Acid (Gd-EOB-DTPA)-Enhanced Magnetic Resonance Imaging and Multidetector-Row Computed Tomography for the Diagnosis of Hepatocellular Carcinoma: A Systematic Review and Meta-analysis. Medicine 2015, 94, e1157. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total (n = 421) | USG Group (n = 295) | USG+MRI Group (n = 126) | P |
---|---|---|---|---|
Age >60 years | 265 (62.9%) | 194 (65.8%) | 71 (56.3%) | 0.085 |
Male, n (%) | 306 (72.7%) | 211 (71.5%) | 95 (75.4%) | 0.486 |
Etiology | 0.257 | |||
HBsAg-positive | 308 (73.2%) | 209 (70.8%) | 99 (78.6%) | |
Anti-HCV positive | 82 (19.5%) | 62 (21.0%) | 20 (15.9%) | |
Others | 31 (7.4%) | 24 (8.1%) | 7 (5.6%) | |
Baseline laboratory values | ||||
Total bilirubin, mg/dL | 1.4 ± 1.4 | 1.5 ± 1.5 | 1.4 ± 1.4 | 0.438 |
Albumin, g/dL | 3.8 ± 0.6 | 3.7 ± 0.7 | 3.8 ± 0.5 | 0.071 |
Prothrombin time, INR | 1.4 ± 3.1 | 1.2 ± 0.7 | 1.9 ± 5.5 | 0.205 |
ALT, IU/L | 51.6 ± 56.5 | 50.0 ± 58.9 | 55.4 ± 50.7 | 0.362 |
Creatinine, mg/dL | 1.0 ± 0.9 | 1.0 ± 1.0 | 0.9 ± 0.2 | 0.063 |
Alpha-fetoprotein, ng/mL | 10.7 (4.8, 49.6) | 10.7 (4.8, 62.3) | 10.8 (4.7, 35.9) | 0.517 |
Hemoglobin, g/dL | 13.6 ± 5.4 | 13.5 ± 6.3 | 13.7 ± 1.8 | 0.547 |
Platelets, ×1000/mm3 | 98.0 (68.0, 138.0) | 99.0 (70.0, 143.0) | 93.0 (63.5, 132.8) | 0.133 |
MELD score | 10.2 ± 4.6 | 10.3 ± 4.0 | 10.0 ± 5.9 | 0.665 |
CTP classification | 0.433 | |||
A | 334 (79.3%) | 230 (78.0%) | 104 (82.5%) | |
B | 82 (19.5%) | 62 (21.0%) | 20 (15.9%) | |
C | 5 (1.2%) | 3 (1.0%) | 2 (1.6%) | |
BCLC stage * | 0.009 | |||
0 | 153 (36.3%) | 99 (33.6%) | 54 (42.9%) | |
A | 214 (50.8%) | 148 (50.2%) | 66 (52.4%) | |
B | 30 (7.1%) | 26 (8.8%) | 4 (3.2%) | |
C | 24 (5.7%) | 22 (7.5%) | 2 (1.6%) | |
Achieving CR after 1st treatment | 0.019 | |||
Non-CR | 274 (65.1%) | 203 (68.8%) | 71 (56.3%) | |
CR | 147 (34.9%) | 92 (31.2%) | 55 (43.7%) | |
Surveillance Imaging modality | ||||
Number of USG | 8.0 (3.0, 14.0) | 9.0 (4.0, 15.0) | 6.0 (3.0, 13.0) | 0.015 |
Number of CT | 2.0 (1.0, 4.0) | 2.0 (1.0, 3.0) | 3.0 (2.0, 6.0) | <0.001 |
Number of MRI | 0.5 (0.0, 1.0) | 0.0 (0.0, 0.0) | 1.0 (1.0, 2.0) | <0.001 |
Hepatocellular carcinoma risk index | 2.7 ± 1.1 | 2.8 ± 1.1 | 2.6 ± 1.1 | 0.217 |
Follow-up duration (months) | 85 (44, 136) | 92 (43, 135) | 78 (44, 144) | 0.727 |
Factors | Univariate Analysis | Multivariate Analysis | HR (95% CI) |
---|---|---|---|
Age (≥60 years) | 0.004 | 0.008 | 1.87 (1.18, 2.98) |
Male | 0.117 | ||
Alpha-fetoprotein (≥400 ng/mL) | <0.001 | 0.076 | 1.0 (1.0, 1.0) |
CTP classification | |||
A | 1 | ||
B | <0.001 | <0.001 | 2.85 (1.85, 4.39) |
C | <0.001 | <0.001 | 10.27 (2.96, 35.62) |
BCLC stage | |||
0 | 1 | ||
A | 0.003 | 0.022 | 1.82 (1.09, 3.05) |
B | 0.004 | 0.008 | 2.85 (1.30, 6.23) |
C | <0.001 | <0.001 | 12.07 (6.11, 23.85) |
Achieving CR after 1st treatment | |||
Non-CR | 1 | ||
CR | <0.001 | 0.022 | 0.53 (0.31, 0.91) |
Surveillance Imaging modality | |||
USG group | 1 | ||
USG+MRI group | 0.003 | 0.047 | 0.56 (0.32, 0.99) |
Factors | Univariate Analysis | Multivariate Analysis | HR (95% CI) |
---|---|---|---|
Age (≥60 years) | 0.029 | 0.069 | 1.30 (0.98, 1.74) |
Male | 0.465 | ||
Alpha-fetoprotein (≥400 ng/mL) | 0.640 | ||
CTP classification | |||
A | |||
B | 0.083 | ||
C | 0.824 | ||
BCLC stage | |||
0 | 1 | ||
A | 0.001 | 0.003 | 1.58 (1.16, 2.16) |
B | <0.001 | <0.001 | 2.72 (1.61, 4.61) |
C | <0.001 | <0.001 | 2.83 (1.59, 5.03) |
Achieving CR after 1st treatment | |||
Non-CR | |||
CR | 0.990 | ||
Surveillance Imaging modality | |||
USG group | 1 | ||
USG+MRI group | 0.009 | 0.091 | 0.76 (0.55, 1.04) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, S.J.; Yoo, J.-J.; Lee, D.H.; Kim, S.J.; Cho, E.J.; Kim, S.H.; Lee, J.-H.; Kim, Y.J.; Lee, J.M.; Lee, J.Y.; et al. Adding MRI as a Surveillance Test for Hepatocellular Carcinoma in Patients with Liver Cirrhosis Can Improve Prognosis. Biomedicines 2023, 11, 382. https://doi.org/10.3390/biomedicines11020382
Yu SJ, Yoo J-J, Lee DH, Kim SJ, Cho EJ, Kim SH, Lee J-H, Kim YJ, Lee JM, Lee JY, et al. Adding MRI as a Surveillance Test for Hepatocellular Carcinoma in Patients with Liver Cirrhosis Can Improve Prognosis. Biomedicines. 2023; 11(2):382. https://doi.org/10.3390/biomedicines11020382
Chicago/Turabian StyleYu, Su Jong, Jeong-Ju Yoo, Dong Ho Lee, Su Jin Kim, Eun Ju Cho, Se Hyung Kim, Jeong-Hoon Lee, Yoon Jun Kim, Jeong Min Lee, Jae Young Lee, and et al. 2023. "Adding MRI as a Surveillance Test for Hepatocellular Carcinoma in Patients with Liver Cirrhosis Can Improve Prognosis" Biomedicines 11, no. 2: 382. https://doi.org/10.3390/biomedicines11020382
APA StyleYu, S. J., Yoo, J. -J., Lee, D. H., Kim, S. J., Cho, E. J., Kim, S. H., Lee, J. -H., Kim, Y. J., Lee, J. M., Lee, J. Y., & Yoon, J. -H. (2023). Adding MRI as a Surveillance Test for Hepatocellular Carcinoma in Patients with Liver Cirrhosis Can Improve Prognosis. Biomedicines, 11(2), 382. https://doi.org/10.3390/biomedicines11020382