Association between Immunophenotypic Parameters and Molecular Alterations in Acute Myeloid Leukemia
Abstract
:1. Introduction
2. Genetic Alterations in AML
2.1. Favorable Risk Genetic Alterations
2.2. Intermediate Risk Genetic Alterations
2.3. Adverse Risk Genetic Alterations
3. Immunophenotyping in Acute Myeloid Leukemia Cells
4. Immunophenotyping x Genetics in AML
Number of Patients | Mean Age | Immunophenotypic Characteristics | Genetic Alterations | References |
---|---|---|---|---|
41 (71% males and 29% females) | 66 | CD45, CD34, CD117, CD36, HLA-DR, CD13, CD33, CD7, CD71 | Deletions involving chromosome 5/5q; deletions involving chromosome 7/7q; deletion of the TP53 locus (17p13) | [69] |
90 patients | Aged > 60 years | CD123, CD34, CD7, CD117, CD64, CD38, CD11b, CD33, CD56 | TET2, DNMT3A, IDH2, NPM1, FLT3-ITD, CEBPA, ASXL1, IDH1, SRSF2, BCOR, TP53, NRAS, RUNX1, U2AF1, BCORL1, WT1, and FLT3-TKD. | [70] |
67 (26 males and 41 females) | 64 (19–84) | CD34, CD117, HLA-DR | NPM1 p. W288fs DNMT3A, FLT3, TET2, IDH2, PTPN11, IDH1, NRAS, SRSF2, RAD21, WT1, ASXL1, and NF1 | [71] |
1040 (51.92% males and 48.08% females) | 10.3 | CD123 | t(8;21), inv(16), CEBPA, NPM1, FLT3-ITD; monosomy 7, monosomy 5/del(5q), t(6;9) with DEK-NUP214 fusion, KMT2A rearrangements | [72] |
37 Males: 20 (54%), Females: 17 (46%) | 54 (24–70) | CD8+CD45RA− CD27+/int CD28+ PD1+ TCF1+ | NPM1, DNMT3A, ASXL1, IDH2, TP53, CEBPA, NRAS, WT1 | [73] |
84 (51 females and 33 males) | 65.5 (22–89) | CD34-, HLA-DR-, CD117+, CD11b-, CD56+, CD13 | FLT3-ITD, FLT3-TKD, DNMT3A, NPM1, TET2, IDH1, IDH2 | [74] |
769 patients | NR | CD56, CD34, CD7, CD11b, CD117, CD13, SSC, CD33, CD45, CD38, FSC, HLA-DR | FAB, inv(16), t(8;21), cKit, 11q23, FLIT3, NPM1, CEBPA, HT1, GLIS2 | [75] |
217 patients | NR | CD34+ CD38− CD90− CD45RA+ | RUNX1 DNMT3A IDH2 TET2 | [76] |
174 (153 adults and 21 children | Adults aged 20–85 years and children aged < 20 years | CD34, CD7, HLA-DR | NPM1, FLT3-ITD, FLT3-D835, DNMT3A, NPM1 | [77] |
13 (11 males and 2 females) | 68 | CD13+, CD34+, HLA-DR+, CD33 | addX, del7, del5/5q, and add19 | [78] |
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Short, N.J.; Rytting, M.E.; Cortes, J.E. Acute myeloid leukaemia. Lancet 2018, 392, 593–606. [Google Scholar] [CrossRef] [PubMed]
- Pelcovits, A.; Niroula, R. Acute Myeloid Leukemia: A Review. Rhode Isl. Med. J. 2020, 103, 38–40. [Google Scholar]
- Vakiti, A.; Mewawalla, P.; Wood, S.K. Acute Myeloid Leukemia (Nursing). In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK568718/ (accessed on 15 August 2022).
- Tran, T.H.; Hunger, S.P. The genomic landscape of pediatric acute lymphoblastic leukemia and precision medicine opportunities. Semin. Cancer Biol. 2022, 84, 144–152. [Google Scholar] [CrossRef]
- Shallis, R.M.; Wang, R.; Davidoff, A.; Ma, X.; Zeidan, A.M. Epidemiology of acute myeloid leukemia: Recent progress and enduring challenges. Blood Rev. 2019, 36, 70–87. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Park, Y.; Mayne, S.T.; Wang, R.; Sinha, R.; Hollenbeck, A.R.; Schatzkin, A.; Cross, A.J. Diet, lifestyle, and acute myeloid leukemia in the NIH-AARP cohort. Am. J. Epidemiol. 2010, 171, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Quessada, J.; Cuccuini, W.; Saultier, P.; Loosveld, M.; Harrison, C.J.; Lafage-Pochitaloff, M. Cytogenetics of Pediatric Acute Myeloid Leukemia: A Review of the Current Knowledge. Genes 2021, 12, 924. [Google Scholar] [CrossRef]
- Oran, B.; Weisdorf, D.J. Survival for older patients with acute myeloid leukemia: A population-based study. Haematologica 2012, 97, 1916–1924. [Google Scholar] [CrossRef]
- INCA Atlas de Mortalidade. Available online: https://www.gov.br/inca/pt-br/assuntos/gestor-e-profissional-de-saude/controle-do-cancer-de-mama/dados-e-numeros/mortalidade (accessed on 1 February 2023).
- Creutzig, U.; Kutny, M.A.; Barr, R.; Schlenk, R.F.; Ribeiro, R.C. Acute myelogenous leukemia in adolescents and young adults. Pediatr. Blood Cancer 2018, 65, e27089. [Google Scholar] [CrossRef]
- Kantarjian, H.; Kadia, T.; DiNardo, C.; Daver, N.; Borthakur, G.; Jabbour, E.; Garcia-Manero, G.; Konopleva, M.; Ravandi, F. Acute myeloid leukemia: Current progress and future directions. Blood Cancer J. 2021, 11, 41. [Google Scholar] [CrossRef]
- Estey, E.H. Acute myeloid leukemia: 2019 update on risk-stratification and management. Am. J. Hematol. 2018, 93, 1267–1291. [Google Scholar] [CrossRef]
- Estey, E.H. Acute myeloid leukemia: 2021 update on risk-stratification and management. Am. J. Hematol. 2020, 95, 1368–1398. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef] [PubMed]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef]
- Borthakur, G.; Kantarjian, H. Core binding factor acute myelogenous leukemia-2021 treatment algorithm. Blood Cancer J. 2021, 11, 114. [Google Scholar] [CrossRef] [PubMed]
- Surapally, S.; Tenen, D.G.; Pulikkan, J.A. Emerging therapies for inv(16) AML. Blood 2021, 137, 2579–2584. [Google Scholar] [CrossRef]
- Pulikkan, J.A.; Castilla, L.H. Preleukemia and Leukemia-initiating cell activity in inv(16) acute myeloid Leukemia. Front. Oncol. 2018, 8, 129. [Google Scholar] [CrossRef]
- Bennett, J.M.; Catovsky, D.; Daniel, M.-T.; Flandrin, G.; Galton, D.A.G.; Gralnick, H.R.; Sultan, C. Proposals for the Classification of the Acute Leukaemias French-American-British (FAB) Co-operative Group. Br. J. Haematol. 1976, 33, 451–458. [Google Scholar] [CrossRef]
- Marosi, C.; Köller, U.; Koller-Weber, E.; Schwarzinger, I.; Schneider, B.; Jäger, U.; Vahls, P.; Nowotny, H.; Pirc-Danoewinata, H.; Steger, G.; et al. Prognostic impact of karyotype and immunologic phenotype in 125 adult patients with de novo AML. Cancer Genet. Cytogenet. 1992, 61, 14–25. [Google Scholar] [CrossRef]
- Bain, B.J.; Béné, M.C. Morphological and Immunophenotypic Clues to the WHO Categories of Acute Myeloid Leukaemia. Acta Haematol. 2019, 141, 232–244. [Google Scholar] [CrossRef]
- Al-Harbi, S.; Aljurf, M.; Mohty, M.; Almohareb, F.; Ahmed, S.O.A. An update on the molecular pathogenesis and potential therapeutic targeting of AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1. Blood Adv. 2020, 4, 229–238. [Google Scholar] [CrossRef]
- Campone, M.; Im, S.A.; Iwata, H.; Clemons, M.; Ito, Y.; Awada, A.; Chia, S.; Jagiełło-Gruszfeld, A.; Pistilli, B.; Tseng, L.M.; et al. Buparlisib plus fulvestrant versus placebo plus fulvestrant for postmenopausal, hormone receptor-positive, human epidermal growth factor receptor 2-negative, advanced breast cancer: Overall survival results from BELLE-2. Eur. J. Cancer 2018, 103, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Boisset, J.C.; Robin, C. On the origin of hematopoietic stem cells: Progress and controversy. Stem Cell Res. 2012, 8, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Béné, M.C.; Bernier, M.; Casasnovas, R.O.; Castoldi, G.; Doekharan, D.; Van Der Holt, B.; Knapp, W.; Lemež, P.; Ludwig, W.D.; Matutes, E.; et al. Acute myeloid leukaemia M0: Haematological, immunophenotypic and cytogenetic characteristics and their prognostic significance: An analysis in 241 patients. Br. J. Haematol. 2001, 113, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Lenvatinib-StatPearls-NCBI Bookshelf. Available online: https://www.ncbi.nlm.nih.gov/books/NBK567768/ (accessed on 1 February 2023).
- Schmidt, L.; Heyes, E.; Grebien, F. Gain-of-Function Effects of N-Terminal CEBPA Mutations in Acute Myeloid Leukemia. BioEssays 2020, 42, e1900178. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.L.; Hahn, C.N.; Scott, H.S. Secondary leukemia in patients with germline transcription factor mutations (RUNX1, GATA2, CEBPA). Blood 2020, 136, 24–35. [Google Scholar] [CrossRef]
- Su, L.; Shi, Y.Y.; Liu, Z.Y.; Gao, S.J. Acute Myeloid Leukemia With CEBPA Mutations: Current Progress and Future Directions. Front. Oncol. 2022, 12, 12. [Google Scholar] [CrossRef]
- Wakita, S.; Sakaguchi, M.; Oh, I.; Kako, S.; Toya, T.; Najima, Y.; Doki, N.; Kanda, J.; Kuroda, J.; Mori, S.; et al. Prognostic impact of CEBPA bZIP domain mutation in acute myeloid leukemia. Blood Adv. 2022, 6, 238–247. [Google Scholar] [CrossRef]
- Tarlock, K.; Lamble, A.J.; Wang, Y.C.; Gerbing, R.B.; Ries, R.E.; Loken, M.R.; Brodersen, L.E.; Pardo, L.; Leonti, A.; Smith, J.L.; et al. CEBPA-bZip mutations are associated with favorable prognosis in de novo AML: A report from the Children’s Oncology Group. Blood 2021, 138, 1137–1147. [Google Scholar] [CrossRef]
- Sierra, J.; Nomdedeu, J.F. CEBPA bZip mutations: Just a single shot. Blood 2021, 138, 1091–1092. [Google Scholar] [CrossRef]
- Ruecker, F.G.; Corbacioglu, A.; Theis, F.; Christopeit, M.; Germing, U.; Wulf, G.; Abu Samra, M.; Teichmann, L.; Lübbert, M.; Kühn, M.W.; et al. P448: Prognostic Impact of Somatic Cebpa Bzip Domain Mutations in Acute Myeloid Leukemia. HemaSphere 2022, 6, 348–349. [Google Scholar] [CrossRef]
- Falini, B.; Brunetti, L.; Sportoletti, P.; Paola Martelli, M. NPM1-mutated acute myeloid leukemia: From bench to bedside. Blood 2020, 136, 1707–1721. [Google Scholar] [CrossRef] [PubMed]
- Forghieri, F.; Comoli, P.; Marasca, R.; Potenza, L.; Luppi, M. Minimal/Measurable Residual Disease Monitoring in NPM1-Mutated Acute Myeloid Leukemia: A Clinical Viewpoint and Perspectives. Int. J. Mol. Sci. 2018, 19, 3492. [Google Scholar] [CrossRef] [PubMed]
- Forghieri, F.; Riva, G.; Lagreca, I.; Barozzi, P.; Bettelli, F.; Paolini, A.; Nasillo, V.; Lusenti, B.; Pioli, V.; Giusti, D.; et al. Neoantigen-specific T-cell immune responses: The paradigm of NPM1-mutated acute myeloid leukemia. Int. J. Mol. Sci. 2021, 22, 9159. [Google Scholar] [CrossRef]
- Hindley, A.; Catherwood, M.A.; McMullin, M.F.; Mills, K.I. Significance of npm1 gene mutations in aml. Int. J. Mol. Sci. 2021, 22, 10040. [Google Scholar] [CrossRef] [PubMed]
- Heath, E.M.; Chan, S.M.; Minden, M.D.; Murphy, T.; Shlush, L.I.; Schimmer, A.D. Biological and clinical consequences of NPM1 mutations in AML. Leukemia 2017, 31, 798–807. [Google Scholar] [CrossRef] [PubMed]
- Rau, R.; Brown, P. Nucleophosmin (NPM1) mutations in adult and childhood acute myeloid leukaemia: Towards definition of a new leukaemia entity. Hematol. Oncol. 2009, 27, 171–181. [Google Scholar] [CrossRef]
- Thiede, C.; Koch, S.; Creutzig, E.; Steudel, C.; Illmer, T.; Schaich, M.; Ehninger, G. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood 2006, 107, 4011–4020. [Google Scholar] [CrossRef]
- Montesinos, P.; Recher, C.; Vives, S.; Zarzycka, E.; Wang, J.; Bertani, G.; Heuser, M.; Calado, R.T.; Schuh, A.C.; Yeh, S.-P.; et al. Ivosidenib and Azacitidine in IDH1 -Mutated Acute Myeloid Leukemia. N. Engl. J. Med. 2022, 386, 1519–1531. [Google Scholar] [CrossRef]
- Chi, S.G.; Minami, Y. Emerging Targeted Therapy for Specific Genomic Abnormalities in Acute Myeloid Leukemia. Int. J. Mol. Sci. 2022, 23, 2362. [Google Scholar] [CrossRef]
- Roloff, G.W.; Griffiths, E.A. When to obtain genomic data in acute myeloid leukemia (AML) and which mutations matter. Blood Adv. 2018, 2, 3070–3080. [Google Scholar] [CrossRef]
- Kayser, S.; Döhner, K.; Krauter, J.; Köhne, C.H.; Horst, H.A.; Held, G.; Von Lilienfeld-Toal, M.; Wilhelm, S.; Kündgen, A.; Götze, K.; et al. The impact of therapy-related acute myeloid leukemia (AML) on outcome in 2853 adult patients with newly diagnosed AML. Blood 2011, 117, 2137–2145. [Google Scholar] [CrossRef] [PubMed]
- Kühn, M.W.M.; Bullinger, L.; Gröschel, S.; Krönke, J.; Edelmann, J.; Rücker, F.G.; Eiwen, K.; Paschka, P.; Gaidzik, V.I.; Holzmann, K.; et al. Genome-wide genotyping of acute myeloid leukemia with translocation t(9;11)(p22;q23) reveals novel recurrent genomic alterations. Haematologica 2014, 99, 133–135. [Google Scholar] [CrossRef]
- Alsabeh, R.; Brynes, R.K.; Slovak, M.L.; Arber, D.A. Acute Myeloid Leukemia With t (6; 9) (p23; q34) Association with Myelodysplasia, Basophilia, and Initial CD34 Negative Immunophenotype. Am. J. Clin. Pathol. 1996, 107, 430–437. [Google Scholar] [CrossRef]
- von Lindern, M.; Fornerod, M.; van Baal, S.; Jaegle, M.; de Wit, T.; Buijs, A.; Grosveld, G. The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA. Mol. Cell. Biol. 1992, 12, 1687–1697. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.C.; Maze, D.; Xia, D.; Capo-Chichi, J.M.; King, I.; Sibai, H. A t(6;14;9)(p22;q22;q34) three-way translocation: Description of a cytogenetically visible variant t(6;9) in acute myeloid leukemia. Am. J. Hematol. 2022, 97, 983–985. [Google Scholar] [CrossRef] [PubMed]
- Sabine Kayser, M.J.L. Clinical implications of molecular markers in acute myeloid leukemia. Eur. J. Haematol. 2019, 102, 20–35. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, D.; Chi, S.; Uchiyama, S.; Nakamura, H.; Guo, Y.M.; Yamauchi, N.; Yuda, J.; Minami, Y. Molecular Classification and Overcoming Therapy Resistance for Acute Myeloid Leukemia with Adverse Genetic Factors. Int. J. Mol. Sci. 2022, 23, 5950. [Google Scholar] [CrossRef] [PubMed]
- Piedimonte, M.; Ottone, T.; Alfonso, V.; Ferrari, A.; Conte, E.; Divona, M.; Bianchi, M.P.; Ricciardi, M.R.; Mirabilii, S.; Licchetta, R.; et al. A rare BCR-ABL1 transcript in Philadelphia-positive acute myeloid leukemia: Case report and literature review. BMC Cancer 2019, 19, 50. [Google Scholar] [CrossRef]
- George, B.; Kantarjian, H.; Baran, N.; Krocker, J.D.; Rios, A. Tp53 in acute myeloid leukemia: Molecular aspects and patterns of mutation. Int. J. Mol. Sci. 2021, 22, 10782. [Google Scholar] [CrossRef]
- Welch, J.S. Patterns of mutations in TP53 mutated AML. Best Pract. Res. Clin. Haematol. 2018, 31, 379–383. [Google Scholar] [CrossRef]
- Cluzeau, T.; Loschi, M.; Fenaux, P.; Komrokji, R.; Sallman, D.A. Personalized medicine for tp53 mutated myelodysplastic syndromes and acute myeloid leukemia. Int. J. Mol. Sci. 2021, 22, 10105. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, K.; Steidl, U. Targeting Immunophenotypic Markers on Leukemic Stem Cells: How Lessons from Current Approaches and Advances in the Leukemia Stem Cell (LSC) Model Can Inform Better Strategies for Treating Acute Myeloid Leukemia (AML). Cold Spring Harb. Perspect. Med 2020, 10, a036251. [Google Scholar] [CrossRef]
- Barreto, I.V.; Pessoa, F.M.C.d.P.; Machado, C.B.; Pantoja, L.d.C.; Ribeiro, R.M.; Lopes, G.S.; Amaral de Moraes, M.E.; de Moraes Filho, M.O.; de Souza, L.E.B.; Burbano, R.M.R.; et al. Leukemic Stem Cell: A Mini-Review on Clinical Perspectives. Front. Oncol. 2022, 12, 931050. [Google Scholar] [CrossRef] [PubMed]
- Haferlach, T.; Schmidts, I. The power and potential of integrated diagnostics in acute myeloid leukaemia. Br. J. Haematol. 2020, 188, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Zeisig, B.B.; Fung, T.K.; Troadec, E.; So, C.W.E. Reconstruction of Human AML Using Functionally and Immunophenotypically Defined Human Haematopoietic Stem and Progenitor Cells as Targeted Populations. Bio-Protocol 2021, 11, e4262. [Google Scholar] [CrossRef] [PubMed]
- Tiso, F.; Koorenhof-Scheele, T.N.; Huys, E.; Martens, J.H.A.; de Graaf, A.O.; van der Reijden, B.A.; Langemeijer, S.M.C.; Preijers, F.W.M.B.; Kroeze, L.I.; Jansen, J.H. Genetic diversity within leukemia-associated immunophenotype-defined subclones in AML. Ann. Hematol. 2022, 101, 571–579. [Google Scholar] [CrossRef]
- Basharat, M.; Khan, S.A.; Din, N.U.; Ahmed, D. Immunophenotypic characterisation of morphologically diagnosed cases of acute myeloid Leukaemia (AML). Pakistan J. Med. Sci. 2019, 35, 470–476. [Google Scholar] [CrossRef]
- Thomas, D.; Majeti, R. Biology and relevance of human acute myeloid leukemia stem cells. Blood 2017, 129, 1577–1585. [Google Scholar] [CrossRef]
- Riva, G.; Nasillo, V.; Ottomano, A.M.; Bergonzini, G.; Paolini, A.; Forghieri, F.; Lusenti, B.; Barozzi, P.; Lagreca, I.; Fiorcari, S.; et al. Multiparametric flow cytometry for MRD monitoring in hematologic malignancies: Clinical applications and new challenges. Cancers 2021, 13, 4582. [Google Scholar] [CrossRef]
- Ferrari, B.; Peyvandi, F. How I treat thrombotic thrombocytopenic purpura in pregnancy. Blood 2020, 136, 2125–2132. [Google Scholar] [CrossRef]
- Heuser, M.; Freeman, S.D.; Ossenkoppele, G.J.; Buccisano, F.; Hourigan, C.S.; Ngai, L.L.; Tettero, J.M.; Bachas, C.; Baer, C.; Béné, M.C.; et al. 2021 Update on MRD in acute myeloid leukemia: A consensus document from the European LeukemiaNet MRD Working Party. Blood 2021, 138, 2753–2767. [Google Scholar] [CrossRef] [PubMed]
- Voso, M.T.; Ottone, T.; Lavorgna, S.; Venditti, A.; Maurillo, L.; Lo-Coco, F.; Buccisano, F. MRD in AML: The Role of New Techniques. Front. Oncol. 2019, 9, 655. [Google Scholar] [CrossRef] [PubMed]
- Varotto, E.; Munaretto, E.; Stefanachi, F.; Torre, F.D.; Buldini, B. Diagnostic challenges in acute monoblastic/monocytic leukemia in children. Front. Pediatr. 2022, 10, 1664. [Google Scholar] [CrossRef] [PubMed]
- Dubose-Marchenay, N.; Lacombe, F.; Dumain, P.; Belloc, F.; Boisseau, M.R.; Reiffers, J. Role of blast cell immunophenotyping for the diagnosis and prognosis of acute myeloid leukemia. Biol. Cell 1992, 76, 283. [Google Scholar] [CrossRef]
- Pinheiro, L.H.S.; Trindade, L.D.; Costa, A.F.d.O.; Silva, N.d.L.; Sandes, A.F.; Nunes, M.A.P.; Correa, C.B.; Almeida, C.A.C.; da Cruz, G.S.; de Lyra Junior, D.P.; et al. Aberrant phenotypes in acute myeloid leukemia and its relationship with prognosis and survival: A systematic review and meta-analysis. Int. J. Hematol. Stem Cell Res. 2020, 14, 274–288. [Google Scholar]
- Reichard, K.K.; Tefferi, A.; Abdelmagid, M.; Orazi, A.; Alexandres, C.; Haack, J.; Greipp, P.T. Pure (acute) erythroid leukemia: Morphology, immunophenotype, cytogenetics, mutations, treatment details, and survival data among 41 Mayo Clinic cases. Blood Cancer J. 2022, 12, 147. [Google Scholar] [CrossRef]
- Li, F.; Li, N.; Wang, A.; Liu, X. Correlation Analysis and Prognostic Impacts of Biological Characteristics in Elderly Patients with Acute Myeloid Leukemia. Clin. Interv. Aging 2022, 17, 1187–1197. [Google Scholar] [CrossRef]
- Loghavi, S.; DiNardo, C.D.; Furudate, K.; Takahashi, K.; Tanaka, T.; Short, N.J.; Kadia, T.; Konopleva, M.; Kanagal-Shamanna, R.; Farnoud, N.R.; et al. Flow cytometric immunophenotypic alterations of persistent clonal haematopoiesis in remission bone marrows of patients with NPM1-mutated acute myeloid leukaemia. Br. J. Haematol. 2021, 192, 1054–1063. [Google Scholar] [CrossRef]
- Lamble, A.J.; Brodersen, L.E.; Alonzo, T.A.; Wang, J.; Pardo, L.; Sung, L.; Cooper, T.M.; Kolb, E.A.; Aplenc, R.; Tasian, S.K.; et al. CD123 Expression Is Associated With High-Risk Disease Characteristics in Childhood Acute Myeloid Leukemia: A Report From the Children’s Oncology Group. J. Clin. Oncol. 2022, 40, 252–261. [Google Scholar] [CrossRef]
- Zeidner, J.F.; Vincent, B.G.; Ivanova, A.; Moore, D.; McKinnon, K.P.; Wilkinson, A.D.; Mukhopadhyay, R.; Mazziotta, F.; Knaus, H.A.; Foster, M.C.; et al. Phase II Trial of Pembrolizumab after High-Dose Cytarabine in Relapsed/Refractory Acute Myeloid Leukemia. Blood Cancer Discov. 2021, 2, 616–629. [Google Scholar] [CrossRef]
- Mason, E.F.; Kuo, F.C.; Hasserjian, R.P.; Seegmiller, A.C.; Pozdnyakova, O. A distinct immunophenotype identifies a subset of NPM1-mutated AML with TET2 or IDH1/2 mutations and improved outcome. Am. J. Hematol. 2018, 93, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Voigt, A.P.; Brodersen, L.E.; Alonzo, T.A.; Gerbing, R.B.; Menssen, A.J.; Wilson, E.R.; Kahwash, S.; Raimondi, S.C.; Hirsch, B.A.; Gamis, A.S.; et al. Phenotype in combination with genotype improves outcome prediction in acute myeloid leukemia: A report from children’s oncology group protocol AAML0531. Haematologica 2017, 102, 2058–2068. [Google Scholar] [CrossRef] [PubMed]
- Craddock, C.F.; Houlton, A.E.; Quek, L.S.; Ferguson, P.; Gbandi, E.; Roberts, C.; Metzner, M.; Garcia-Martin, N.; Kennedy, A.; Hamblin, A.; et al. Outcome of azacitidine therapy in acute myeloid leukemia is not improved by concurrent vorinostat therapy but is predicted by a diagnostic molecular signature. Clin. Cancer Res. 2017, 23, 6430–6440. [Google Scholar] [CrossRef] [PubMed]
- Kontro, M.; Kumar, A.; Majumder, M.M.; Eldfors, S.; Parsons, A.; Pemovska, T.; Saarela, J.; Yadav, B.; Malani, D.; Fløisand, Y.; et al. HOX gene expression predicts response to BCL-2 inhibition in acute myeloid leukemia. Leukemia 2017, 31, 301–309. [Google Scholar] [CrossRef]
- Pang, C.S.; Pettenati, M.J.; Pardee, T.S. Clinicopathological analysis of near-tetraploidy/tetraploidy acute myeloid leukaemia. J. Clin. Pathol. 2015, 68, 236–240. [Google Scholar] [CrossRef]
- Döhner, K.; Schlenk, R.F.; Habdank, M.; Scholl, C.; Rücker, F.G.; Corbacioglu, A.; Bullinger, L.; Fröhling, S.; Döhner, H. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: Interaction with other gene mutations. Blood 2005, 106, 3740–3746. [Google Scholar] [CrossRef]
- Liu, Y.R.; Zhu, H.H.; Ruan, G.R.; Qin, Y.Z.; Shi, H.X.; Lai, Y.Y.; Chang, Y.; Wang, Y.Z.; Lu, D.; Hao, L.; et al. NPM1-mutated acute myeloid leukemia of monocytic or myeloid origin exhibit distinct immunophenotypes. Leuk. Res. 2013, 37, 737–741. [Google Scholar] [CrossRef]
- Zhou, Y.; Moon, A.; Hoyle, E.; Fromm, J.R.; Chen, X.; Soma, L.; Salipante, S.J.; Wood, B.L.; Wu, D. Pattern associated leukemia immunophenotypes and measurable disease detection in acute myeloid leukemia or myelodysplastic syndrome with mutated NPM1. Cytom. Part B-Clin. Cytom. 2019, 96, 67–72. [Google Scholar] [CrossRef]
- Daver, N.; Schlenk, R.F.; Russell, N.H.; Levis, M.J. Targeting FLT3 mutations in AML: Review of current knowledge and evidence. Leukemia 2019, 33, 299–312. [Google Scholar] [CrossRef]
- Senapati, J.; Kadia, T.M. Which FLT3 Inhibitor for Treatment of AML? Curr. Treat. Options Oncol. 2022, 23, 359–380. [Google Scholar] [CrossRef]
- Travaglini, S.; Angelini, D.F.; Alfonso, V.; Guerrera, G.; Lavorgna, S.; Divona, M.; Nardozza, A.M.; Consalvo, M.I.; Fabiani, E.; De Bardi, M.; et al. Characterization of FLT3-ITDmut acute myeloid leukemia: Molecular profiling of leukemic precursor cells. Blood Cancer J. 2020, 10, 85. [Google Scholar] [CrossRef] [PubMed]
- Vaikari, V.P.; Du, Y.; Wu, S.; Zhang, T.; Metzeler, K.; Batcha, A.M.N.; Herold, T.; Hiddemann, W.; Akhtari, M.; Alachkar, H. Clinical and preclinical characterization of CD99 isoforms in acute myeloid leukemia. Haematologica 2020, 105, 999–1012. [Google Scholar] [CrossRef] [PubMed]
- Feldman, E.J.; Kalaycio, M.; Weiner, G.; Frankel, S.; Schulman, P.; Schwartzberg, L.; Jurcic, J.; Velez-Garcia, E.; Seiter, K.; Scheinberg, D.; et al. Treatment of relapsed or refractory acute myeloid leukemia with humanized anti-CD33 monoclonal antibody HuM195. Leukemia 2003, 17, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Walter, R.B.; Appelbaum, F.R.; Estey, E.H.; Bernstein, I.D. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood 2012, 119, 6198–6208. [Google Scholar] [CrossRef] [PubMed]
- Notopuro, P.B.; Nugraha, J.; Utomo, B.; Notopuro, H. The association of FLT3-ITD gene mutation with bone marrow blast cell count, cd34, cyclin d1, bcl-xl and hent1 expression in acute myeloid leukemia patients. Iran. J. Pathol. 2020, 15, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Yokota, S.; Kiyoi, H.; Nakao, M.; Iwai, T.; Misawa, T.; Okuda, T.; Sonoda, Y.; Abe, T.; Kahsima, K.; Matsuo, Y.; et al. Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines. Leukemia 1997, 11, 1605–1609. [Google Scholar] [CrossRef]
- Brunetti, L.; Gundry, M.C.; Goodell, M.A. DNMT3A in Leukemia. Cold Spring Harb. Perspect. Med. 2017, 7, a030320. [Google Scholar] [CrossRef]
- Khrabrova, D.A.; Yakubovskaya, M.G.; Gromova, E.S. AML-Associated Mutations in DNA Methyltransferase DNMT3A. Biochemistry 2021, 86, 307–318. [Google Scholar] [CrossRef]
- Kuželová, K.; Brodská, B.; Marková, J.; Petráčková, M.; Schetelig, J.; Ransdorfová, Š.; Gašová, Z.; Šálek, C. NPM1 and DNMT3A mutations are associated with distinct blast immunophenotype in acute myeloid leukemia. Oncoimmunology 2022, 11, 2073050. [Google Scholar] [CrossRef]
- Kumar, D.; Mehta, A.; Panigrahi, M.K.; Nath, S.; Saikia, K.K. DNMT3A (R882) mutation features and prognostic effect in acute myeloid leukemia in Coexistent with NPM1 and FLT3 mutations. Hematol. Oncol. Stem Cell Ther. 2018, 11, 82–89. [Google Scholar] [CrossRef]
- Farhi, D.C.; Al, W.E.T. CD117/CD34 Expression in Leukemic Blasts. Am. J. Clin. Pathol. 1996, 106, 192–195. [Google Scholar]
- Elrhman, H.A.E.A.; El-Meligui, Y.M.; Elalawi, S.M. Prognostic Impact of Concurrent DNMT3A, FLT3 and NPM1 Gene Mutations in Acute Myeloid Leukemia Patients. Clin. Lymphoma Myeloma Leuk. 2021, 21, e960–e969. [Google Scholar] [CrossRef] [PubMed]
- Testa, U.; Riccioni, R.; Militi, S.; Coccia, E.; Stellacci, E.; Samoggia, P.; Latagliata, R.; Mariani, G.; Rossini, A.; Battistini, A.; et al. Elevated expression of IL-3Rα in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis. Blood 2002, 100, 2980–2988. [Google Scholar] [CrossRef]
- Ihle, J.N. Interleukin-3 and hematopoiesis. Chem. Immunol. 1992, 51, 65–106. [Google Scholar] [CrossRef]
- Tolba, F.M.; Foda, M.E.; Kamal, H.M.; Elshabrawy, D.A. Expression of CD133 in acute leukemia. Med. Oncol. 2013, 30, 527. [Google Scholar] [CrossRef] [PubMed]
- Arcangeli, S.; Rotiroti, M.C.; Bardelli, M.; Simonelli, L.; Magnani, C.F.; Biondi, A.; Biagi, E.; Tettamanti, S.; Varani, L. Balance of Anti-CD123 Chimeric Antigen Receptor Binding Affinity and Density for the Targeting of Acute Myeloid Leukemia. Mol. Ther. 2017, 25, 1933–1945. [Google Scholar] [CrossRef] [PubMed]
- Kamel, A.M.; Elsharkawy, N.M.; Kandeel, E.Z.; Hanafi, M.; Samra, M.; Osman, R.A. Leukemia Stem Cell Frequency at Diagnosis Correlates With Measurable/Minimal Residual Disease and Impacts Survival in Adult Acute Myeloid Leukemia. Front. Oncol. 2022, 12, 867684. [Google Scholar] [CrossRef]
- Guglielmi, C.; Martelli, M.P.; Diverio, D.; Fenu, S.; Vegna, M.L.; Cantù-Rajnoldi, A.; Biondi, A.; Cocito, M.G.; Del Vecchio, L.; Tabilio, A.; et al. Immunophenotype of adult and childhood acute promyelocytic leukaemia: Correlation with morphology, type of PML gene breakpoint and clinical outcome. A cooperative Italian study on 196 cases. Br. J. Haematol. 1998, 102, 1035–1041. [Google Scholar] [CrossRef]
- Takenokuchi, M.; Kawano, S.; Nakamachi, Y.; Sakota, Y.; Syampurnawati, M.; Saigo, K.; Tatsumi, E.; Kumagai, S. FLT3/ITD associated with an immature immunophenotype in PML-RARα leukemia. Hematol. Rep. 2012, 4, 80–85. [Google Scholar] [CrossRef]
- Gorczyca, W. Acute promyelocytic leukemia: Four distinct patterns by flow cytometry immunophenotyping. Pol. J. Pathol. 2012, 63, 8–17. [Google Scholar]
- Ouyang, J.; Goswami, M.; Peng, J.; Zuo, Z.; Daver, N.; Borthakur, G.; Tang, G.; Medeiros, L.J.; Jorgensen, J.L.; Ravandi, F.; et al. Comparison of Multiparameter Flow Cytometry Immunophenotypic Analysis and Quantitative RT-PCR for the Detection of Minimal Residual Disease of Core Binding Factor Acute Myeloid Leukemia. Am. J. Clin. Pathol. 2016, 145, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.W.; Bae, Y.K.; Cho, S.Y.; Koo, H.; Kim, H.J.; Nam, D.H.; Kim, S.H.; Chun, S.; Joo, K.M.; Park, W.Y. Elucidation of novel therapeutic targets for acute myeloid leukemias with RUNX1-RUNX1T1 fusion. Int. J. Mol. Sci. 2019, 20, 1717. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, S.A.; Schlette, E.J.; Xu, J.; Jorgensen, J.L.; Cameron Yin, C.; Li, S.; Jeffrey Medeiros, L.; Tang, G. Myeloid neoplasms with t(16;21)(q24;q22)/RUNX1-RUNX1T3 mimics acute myeloid leukemia with RUNX1-RUNX1T1. Ann. Hematol. 2018, 97, 1775–1783. [Google Scholar] [CrossRef] [PubMed]
- Schnittger, S.; Bacher, U.; Haferlach, C.; Kern, W.; Haferlach, T. Rare CBFB-MYH11 fusion transcripts in AML with inv(16)/t(16;16) are associated with therapy-related AML M4eo, atypical cytomorphology, atypical immunophenotype, atypical additional chromosomal rearrangements and low white blood cell count: A study on 162 patients. Leukemia 2007, 21, 725–731. [Google Scholar] [CrossRef]
- Cao, T.T.; Zhou, M.H.; Yuan, L.; Wang, Q.; Dou, L.P.; Xu, Y.Y.W.N.; Wang, L.-L.; Wang, S. Clinical analysis of acute myeloid leukemia with CBFB-MYH11-positive. Eur. PMC Funders Gr. Author Manuscr. 2013, 21, 305–310. [Google Scholar]
RUNX1-RUNX1T1 | PML-RARA | CBFB-MYH11 | FLT3 | NPM1 | DNMT3A | |
---|---|---|---|---|---|---|
CD34 | ||||||
CD117 | ||||||
CD19 | ||||||
CD13 | ||||||
CD33 | ||||||
HLA-DR | ||||||
MPO | ||||||
CD7 | ||||||
CD123 | ||||||
CD64 | ||||||
CD38 | ||||||
CD11b | ||||||
CD56 | ||||||
CD14 | ||||||
CD2 | ||||||
CD15 | ||||||
CD25 | ||||||
CD99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pessoa, F.M.C.d.P.; Machado, C.B.; Barreto, I.V.; Sampaio, G.F.; Oliveira, D.d.S.; Ribeiro, R.M.; Lopes, G.S.; de Moraes, M.E.A.; de Moraes Filho, M.O.; de Souza, L.E.B.; et al. Association between Immunophenotypic Parameters and Molecular Alterations in Acute Myeloid Leukemia. Biomedicines 2023, 11, 1098. https://doi.org/10.3390/biomedicines11041098
Pessoa FMCdP, Machado CB, Barreto IV, Sampaio GF, Oliveira DdS, Ribeiro RM, Lopes GS, de Moraes MEA, de Moraes Filho MO, de Souza LEB, et al. Association between Immunophenotypic Parameters and Molecular Alterations in Acute Myeloid Leukemia. Biomedicines. 2023; 11(4):1098. https://doi.org/10.3390/biomedicines11041098
Chicago/Turabian StylePessoa, Flávia Melo Cunha de Pinho, Caio Bezerra Machado, Igor Valentim Barreto, Giulia Freire Sampaio, Deivide de Sousa Oliveira, Rodrigo Monteiro Ribeiro, Germison Silva Lopes, Maria Elisabete Amaral de Moraes, Manoel Odorico de Moraes Filho, Lucas Eduardo Botelho de Souza, and et al. 2023. "Association between Immunophenotypic Parameters and Molecular Alterations in Acute Myeloid Leukemia" Biomedicines 11, no. 4: 1098. https://doi.org/10.3390/biomedicines11041098
APA StylePessoa, F. M. C. d. P., Machado, C. B., Barreto, I. V., Sampaio, G. F., Oliveira, D. d. S., Ribeiro, R. M., Lopes, G. S., de Moraes, M. E. A., de Moraes Filho, M. O., de Souza, L. E. B., Khayat, A. S., & Moreira-Nunes, C. A. (2023). Association between Immunophenotypic Parameters and Molecular Alterations in Acute Myeloid Leukemia. Biomedicines, 11(4), 1098. https://doi.org/10.3390/biomedicines11041098