Skin and Gut Microbiome in Hidradenitis Suppurativa: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Inclusion/Exclusion Criteria
- Subjects aged 18 years or older;
- Human studies investigating the association between gut and/or skin microbiota and hidradenitis suppurativa;
- Articles published in English.
2.3. Study Selection
2.4. Quality Assessment
2.5. Data Extraction
3. Results
3.1. Search Results and Study Characteristics
3.2. The Cutaneous Microbiome in Hidradenitis Suppurativa
3.3. The Gastrointestinal Microbiome
3.4. The Oral Microbiome
3.5. Quality of the Evidence
4. Discussion
4.1. The Human Microbiota and Skin Microbiome
4.2. Gut–Skin Axis
4.3. Methodology
4.4. Research
4.5. Limitations and Correlations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jemec, G.B.E.; Revuz, J.; Leyden, J.J. (Eds.) Hidradenitis Suppurativa; Springer: Berlin, Germany, 2006. [Google Scholar]
- Emtestam, L.; Desai, N.; Hunger, R.; Zouboulis, C.C.; Ioannides, D.; Van Der Zee, H.H.; Prens, E.P.; E Jemec, G.B.; Schneider-Burrus, S.; Revuz, J.; et al. European S1 guideline for the treatment of hidradenitis suppurativa/acne inversa. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 619–644. [Google Scholar] [CrossRef]
- Lelonek, E.; Bieniek, A.; Szepietowski, J. Improved Psychosocial Status after Surgery for Genital Elephantiasis due to Hidradenitis Suppurativa: A Prospective Study of a Case Series. Acta Derm. Venereol. 2021, 101, adv00389. [Google Scholar] [CrossRef]
- Napolitano, M.; Megna, M.; A Timoshchuk, E.; Patruno, C.; Balato, N.; Fabbrocini, G.; Monfrecola, G. Hidradenitis suppurativa: From pathogenesis to diagnosis and treatment. Clin. Cosmet. Investig. Dermatol. 2017, 10, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Lin, G.; Ferenczi, K. The skin microbiome and the gut-skin axis. Clin. Dermatol. 2021, 39, 829–839. [Google Scholar] [CrossRef]
- Balato, A.; Cacciapuoti, S.; Di Caprio, R.; Marasca, C.; Masarà, A.; Raimondo, A.; Fabbrocini, G. Human Microbiome: Composition and Role in Inflammatory Skin Diseases. Arch. Immunol. Ther. Exp. 2019, 67, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Arck, P.; Handjiski, B.; Hagen, E.; Pincus, M.; Bruenahl, C.; Bienenstock, J.; Paus, R. Is there a ‘gut-brain-skin axis’? Exp. Dermatol. 2010, 19, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Ellis, S.R.; Nguyen, M.; Vaughn, A.R.; Notay, M.; Burney, W.A.; Sandhu, S.; Sivamani, R.K. The skin and gut microbiome and its role in common dermatologic conditions. Microorganisms 2019, 7, 550. [Google Scholar] [CrossRef] [PubMed]
- Frew, J.W.; Hawkes, J.E.; Krueger, J.G. Topical, systemic and biologic therapies in hidradenitis suppurativa: Pathogenic insights by examining therapeutic mechanisms. Ther. Adv. Chronic. Dis. 2019, 10, 2040622319830646. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef]
- Lam, S.Y.; Radjabzadeh, D.; Eppinga, H.; Nossent, Y.R.A.; van der Zee, H.H.; Kraaij, R.; Konstantinov, S.R.; Fuhler, G.M.; Prens, E.P.; Thio, H.B.; et al. A microbiome study to explore the gut-skin axis in hidradenitis suppurativa. J. Dermatol. Sci. 2021, 101, 218–220. [Google Scholar] [CrossRef]
- McCarthy, S.; Barrett, M.; Kirthi, S.; Pellanda, P.; Vlckova, K.; Tobin, A.-M.; Murphy, M.; Shanahan, F.; O’toole, P.W. Altered Skin and Gut Microbiome in Hidradenitis Suppurativa. J. Investig. Dermatol. 2022, 142, 459–468.e15. [Google Scholar] [CrossRef] [PubMed]
- Eppinga, H.; Sperna Weiland, C.J.; Thio, H.B.; van der Woude, C.J.; Nijsten, T.E.; Peppelenbosch, M.P.; Konstantinov, S.R. Similar Depletion of Protective Faecalibacterium prausnitzii in Psoriasis and Inflammatory Bowel Disease, but not in Hidradenitis Suppurativa. J. Crohns Colitis 2016, 10, 1067–1075. [Google Scholar] [CrossRef] [PubMed]
- Naik, H.B.; Jo, J.-H.; Paul, M.; Kong, H.H. Skin Microbiota Perturbations Are Distinct and Disease Severity–Dependent in Hidradenitis Suppurativa. J. Investig. Dermatol. 2020, 140, 922–925.e3. [Google Scholar] [CrossRef] [PubMed]
- Katoulis, A.C.; Koumaki, D.; Liakou, A.I.; Vrioni, G.; Koumaki, V.; Kontogiorgi, D.; Tzima, K.; Tsakris, A.; Rigopoulos, D. Aerobic and Anaerobic Bacteriology of Hidradenitis Suppurativa: A Study of 22 Cases. Ski. Appendage Disord. 2015, 1, 55–59. [Google Scholar] [CrossRef]
- Guet-Revillet, H.; Coignard-Biehler, H.; Jais, J.-P.; Quesne, G.; Frapy, E.; Poirée, S.; Le Guern, A.-S.; Le Flèche-Matéos, A.; Hovnanian, A.; Consigny, P.-H.; et al. Bacterial Pathogens Associated with Hidradenitis Suppurativa, France. Emerg. Infect. Dis. 2014, 20, 1990–1998. [Google Scholar] [CrossRef]
- Riverain-Gillet, É.; Guet-Revillet, H.; Jais, J.-P.; Ungeheuer, M.-N.; Duchatelet, S.; Delage, M.; Lam, T.; Hovnanian, A.; Nassif, A.; Join-Lambert, O. The Surface Microbiome of Clinically Unaffected Skinfolds in Hidradenitis Suppurativa: A Cross-Sectional Culture-Based and 16S rRNA Gene Amplicon Sequencing Study in 60 Patients. J. Investig. Dermatol. 2020, 140, 1847–1855.e6. [Google Scholar] [CrossRef]
- Ring, H.C.; Thorsen, J.; Saunte, D.M.; Lilje, B.; Bay, L.; Riis, P.T.; Larsen, N.; Andersen, L.O.; Nielsen, H.V.; Miller, I.M.; et al. The Follicular Skin Microbiome in Patients With Hidradenitis Suppurativa and Healthy Controls. JAMA Dermatol. 2017, 153, 897–905. [Google Scholar] [CrossRef]
- Ring, H.C.; Bay, L.; Kallenbach, K.; Miller, I.M.; Prens, E.; Saunte, D.M.; Bjarnsholt, T.; Jemec, G.B. Normal Skin Microbiota is Altered in Pre-clinical Hidradenitis Suppurativa. Acta Derm. Venereol. 2017, 97, 208–213. [Google Scholar] [CrossRef]
- Ring, H.; Sigsgaard, V.; Thorsen, J.; Fuursted, K.; Fabricius, S.; Saunte, D.; Jemec, G. The microbiome of tunnels in hidradenitis suppurativa patients. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 1775–1780. [Google Scholar] [CrossRef]
- Benzecry, V.; Grancini, A.; Guanziroli, E.; Nazzaro, G.; Barbareschi, M.; Marzano, A.V.; Muratori, S.; Veraldi, S. Hidradenitis suppurativa/acne inversa: A prospective bacteriological study and review of the literature. G. Ital. Di Dermatol. E Venereol. 2020, 155, 459–463. [Google Scholar] [CrossRef]
- Schneider, A.M.; Cook, L.C.; Zhan, X.; Banerjee, K.; Cong, Z.; Imamura-Kawasawa, Y.; Gettle, S.L.; Longenecker, A.L.; Kirby, J.S.; Nelson, A.M. Loss of Skin Microbial Diversity and Alteration of Bacterial Metabolic Function in Hidradenitis Suppurativa. J. Investig. Dermatol. 2020, 140, 716–720. [Google Scholar] [CrossRef]
- Jahns, A.C.; Killasli, H.; Nosek, D.; Lundskog, B.; Lenngren, A.; Muratova, Z.; Emtestam, L.; Alexeyev, O.A. Microbiology of hidradenitis suppurativa (acne inversa): A histological study of 27 patients. Apmis 2014, 122, 804–809. [Google Scholar] [CrossRef] [PubMed]
- Guet-Revillet, H.; Jais, J.-P.; Ungeheuer, M.-N.; Coignard-Biehler, H.; Duchatelet, S.; Delage, M.; Lam, T.; Hovnanian, A.; Lortholary, O.; Nassif, X.; et al. The Microbiological Landscape of Anaerobic Infections in Hidradenitis Suppurativa: A Prospective Metagenomic Study. Clin. Infect. Dis. 2017, 65, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Jamalpour, M.; Saki, N.; Nozari, F. Microbial profile and antibiotic susceptibility of bacteria isolated from patients with hidradenitis suppurativa. Iran J. Dermatol. 2019, 22, 25–29. [Google Scholar]
- Nikolakis, G.; Liakou, A.; Bonovas, S.; Seltmann, H.; Bonitsis, N.; Join-Lambert, O.; Wild, T.; Karagiannidis, I.; Zolke-Fischer, S.; Langner, K.; et al. Bacterial Colonization in Hidradenitis Suppurativa/Acne Inversa: A Cross-sectional Study of 50 Patients and Review of the Literature. Acta Derm. Venereol. 2017, 97, 493–498. [Google Scholar] [CrossRef]
- Thomas, C.; Rodby, K.A.; Thomas, J.; Shay, E.; Antony, A.K. Recalcitrant Hidradenitis Suppurativa: An Investigation of Demographics, Surgical Management, Bacterial Isolates, Pharmacologic Intervention, and Patient-reported Health Outcomes. Am. Surg. 2016, 82, 362–368. [Google Scholar] [CrossRef]
- Hessam, S.; Sand, M.; Georgas, D.; Anders, A.; Bechara, F.G. Microbial Profile and Antimicrobial Susceptibility of Bacteria Found in Inflammatory Hidradenitis Suppurativa Lesions. Ski. Pharmacol. Physiol. 2016, 29, 161–167. [Google Scholar] [CrossRef]
- Haskin, A.; Fischer, A.H.; Okoye, G.A. Prevalence of Firmicutes in Lesions of Hidradenitis Suppurativa in Obese Patients. JAMA Dermatol. 2016, 152, 1276–1278. [Google Scholar] [CrossRef]
- Bettoli, V.; Manfredini, M.; Massoli, L.; Carillo, C.; Barozzi, A.; Amendolagine, G.; Ruina, G.; Musmeci, D.; Libanore, M.; Curtolo, A.; et al. Rates of antibiotic resistance/sensitivity in bacterial cultures of hidradenitis suppurativa patients. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 930–936. [Google Scholar] [CrossRef]
- Matusiak, Ł.; Bieniek, A.; Szepietowski, J. Bacteriology of Hidradenitis Suppurativa—Which Antibiotics are the Treatment of Choice? Acta Derm. Venereol. 2014, 94, 699–702. [Google Scholar] [CrossRef]
- Sartorius, K.; Killasli, H.; Oprica, C.; Sullivan, A.; Lapins, J. Bacteriology of hidradenitis suppurativa exacerbations and deep tissue cultures obtained during carbon dioxide laser treatment. Br. J. Dermatol. 2012, 166, 879–883. [Google Scholar] [CrossRef]
- Lapins, J.; Jarstrand, C.; Emtestam, L. Coagulase-negative staphylococci are the most common bacteria found in cultures from the deep portions of hidradenitis suppurativa lesions, as obtained by carbon dioxide laser surgery. Br. J. Dermatol. 1999, 140, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Brook, I.; Frazier, E.H. Aerobic and anaerobic microbiology of axillary hidradenitis suppurativa. J. Med. Microbiol. 1999, 48, 103–105. [Google Scholar] [CrossRef] [PubMed]
- Jemec, G.; Faber, M.; Gutschik, E.; Wendelboe, P. The Bacteriology of Hidradenitis suppurativa. Dermatology 1996, 193, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Kam, S.; Collard, M.; Lam, J.; Alani, R.M. Gut Microbiome Perturbations in Patients with Hidradenitis Suppurativa: A Case Series. J. Investig. Dermatol. 2021, 141, 225–228.e2. [Google Scholar] [CrossRef]
- Amon, P.; Sanderson, I. What is the microbiome? Arch. Dis. Child. Educ. Pract. Ed. 2017, 102, 257–260. [Google Scholar] [CrossRef]
- Gallo, R.L. Human Skin Is the Largest Epithelial Surface for Interaction with Microbes. J. Investig. Dermatol. 2017, 137, 1213–1214. [Google Scholar] [CrossRef]
- Dréno, B.; Araviiskaia, E.; Berardesca, E.; Gontijo, G.; Sanchez Viera, M.; Xiang, L.F.; Martin, R.; Bieber, T. Microbiome in healthy skin, update for dermatologists. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 2038–2047. [Google Scholar] [CrossRef]
- Metchnikoff, E. The Prolongation of Life: Optimistic Studies; Mitchell, P., Ed.; GP Putnam’s Sons: NewYork, NY, USA, 1910; p. 96. [Google Scholar]
- O’Neill, C.A.; Monteleone, G.; McLaughlin, J.T.; Paus, R. The gut-skin axis in health and disease: A paradigm with therapeutic implications. Bioessays 2016, 38, 1167–1176. [Google Scholar] [CrossRef]
- Saarialho-Kere, U. The gut-skin axis. J. Pediatr. Gastroenterol. Nutr. 2004, 39 (Suppl. 3), S734–S735. [Google Scholar] [CrossRef]
- Belkaid, Y.; Tamoutounour, S. The influence of skin microorganisms on cutaneous immunity. Nat. Rev. Immunol. 2016, 16, 353–366. [Google Scholar] [CrossRef]
- Barker, N. Adult intestinal stem cells: Critical drivers of epithelial homeostasis and regeneration. Nat. Rev. Mol. Cell Biol. 2014, 15, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Gee, J.; Wortley, G.; Johnson, I.; Price, K.; Rutten, A.; Houben, G.; Penninks, A. Effects of saponins and glycoalkaloids on the permeability and viability of mammalian intestinal cells and on the integrity of tissue preparations in vitro. Toxicol. Vitr. 1996, 10, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Marchesi, J.R.; Ravel, J. The vocabulary of microbiome research: A proposal. Microbiome 2015, 3, 31. [Google Scholar] [CrossRef] [PubMed]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Fungal Barcoding Consortium; Fungal Barcoding Consortium Author List; Bolchacova, E.; et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef]
- Baldrian, P.; López-Mondéjar, R. Microbial genomics, transcriptomics and proteomics: New discoveries in decomposition research using complementary methods. Appl. Microbiol. Biotechnol. 2014, 98, 1531–1537. [Google Scholar] [CrossRef]
- Gevers, D.; Knight, R.; Petrosino, J.F.; Huang, K.; McGuire, A.L.; Birren, B.W.; Nelson, K.E.; White, O.; Methé, B.A.; Huttenhower, C. The Human Microbiome Project: A Community Resource for the Healthy Human Microbiome. PLoS Biol. 2012, 10, e1001377. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I. The Human Microbiome Project. Nature 2007, 449, 804–810. [Google Scholar] [CrossRef]
- Savin, Z.; Kivity, S.; Yonath, H.; Yehuda, S. Smoking and the intestinal microbiome. Arch. Microbiol. 2018, 200, 677–684. [Google Scholar] [CrossRef]
- Naik, H.B.; Piguet, V. Standardizing Hidradenitis Suppurativa Skin Microbiome Research: The Methods Matter. J. Investig. Dermatol. 2020, 140, 1688–1690. [Google Scholar] [CrossRef]
- Bervoets, L.; Van Hoorenbeeck, K.; Kortleven, I.; Van Noten, C.; Hens, N.; Vael, C.; Goossens, H.; Desager, K.N.; Vankerckhoven, V. Differences in gut microbiota composition between obese and lean children: A cross-sectional study. Gut Pathog. 2013, 5, 10. [Google Scholar] [CrossRef]
- Der Sarkissian, S.; Hessam, S.; Kirby, J.S.; Lowes, M.A.; Mintoff, D.; Naik, H.B.; Ring, H.C.; Chandran, N.S.; Frew, J.W. Identification of Biomarkers and Critical Evaluation of Biomarker Validation in Hidradenitis Suppurativa: A Systematic Review. JAMA Dermatol. 2022, 158, 300–313. [Google Scholar] [CrossRef]
- Ma, B.; Forney, L.J.; Ravel, J. Vaginal Microbiome: Rethinking Health and Diseases. Annu. Rev. Microbiol. 2012, 66, 371–389. [Google Scholar] [CrossRef] [PubMed]
- Jo, J.-H.; Kennedy, E.A.; Kong, H.H. Research Techniques Made Simple: Bacterial 16S Ribosomal RNA Gene Sequencing in Cutaneous Research. J. Investig. Dermatol. 2016, 136, e23–e27. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.H.; Andersson, B.; Clavel, T.; Common, J.E.; Jackson, S.A.; Olson, N.D.; Segre, J.A.; Traidl-Hoffmann, C. Performing Skin Microbiome Research: A Method to the Madness. J. Investig. Dermatol. 2017, 137, 561–568. [Google Scholar] [CrossRef]
- Ring, H.; Bay, L.; Nilsson, M.; Kallenbach, K.; Miller, I.; Saunte, D.; Bjarnsholt, T.; Tolker-Nielsen, T.; Jemec, G. Bacterial biofilm in chronic lesions of hidradenitis suppurativa. Br. J. Dermatol. 2016, 176, 993–1000. [Google Scholar] [CrossRef] [PubMed]
Study ID | # of Patients | # of Healthy Controls | Sample Type | 16S Region | α–Diversity | β–Diversity | Major Findings | NOS |
---|---|---|---|---|---|---|---|---|
Lam 2021 [11] | 7 | 6 | swabs | V3–V4 | no significant differences | no significant differences | Mesorhizobium ↑ in lesional skin | 4 |
Schneider 2020 [22] | 11 | 10 | swabs/cyanoacrylate glue | V3–V4 | no significant differences | significant loss in HS patients; impact of smoking and alcohol use | loss of heterogeneity between body sites and skin niches in HS patients; Cutibacterium ↓; Peptoniphilus, Porphyromonas, Agrobacterium, Pseudomonas, and Arcanobacterium ↑; functional differences between microbiota of HS and normal skin; metabolic pathways are influenced by different genera in normal and HS skin | 8 |
Guet-Revillet 2017 [24] | 65 | ND | swabs/biopsy/needle aspiration | V1–V2 | ND | ND | anaerobes in lesional skin ↑; Prevotella and Porphyromonas ↑; Fusobacterium and Parvimonas—correlation with HS severity | 5 |
McCarthy 2022 [12] | 59 | 20 | swabs | ND | reduction in HS cohort (only nasal swabs reached statistically significant decrease) | significant separation in beta-diversity with respect to axilla, groin, and nasal microbiota datasets | Finegoldia magna ↑ (groin and axilla) in HS | 9 |
Naik 2020 [14] | 12 | 5 | swabs | V1–V3 | significant ↑ in the inguinal creases of HS (affected and unaffected skin) | ND | Cutibacterium spp. ↓ in HS (affected and unaffected); Gram negative Porphyromonadeacea, Prevotellaceae, Fusobacteria phylum + positive anaerobes (Clostridales) ↑ in HS (affected and unaffected skin) | 6 |
Ring 2017 [18] | 30 | 24 | biopsy (HS: lesional and non-lesional skin) | V3–V4 + V3–V4 of the 18SrDNA | no significant difference; increased Shannon diversity index was found in non-lesional HS skin compared to lesional and healthy skin | no significant difference | Corynebacterium and Porphyromonas and Peptoniphilus—HS skin; Acinetobacter + Morxella ↑ in non-lesional HS; Porphyromonas and Peptoniphilus spp. at the genus level sig ↑ in lesional skin; Cutibacterium spp. ↑ in healthy controls; P. acnes and Corynebacterium striatum ↑ in the healthy control group | 7 |
Guet-Revillet H 2014 [16] | 6 | ND | transcutaneous/swabs | ND | ND | ND | Staphylococcus ↑ within the Hurley stage 1 abscess; Prevotellam Porphyromonas, Anaerococcus and Mobiluncus spp. ↑ in chronic suppurating lesions | 3 |
Riverain-Gillet 2020 [17] | 60 | 17 | swabs | ND | no significant difference | significantly higher in HS samples | Prevotella, Actinomyces, Campylobacter ureolyticus and Mobilinucus ↑ staphylococci ↓ in HS samples; two clusters: Cluster A—enriched in anaerobes (Prevotella, Porphyromonas, Dialister and Peptoniphilus asaccharolyticus), Cluster B—aerobic) associated with Staphylococcus and Micrococcus | 7 |
Study ID | # of Patients | # of Healthy Controls | Sample Type | Culture Methods | α–Diversity | β–Diversity | Major Findings | NOS |
---|---|---|---|---|---|---|---|---|
Jamalpour 2019 [25] | 26 | ND | swabs | standard culture-based methods | ND | ND | Staphylococcus aureus, Diphtheroid, and Escherichia coli—most common | 2 |
Nikolakis 2017 [26] | 50 | ND | swabs | 5% sheep blood agar—aerobic bacteria/Schaedler agar + 5% sheep blood—anaerobic bacteria | ND | ND | S. aureus, S. epidermidis, E. faecalis, E. coli, P.bivia, and P. disiens—most common; Higher Hurley stages correlated with more polymicrobial flora | 3 |
Thomas 2016 [27] | 76 | ND | swabs | standard culture-based methods | ND | ND | Corynebacterium Species, Staphylococcus epidermidis and Staphylococcus aureus—most common | 2 |
Hessam 2016 [28] | 113 | ND | deep swabs | standard culture-based methods | ND | ND | coagulase-negative staphylococci and Staphylococcus aureus, Proteus mirabilis and Escherichia coli—most common; low resistance rate for cotrimoxazole | 3 |
Haskin 2016 [29] | 189 | ND | purulent drainage swab | NC | ND | ND | Firmicutes ↑—among obese HS patients vs. nonobese | 2 |
Matusiak 2014 [31] | 69 | ND | swabs | standard culture-based methods | ND | ND | S. epidermidis, Proteus mirabilis, S. aureus, Enterococcus faecalis—most common; carbapanems, penicillins with β-lactamase inhibitors and fluoroquinolones—highest effectiveness | 3 |
Sartorius 2012 [32] | 10 | ND | swabs (superficial and deep)/skin biopsy | standard culture-based methods | ND | ND | Staphylococcus aureus not found in any lesions; coagulase-negative Staphylococci, Corynebacterium spp.—most common | 2 |
Lapins 1999 [33] | 25 | ND | swabs (superficial, middle and deep)/skin biopsy | standard culture-based methods | ND | ND | Staphylococcus aureus, coagulase-negative staphylococci, Peptostreptococcus spp., Cutibacterium acnes, S. aureus—most common | 3 |
Brook 1999 [34] | 17 | ND | swabs | standard culture-based methods | ND | ND | S. aureus, Streptococcus pyogenes, Pseudomonas Aeruginosa, Peptostreptococcus spp., Prevotella spp., micro-aerophilic streptococci, Fusubacteriurn spp., Bacteroides spp.—most common | 2 |
Jemec 1996 [35] | 41 | ND | pus aspiration | standard culture-based methods | ND | ND | S. aureus, S. milleri, S. epidermidis, S. hominis, Corynebacterium spp., Acinetobacter spp., Lactobacillus spp.—most common | 3 |
Katoulis 2015 [15] | 22 | ND | direct percutaneous needle aspiration of abscess | sheep blood (5%), chocolate and MacConkey agar plates were incubated under anaerobic conditions. | ND | ND | 7 were culture negative and 15 culture positive; 16 isolates obtained (14 aerobic, 2 anaerobic); P. mirabilis, Staphylococcus haemolyticus and Staphylococcus lugdunensis—predominant aerobic species; Dermacoccus nishinomiyaensis and Cutibacterium granulosum—isolated anaerobic bacteria | 3 |
Guet-Revillet H 2014 [16] | 82 | ND | transcutaneous; swabs | anaerobic bacteria growth—homogenization of the biopsy samples using a sterile porcelain mortar in 0.5 mL of Schaedler broth, purulent drainage and swab specimens discharged in 0.5 mL of Schaedler broth, Uriselect4 agar plate, a colistin-nalidixic acid (CNA) blood agar plate, and a Columbia blood agar plate. | ND | ND | 106 out of 126 lesional samples positive; two microbiological profiles detected: Profile A—Staphylococcus lugdunensis as a unique or predominant isolate, Profile B—a mixed anaerobic flora of strict anaerobes and/or anaerobic actinomycetes and/or streptococci of the milleri group | 3 |
Riverain-Gillet 2020 [17] | 60 | 17 | ND | NC | ND | ND | S. epidermidis, Staphylococcis hominis, Cutibacterium avidum and Cutibacterinum acnes ↑ in the skinfolds of HS subject; mean abundance of anaerobes ↑ in Hs skinfolds | 7 |
Benzecry 2018 [21] | 46 | ND | swabs | chocolate agar, Columbia agar with 5% sheep blood, Mannitol salt agar, MacConkey agar, Schaedler CNA agar with 5% sheep blood, Schaedler neomycin—vancomycin with 5% sheep blood agar, Columbia CNA agar with 5% sheep blood. | ND | ND | 31 cultures (52%) positive; total of 15 bacterial species isolated: nine aerobes and six anaerobes; Enterobacteriaceae the most frequent isolates (#11 = 35%), followed by Streptococcus spp. (#8 = 26%), Corynebacterium spp. (#7 = 23%) and Staphylococcus spp. (#6 = 19%). | 3 |
Study ID | # of Patients | # of Healthy Controls | Sample Type | Method | α–Diversity | β–Diversity | Major Findings | NOS |
---|---|---|---|---|---|---|---|---|
Ring 2017 [19] | 24 | 24 | punch biopsy (clinically unaffected HS skin) | PNA-FISH and CLSM examinations | ND | ND | absence of bacterial aggregates at the stratum corneum and in hair follicle—preclinical HS skin; 12% of HS samples categorized as positive; morphologically significant presence of bacterial aggregates in 92% of the healthy controls | 7 |
Study ID | # of Patients | # of Healthy Controls | Sample Type | α–Diversity | β–Diversity | Major Findings | NOS |
---|---|---|---|---|---|---|---|
Jahns AC 2014 [23] | 37 | ND | tissue samples | ND | ND | histology: 17 patients (63%) positive for bacterial colonization; DAPI labeled coccoids seen in 71% of the positive patients in the form of biofilms and microcolonies; P. acnes as biofilms in hair follicles of two patients; Staphylococcus aureus and coagulase-negative staphylococci not detected in any sample | 2 |
Study ID | # of Patients | # of Healthy Controls | Sample Type | 16S Region | α–Diversity | β–Diversity | Major Findings | NOS |
---|---|---|---|---|---|---|---|---|
Lam 2021 [11] | 17 | 20 | stool | V3–V4 | no significant differences | no significant differences | Robinsoniella peoriensis in HS patients; Sellimonas ↑; Christensenellaceae ↓ | 4 |
S. Kam 2020 [36] | 3 | 3 | fecal samples from the central portion of the specimen | ND | no significant differences (measured with operational taxonomic unit (OUT)); significant difference: greater in the control group (measured with Shannon index) | no significant differences (measured with weighted UniFrac distance matrices) | HS patients: Firmicutes ↓ Bilophila + Holdemania ↑ Lachnobacterium + Veillonella ↓ | 8 |
Eppinga H 2016 [13] | HS only = 17 concomitant HS and IBD = 17 | 33 | 20 mg of feces | ND | no significant difference | NC | F. prausnitzii ↓ patients with IBD + HS; no significant difference between the abundance of E. coli and HS cohorts and healthy controls | 8 |
McCarthy 2022 [12] | 59 | 30 | fecal | ND | significantly ↓ in HS | less clustering within the HS samples | Ruminococcus callidus + Eubacterium rectale ↑ in HS; the greatest amplicon sequence variants (ASVs) assigned to the taxa Streptococcus spp. and Ruminococcus gnavus | 9 |
Ring 2019 [20] | 32 | ND | skin covering tunnels | V3–V4 + V3–V4 18S rDNA | ND | ND | Porphyromonas spp. and Prevotella spp. ↑ gelatinous material in the HS tracts; Corynebacterium, Staphylococcus, and Peptoniphilus ↑ | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lelonek, E.; Bouazzi, D.; Jemec, G.B.E.; Szepietowski, J.C. Skin and Gut Microbiome in Hidradenitis Suppurativa: A Systematic Review. Biomedicines 2023, 11, 2277. https://doi.org/10.3390/biomedicines11082277
Lelonek E, Bouazzi D, Jemec GBE, Szepietowski JC. Skin and Gut Microbiome in Hidradenitis Suppurativa: A Systematic Review. Biomedicines. 2023; 11(8):2277. https://doi.org/10.3390/biomedicines11082277
Chicago/Turabian StyleLelonek, Edyta, Dorra Bouazzi, Gregor B. E. Jemec, and Jacek C. Szepietowski. 2023. "Skin and Gut Microbiome in Hidradenitis Suppurativa: A Systematic Review" Biomedicines 11, no. 8: 2277. https://doi.org/10.3390/biomedicines11082277
APA StyleLelonek, E., Bouazzi, D., Jemec, G. B. E., & Szepietowski, J. C. (2023). Skin and Gut Microbiome in Hidradenitis Suppurativa: A Systematic Review. Biomedicines, 11(8), 2277. https://doi.org/10.3390/biomedicines11082277