Uromodulin and Vesico-Ureteral Reflux: A Genetic Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Patients
2.2. Determination of UMOD rs42993393 T > C Genotype
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Uromodulin Genotyping
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tullus, K. Vesicoureteric reflux in children. Lancet 2015, 385, 371–379. [Google Scholar] [CrossRef]
- Garin, E.H. Primary vesicoureteral reflux; what have we learnt from the recently published randomized, controlled trials? Pediatr. Nephrol. 2019, 34, 1513–1519. [Google Scholar] [CrossRef] [PubMed]
- Ammenti, A.; Alberici, I.; Brugnara, M.; Chimenz, R.; Guarino, S.; La Manna, A.; La Scola, C.; Maringhini, S.; Marra, G.; Materassi, M.; et al. Updated Italian recommendations for the diagnosis, treatment and follow-up of the first febrile urinary tract infection in young children. Acta Paediatr. 2020, 109, 236–247. [Google Scholar] [CrossRef] [PubMed]
- Breinbjerg, A.; Jørgensen, C.S.; Frøkiær, J.; Tullus, K.; Kamperis, K.; Rittig, S. Risk factors for kidney scarring and vesicoureteral reflux in 421 children after their first acute pyelonephritis, and appraisal of international guidelines. Pediatr. Nephrol. 2021, 36, 2777–2787. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, I.K.; Montini, G. Kidney damage associated with vesico ureteric reflux. Curr. Opin. Pediatr. 2021, 33, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Mathews, R.; Mattoo, T.K. The Role of Antimicrobial Prophylaxis in the Management of Children with Vesicoureteral Reflux—The RIVUR Study Outcomes. Adv. Chronic Kidney Dis. 2015, 22, 325–330. [Google Scholar] [CrossRef]
- Wang, J.; Liu, L.; He, K.; Gao, B.; Wang, F.; Zhao, M.; Zhang, L.; on behalf of the Chinese Cohort Study of Chronic Kidney Disease (C-STRIDE). UMOD Polymorphisms Associated with Kidney Function, Serum Uromodulin and Risk of Mortality among Patients with Chronic Kidney Disease, Results from the C-STRIDE Study. Genes 2021, 12, 1687. [Google Scholar] [CrossRef]
- Bates, J.M.; Raffi, H.M.; Prasadan, K.; Mascarenhas, R.; Laszik, Z.; Maeda, N.; Hultgren, S.J.; Kumar, S. Tamm-Horsfall protein knockout mice are more prone to urinary tract infection Rapid Communication. Kidney Int. 2004, 65, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Garimella, P.S.; Bartz, T.M.; Ix, J.H.; Chonchol, M.; Shlipak, M.G.; Devarajan, P.; Bennett, M.R.; Sarnak, M.J. Urinary Uromodulin and Risk of Urinary Tract Infections: The Cardiovascular Health Study. Am. J. Kidney Dis. 2017, 69, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G.J.; Muñoz, A.; Schneider, M.F.; Mak, R.H.; Kaskel, F.; Warady, B.A.; Furth, S.L. New Equations to Estimate GFR in Children with CKD. J. Am. Soc. Nephrol. 2009, 20, 629–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marra, G.; Oppezzo, C.; Ardissino, G.; Daccò, V.; Testa, S.; Avolio, L.; Taioli, E.; Sereni, F. Severe vesicoureteral reflux and chronic renal failure: A condition peculiar to male gender? Data from the Italkid Project. J. Pediatr. 2004, 144, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, C.; Devuyst, O.; Rampoldi, L. Uromodulin: Roles in Health and Disease. Annu. Rev. Physiol. 2021, 83, 477–501. [Google Scholar] [CrossRef] [PubMed]
- Joseph, C.B.; Mariniello, M.; Yoshifuji, A.; Schiano, G.; Lake, J.; Marten, J.; Richmond, A.; Huffman, J.E.; Campbell, A.; Harris, S.E.; et al. Meta-GWAS Reveals Novel Genetic Variants Associated with Urinary Excretion of Uromodulin. J. Am. Soc. Nephrol. 2022, 33, 511–529. [Google Scholar] [CrossRef] [PubMed]
- Ghirotto, S.; Tassi, F.; Barbujani, G.; Pattini, L.; Hayward, C.; Vollenweider, P.; Bochud, M.; Rampoldi, L.; Devuyst, O. The Uromodulin Gene Locus Shows Evidence of Pathogen Adaptation through Human Evolution. J. Am. Soc. Nephrol. 2016, 27, 2983–2996. [Google Scholar] [CrossRef] [PubMed]
- Rossier, B.C.; Bochud, M.; Devuyst, O. The Hypertension Pandemic: An Evolutionary Perspective. Physiology 2017, 32, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, I.K.; Pennesi, M.; Morello, W.; Ronfani, L.; Montini, G. Antibiotic Prophylaxis for Urinary Tract Infection–Related Renal Scarring: A Systematic Review. Pediatrics 2017, 139, e20163145. [Google Scholar] [CrossRef] [PubMed]
- Andriole, V.T. The role of Tamm-Horsfall protein in the pathogenesis of reflux nephropathy and chronic pyelonephritis. Yale J. Biol. Med. 1985, 58, 91–100. [Google Scholar] [PubMed]
- Akioka, Y.; Chikamoto, H.; Horita, S.; Yago, R.; Tanabe, K.; Yamaguchi, Y.; Hattori, M. Screening of vesicoureteral reflux in pediatric patients with kidney transplantation showing non-specific interstitial fibrosis and tubular atrophy with interstitial Tamm-Horsfall protein deposits in protocol allograft biopsy. Clin. Transplant. 2009, 23, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Uto, I.; Ishimatsu, T.; Hirayama, H.; Ueda, S.; Nishi, K.; Tsuruta, J.; Kambara, T. Urinary Tamm-Horsfall protein excretion in patients with primary vesicoureteral reflux. Eur. Urol. 1991, 19, 315–318. [Google Scholar] [CrossRef] [PubMed]
SCAR | NO SCAR | |
---|---|---|
N | 16 | 15 |
M/F | 9/7 | 8/7 |
Age in months mean (range) p = 0.06 | 90.7 (20–196) | 57.7 (7–169) |
FUTI (cumulative number) p = 0.15 | 3.3 | 2 |
Maximum VUR grade (mean) | 3.8 | 3.5 |
Bilateral VUR | 8/16 (50%) | 7/15 (46.7%) |
Genotype | rs4293393 TC | rs4293393 TT |
---|---|---|
N | 8 (26%) | 23 (74%) |
M/F | 5/3 | 12/11 |
Age in months mean (range) | 68.3 (4–187) | 75.3 (7–169) |
FUTI (cumulative number) | 2.75 | 1.78 |
Maximum VUR grade (mean) | 3.6 | 3.6 |
Bilateral VUR | 3/8 (38%) | 12/23 (52%) |
No Scar | 1 | 14 |
Scar p = 0.018 | 7 (88%) | 9 (39%) |
Genotype | rs4293393 TC | rs4293393 TT |
---|---|---|
N | 7 | 9 |
Age (months) p = 0.61 | 77 | 101 |
Max VUR grade (mean) p = 0.82 | 3.7 | 3.9 |
FUTI (number) p = 0.55 | 2.9 | 3.7 |
p | |
---|---|
Scars in rs4293393 TC genotype | 0.04 |
Scars correlate with increasing age | 0.04 |
Scars correlate with increasing number of FUTI | 0.03 |
Scars in males | 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maringhini, S.; Cusumano, R.; Corrado, C.; Puccio, G.; Pavone, G.; D’Alessandro, M.M.; Sapia, M.C.; Devuyst, O.; Abbate, S. Uromodulin and Vesico-Ureteral Reflux: A Genetic Study. Biomedicines 2023, 11, 509. https://doi.org/10.3390/biomedicines11020509
Maringhini S, Cusumano R, Corrado C, Puccio G, Pavone G, D’Alessandro MM, Sapia MC, Devuyst O, Abbate S. Uromodulin and Vesico-Ureteral Reflux: A Genetic Study. Biomedicines. 2023; 11(2):509. https://doi.org/10.3390/biomedicines11020509
Chicago/Turabian StyleMaringhini, Silvio, Rosa Cusumano, Ciro Corrado, Giuseppe Puccio, Giovanni Pavone, Maria Michela D’Alessandro, Maria Chiara Sapia, Olivier Devuyst, and Serena Abbate. 2023. "Uromodulin and Vesico-Ureteral Reflux: A Genetic Study" Biomedicines 11, no. 2: 509. https://doi.org/10.3390/biomedicines11020509
APA StyleMaringhini, S., Cusumano, R., Corrado, C., Puccio, G., Pavone, G., D’Alessandro, M. M., Sapia, M. C., Devuyst, O., & Abbate, S. (2023). Uromodulin and Vesico-Ureteral Reflux: A Genetic Study. Biomedicines, 11(2), 509. https://doi.org/10.3390/biomedicines11020509