Vitamin D Levels in COVID-19 and NonCOVID-19 Pediatric Patients and Its Relationship with Clinical and Laboratory Characteristics
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sotodeh-Asl, N.; Tamadon, M.R.; Malek, F.; Zahmatkesh, M. Vitamin D deficiency and psychological disorders. J. Parathyr. Dis. 2014, 2, 21–25. [Google Scholar]
- Judd, S.E.; Tangpricha, V. Vitamin D deficiency and risk for cardiovascular disease. Am. J. Med. Sci. 2009, 338, 40–44. [Google Scholar] [CrossRef]
- Abdelrazic, M.I.; Rateeb, A.M.; Eid, W.A.; Abdelrazik, E.F.; Abuelela, I.S. Impact of vitamin D deficiency on the severity of COVID 19 infection in pediatrics: A cross-sectional study. Egypt. Pediatr. Assoc. Gaz. 2023, 71, 37. [Google Scholar] [CrossRef]
- Martens, P.J.; Gysemans, C.; Verstuyf, A.; Mathieu, C. Vitamin D’s effect on immune function. Nutrients 2020, 12, 1248. [Google Scholar] [CrossRef]
- Jolliffe, D.A.; Camargo, C.A.; Sluyter, J.D.; Aglipay, M.; Aloia, J.F.; Ganmaa, D.; Bergman, P.; Bischoff-Ferrari, H.A.; Borzutzky, A.; Damsgaard, C.T.; et al. Vitamin D supplementation to prevent acute respiratory infections: A systematic review and meta-analysis of aggregate data from randomised controlled trials. Lancet Diabetes Endocrinol. 2021, 9, 276–292. [Google Scholar]
- Charan, J.; Goyal, J.P.; Saxena, D.; Yadav, P. Vitamin D for prevention of respiratory tract infections: A systematic review and meta-analysis. J. Pharmacol. Pharmacother. 2012, 3, 300. [Google Scholar] [CrossRef]
- Yılmaz, K.; Şen, V. Is vitamin D deficiency a risk factor for COVID-19 in children? Pediatr. Pulmonol. 2020, 55, 3595–3601. [Google Scholar] [CrossRef]
- Kazemi, A.; Mohammadi, V.; Aghababaee, S.K.; Golzarand, M.; Clark, C.C.; Babajafari, S. Association of vitamin D status with SARS-CoV-2 infection or COVID-19 severity: A systematic review and meta-analysis. Adv. Nutr. 2021, 12, 1636–1658. [Google Scholar] [CrossRef]
- Bucurica, S.; Prodan, I.; Pavalean, M.; Taubner, C.; Bucurica, A.; Socol, C.; Calin, R.; Ionita-Radu, F.; Jinga, M. Association of Vitamin D Deficiency and Insufficiency with Pathology in Hospitalized Patients. Diagnostics 2023, 13, 998. [Google Scholar] [CrossRef]
- Jonatan, A.; Setyoningrum, R.A. Serum Vitamin D levels in pediatric patients and its association with COVID-19 clinical manifestation: A meta-analysis and systematic review. GSC Biol. Pharm. Sci. 2021, 17, 76–85. [Google Scholar] [CrossRef]
- Tomaszewska, A.; Rustecka, A.; Lipińska-Opałka, A.; Piprek, R.P.; Kloc, M.; Kalicki, B.; Kubiak, J.Z. The role of vitamin D in COVID-19 and the impact of pandemic restrictions on vitamin D blood content. Front. Pharmacol. 2022, 13, 836738. [Google Scholar]
- Shahin, W.; Rabie, W.; Alyossof, O.; Alasiri, M.; Alfaki, M.; Mahmoud, E.; Alahmari, H. COVID-19 in children ranging from asymptomatic to a multi-system inflammatory disease: A single-center study. Saudi Med. J. 2021, 42, 299. [Google Scholar] [CrossRef]
- Khojah, H.M.; Ahmed, S.A.; Al-Thagfan, S.S.; Alahmadi, Y.M.; Abdou, Y.A. The impact of serum levels of vitamin D3 and its metabolites on the prognosis and disease severity of COVID-19. Nutrients 2022, 14, 5329. [Google Scholar] [CrossRef]
- Alpcan, A.; Tursun, S.; Kandur, Y. Vitamin D levels in children with COVID-19: A report from Turkey. Epidemiol. Infect. 2021, 149, e180. [Google Scholar] [CrossRef]
- Renieris, G.; Foutadakis, S.; Andriopoulou, T.; Spanou, V.M.; Droggiti, D.E.; Kafousopoulos, D.; Giamarellos-Bourboulis, E.J. Association of Vitamin D with severity and outcome of COVID-19: Clinical and Experimental Evidence. J. Innate Immun. 2023, 16, 1–11. [Google Scholar] [CrossRef]
- Bagiu, I.C.; Scurtu, I.L.; Horhat, D.I.; Mot, I.C.; Horhat, R.M.; Bagiu, R.V.; Horhat, F.G. COVID-19 Inflammatory Markers and Vitamin D Relationship in Pediatric Patients. Life 2022, 13, 91. [Google Scholar] [CrossRef]
- Szeto, B.; Zucker, J.E.; LaSota, E.D.; Rubin, M.R.; Walker, M.D.; Yin, M.T.; Cohen, A. Vitamin D status and COVID-19 clinical outcomes in hospitalized patients. Endocr. Res. 2021, 46, 66–73. [Google Scholar] [CrossRef]
- Yarali, N.; Akcabelen, Y.M.; Unal, Y.; Parlakay, A.N. Hematological parameters and peripheral blood morphologic abnormalities in children with COVID-19. Pediatr. Blood Cancer 2021, 68, e28596. [Google Scholar] [CrossRef]
- Yamada, T.; Wakabayashi, M.; Yamaji, T.; Chopra, N.; Mikami, T.; Miyashita, H.; Miyashita, S. Value of leukocytosis and elevated C-reactive protein in predicting severe coronavirus 2019 (COVID-19): A systematic review and meta-analysis. Clin. Chim. Acta 2020, 509, 235–243. [Google Scholar] [CrossRef]
- Zhu, L.; Bao, X.; Bi, J.; Lin, Y.; Shan, C.; Fan, X.; Wang, X. Serum magnesium in patients with severe acute respiratory syndrome coronavirus 2 from Wuhan, China. Magnes. Res. 2021, 34, 103. [Google Scholar]
- Eskander, M.; Razzaque, M.S. Can maintaining optimal magnesium balance reduce the disease severity of COVID-19 patients? Front. Endocrinol. 2022, 13, 843152. [Google Scholar] [CrossRef]
- Quilliot, D.; Bonsack, O.; Jaussaud, R.; Mazur, A. Dysmagnesemia in COVID-19 cohort patients: Prevalence and associated factors. Magnes. Res. 2020, 33, 114. [Google Scholar] [CrossRef]
- Heil, W.; Erhardt, V. Reference Ranges for Adults and Children-Pre-Analytical Considerations; Roche Diagnostics GmbH: Mannheim, Germany, 2008; pp. 129–137. [Google Scholar]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef]
- Carpagnano, G.E.; Di Lecce, V.; Quaranta, V.N.; Zito, A.; Buonamico, E.; Capozza, E.; Resta, O. Vitamin D deficiency as a predictor of poor prognosis in patients with acute respiratory failure due to COVID-19. J. Endocrinol. Investig. 2021, 44, 765–771. [Google Scholar] [CrossRef]
- Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020, 12, 988. [Google Scholar] [CrossRef]
- Panfili, F.M.; Roversi, M.; D’argenio, P.; Rossi, P.; Cappa, M.; Fintini, D. Possible role of vitamin D in Covid-19 infection in pediatric population. J. Endocrinol. Investig. 2021, 44, 27–35. [Google Scholar] [CrossRef]
- Yasuhara, J.; Kuno, T.; Takagi, H.; Sumitomo, N. Clinical characteristics of COVID-19 in children: A systematic review. Pediatr. Pulmonol. 2020, 55, 2565–2575. [Google Scholar] [CrossRef]
- Ekpenyong, E.E.; Akpan, U.O.M.; Oloyede, I.P.; Ekanem, A.M.; Umoette, N.; Peters, E. Spectrum of COVID-19 infection in children in Southern Nigeria. Niger. J. Paediatr. 2022, 49, 17–21. [Google Scholar] [CrossRef]
- Kainth, M.K.; Goenka, P.K.; Williamson, K.A.; Fishbein, J.S.; Subramony, A.; Barone, S.; Rubin, L.G. Early experience of COVID-19 in a US children’s hospital. Pediatrics 2020, 146, e2020003186. [Google Scholar] [CrossRef]
- De Souza, T.H.; Nadal, J.A.; Nogueira, R.J.; Pereira, R.M.; Brandão, M.B. Clinical manifestations of children with COVID-19: A systematic review. Pediatr. Pulmonol. 2020, 55, 1892–1899. [Google Scholar] [CrossRef]
- Viner, R.M.; Ward, J.L.; Hudson, L.D.; Ashe, M.; Patel, S.V.; Hargreaves, D.; Whittaker, E. Systematic review of reviews of symptoms and signs of COVID-19 in children and adolescents. Arch. Dis. Child. 2021, 106, 802–807. [Google Scholar] [CrossRef]
- Totan, M.; Gligor, F.G.; Duică, L.; Grigore, N.; Silișteanu, S.; Maniu, I.; Antonescu, E. A Single-Center (Sibiu, Romania), Retrospective Study (March–November 2020) of COVID-19 Clinical and Epidemiological Features in Children. J. Clin. Med. 2021, 10, 3517. [Google Scholar] [CrossRef]
- Maniu, I.; Maniu, G.; Totan, M. Clinical and Laboratory Characteristics of Pediatric COVID-19 Population—A Bibliometric Analysis. J. Clin. Med. 2022, 11, 5987. [Google Scholar] [CrossRef]
- Heidari, S.; Mohammadi, S.; Fathi, M.; Cigary, S.; Alisamir, M.; Mirkarimi, M.; Aminzadeh, M. Association of vitamin D status with COVID-19 disease severity in pediatric patients: A retrospective observational study. Health Sci. Rep. 2022, 5, e569. [Google Scholar] [CrossRef]
- Shah, K.; Varna, V.P.; Pandya, A.; Saxena, D. Low vitamin D levels and prognosis in a COVID-19 pediatric population: A systematic review. QJM Int. J. Med. 2021, 114, 447–453. [Google Scholar]
- Liu, L.; She, J.; Bai, Y.; Liu, W. SARS-CoV-2 infection: Differences in hematological parameters between adults and children. Int. J. Gen. Med. 2021, 14, 3035–3047. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, L.; Du, H.; Zhang, J.; Li, Y.Y.; Qu, J.; Wong, G.W. SARS-CoV-2 infection in children. N. Engl. J. Med. 2020, 382, 1663–1665. [Google Scholar] [CrossRef]
- Parri, N.; Lenge, M.; Buonsenso, D. Coronavirus infection in pediatric emergency departments (CONFIDENCE) research group. Children with Covid-19 in pediatric emergency departments in Italy. N. Engl. J. Med. 2020, 383, 187–190. [Google Scholar] [CrossRef]
- Chao, J.Y.; Derespina, K.R.; Herold, B.C.; Goldman, D.L.; Aldrich, M.; Weingarten, J.; Medar, S.S. Clinical characteristics and outcomes of hospitalized and critically ill children and adolescents with coronavirus disease 2019 at a tertiary care medical center in New York City. J. Pediatr. 2020, 223, 14–19. [Google Scholar] [CrossRef]
- Kosmeri, C.; Koumpis, E.; Tsabouri, S.; Siomou, E.; Makis, A. Hematological manifestations of SARS-CoV-2 in children. Pediatr. Blood Cancer 2020, 67, e28745. [Google Scholar] [CrossRef]
- Ozden, A.; Doneray, H.; Erdeniz, E.H.; Altinkaynak, K.; Igan, H. Clinical and laboratory findings by serum vitamin D levels in children with COVID-19. Eurasian J. Med. 2022, 54, 285. [Google Scholar] [CrossRef] [PubMed]
- Bayramoğlu, E.; Akkoç, G.; Ağbaş, A.; Akgün, Ö.; Yurdakul, K.; Selçuk Duru, H.N.; Elevli, M. The association between vitamin D levels and the clinical severity and inflammation markers in pediatric COVID-19 patients: Single-center experience from a pandemic hospital. Eur. J. Pediatr. 2021, 180, 2699–2705. [Google Scholar] [CrossRef] [PubMed]
- Alkan, G.; Sert, A.; Emiroglu, M.; Tuter Oz, S.K.; Vatansev, H. Evaluation of hematological parameters and inflammatory markers in children with COVID-19. Ir. J. Med. Sci. 2021, 191, 1725–1733. [Google Scholar] [CrossRef]
- Argun, M.; İnan, D.B.; Öz, H.T.H.; Duyar, M.O.; Başargan, G.; Elmalı, F.; Çelik, İ. Lymphocyte subsets in mild COVID-19 pediatric patients. Turk. Arch. Pediatr. 2022, 57, 210. [Google Scholar] [CrossRef] [PubMed]
- Henry, B.M.; Lippi, G.; Plebani, M. Laboratory abnormalities in children with novel coronavirus disease 2019. Clin. Chem. Lab. Med. 2022, 58, 1135–1138. [Google Scholar] [CrossRef] [PubMed]
- Bucurica, S.; Ionita, R.F.; Bucurica, A.; Socol, C.; Prodan, I.; Tudor, I.; Sirbu, C.A.; Plesa, F.C.; Jinga, M. Risk of New-Onset Liver Injuries Due to COVID-19 in Preexisting Hepatic Conditions—Review of the Literature. Medicina 2023, 59, 62. [Google Scholar] [CrossRef]
- Lee, P.I.; Hu, Y.L.; Chen, P.Y.; Huang, Y.C.; Hsueh, P.R. Are children less susceptible to COVID-19? J. Microbiol. Immunol. Infect. 2020, 53, 371. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Yuan, J.; Liu, Y.; Fu, T.; Yu, X.; Zhang, Z.J. Novel coronavirus infection in hospitalized infants under 1 year of age in China. JAMA 2020, 323, 1313–1314. [Google Scholar]
- Guner Ozenen, G.; Sahbudak Bal, Z.; Umit, Z.; Bilen, N.M.; Yildirim Arslan, S.; Yurtseven, A.; Saz, E.U.; Burcu, B.; Sertoz, R.; Kurugol, Z.; et al. Demographic, clinical, and laboratory features of COVID-19 in children: The role of mean platelet volume in predicting hospitalization and severity. J. Med. Virol. 2021, 93, 3227–3237. [Google Scholar] [CrossRef]
- Pimentel, G.D.; Vega, M.C.D.; Pichard, C. Low vitamin D levels and increased neutrophil in patients admitted at ICU with COVID-19. Clin. Nutr. ESPEN 2021, 44, 466–468. [Google Scholar] [CrossRef]
- Lagunas-Rangel, F.A. Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. J. Med. Virol. 2020, 92, 1733. [Google Scholar] [CrossRef]
- Ciccullo, A.; Borghetti, A.; Dal Verme, L.Z.; Tosoni, A.; Lombardi, F.; Garcovich, M.; Group, G.A.C. Neutrophil-to-lymphocyte ratio and clinical outcome in COVID-19: A report from the Italian front line. Int. J. Antimicrob. Agents 2020, 56, 106017. [Google Scholar] [CrossRef] [PubMed]
- Asghar, M.S.; Kazmi, S.J.H.; Khan, N.A.; Akram, M.; Khan, S.A.; Rasheed, U.; Memon, G.M. Correction: Clinical profiles, characteristics, and outcomes of the first 100 admitted COVID-19 patients in Pakistan: A single-center retrospective study in a tertiary care hospital of Karachi. Cureus 2020, 12, c34. [Google Scholar]
- Bari, A.; Ch, A.; Bano, I.; Saqlain, N. Is leukopenia and lymphopenia a characteristic feature of COVID-19 in children? Pak. J. Med. Sci. 2021, 37, 869. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, E.; Cigri, E.; Dincer, Z.; Narsat, M.A.; Calisir, B. High neutrophil/lymphocyte ratios in symptomatic pediatric COVID-19 patients. Cough 2021, 27, 34–42. [Google Scholar]
- Mardani, R.; Alamdary, A.; Nasab, S.M.; Gholami, R.; Ahmadi, N.; Gholami, A. Association of vitamin D with the modulation of the disease severity in COVID-19. Virus Res. 2020, 289, 198148. [Google Scholar]
- Gulcan, O.; Berrin Zinnet, E.; Pinar, A.; Duygu, K.S.; Feyza, O.U.; Ilknur, A. Is there a relationship between vitamin D levels, inflammatory parameters, and clinical severity of COVID-19 infection? Bratisl. Med. J./Bratisl. Lek. Listy 2022, 123, 421. [Google Scholar]
- Salamanna, F.; Maglio, M.; Sartori, M.; Landini, M.P.; Fini, M. Vitamin D and platelets: A menacing duo in COVID-19 and potential relation to bone remodeling. Int. J. Mol. Sci. 2021, 22, 10010. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.S.; Chin, B.S.; Kang, C.K.; Kim, N.J.; Kang, Y.M.; Choi, J.P.; Oh, M.D. Clinical course and outcomes of patients with severe acute respiratory syndrome coronavirus 2 infection: A preliminary report of the first 28 patients from the Korean cohort study on COVID-19. J. Korean Med. Sci. 2020, 35, e142. [Google Scholar] [CrossRef]
- Cheung, C.K.M.; Law, M.F.; Lui, G.C.Y.; Wong, S.H.; Wong, R.S.M. Coronavirus disease 2019 (COVID-19): A haematologist’s perspective. Acta Haematol. 2021, 144, 10–23. [Google Scholar] [CrossRef]
- Xu, X.W.; Wu, X.X.; Jiang, X.G.; Xu, K.J.; Ying, L.J.; Ma, C.L.; Li, L.J. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: Retrospective case series. BMJ 2020, 368, m606. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Li, Z.; Yang, B.; Wang, P.; Zhou, Q.; Zhang, Z.; Zhou, H. Delayed-phase thrombocytopenia in patients with coronavirus disease 2019 (COVID-19). Br. J. Haematol. 2020, 190, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Plebani, M.; Henry, B.M. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clin. Chim. Acta 2020, 506, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Gebrecherkos, T.; Challa, F.; Tasew, G.; Gessesse, Z.; Kiros, Y.; Gebreegziabxier, A.; Wolday, D. Prognostic value of C-reactive protein in SARS-CoV-2 infection: A simplified biomarker of COVID-19 severity in Northern Ethiopia. Infect. Drug Resist. 2023, 16, 3019–3028. [Google Scholar] [CrossRef] [PubMed]
- Mohammedsaeed, W.; Alsehli, F.; Alfarsi, L.; Bakhsh, A.; Alzahrani, M.; Almarwani, M.; Dossary, F. COVID-19 in Pediatric Patients: A Study Based on Biomarker Levels. Cureus 2023, 15, e39408. [Google Scholar] [CrossRef] [PubMed]
- Bhumbra, S.; Malin, S.; Kirkpatrick, L.; Khaitan, A.; John, C.C.; Rowan, C.M.; Enane, L.A. Clinical features of critical coronavirus disease 2019 in children. Pediatr. Crit. Care Med. 2020, 21, e948–e953. [Google Scholar] [CrossRef] [PubMed]
- Luan, Y.Y.; Yin, C.H.; Yao, Y.M. Update advances on C-reactive protein in COVID-19 and other viral infections. Front. Immunol. 2021, 12, 720363. [Google Scholar] [CrossRef] [PubMed]
- Yitbarek, G.Y.; Walle Ayehu, G.; Asnakew, S.; Ayele, F.Y.; Bariso Gare, M.; Mulu, A.T.; Melesie, B.D. The role of C-reactive protein in predicting the severity of COVID-19 disease: A systematic review. SAGE Open Med. 2021, 9, 20503121211050755. [Google Scholar] [CrossRef] [PubMed]
- Daneshkhah, A.; Agrawal, V.; Eshein, A.; Subramanian, H.; Roy, H.K.; Backman, V. The possible role of vitamin D in suppressing cytokine storm and associated mortality in COVID-19 patients. medRxiv 2020. [Google Scholar] [CrossRef]
- Latifi-Pupovci, H.; Namani, S.; Ahmetaj-Shala, B.; Pajaziti, A.; Bunjaku, G.; Ajazaj Berisha, L.; Kotori, A. Biomarkers of Inflammation among Patients with COVID-19: A Single-Centre Prospective Study from Prishtina, Kosovo. Can. J. Infect. Dis. Med. Microbiol. 2022, 2022, 4461647. [Google Scholar] [CrossRef]
- Demir, A.D.; Durmaz, Z.H. A Comparison of vitamin D deficiency with neutrophil lymphocyte ratio and CRP levels in Covid-19 patients. Med. Sci. Discov. 2021, 8, 306–309. [Google Scholar] [CrossRef]
- Saponaro, F.; Franzini, M.; Okoye, C.; Antognoli, R.; Campi, B.; Scalese, M.; Saba, A. Is there a crucial link between vitamin D status and inflammatory response in patients with COVID-19? Front. Immunol. 2022, 12, 745713. [Google Scholar] [CrossRef]
- Pizzini, A.; Aichner, M.; Sahanic, S.; Böhm, A.; Egger, A.; Hoermann, G.; Löffler-Ragg, J. Impact of vitamin D deficiency on COVID-19—A prospective analysis from the CovILD Registry. Nutrients 2020, 12, 2775. [Google Scholar] [CrossRef]
- Razzaque, M.S. Magnesium: Are we consuming enough? Nutrients 2018, 10, 1863. [Google Scholar] [CrossRef] [PubMed]
- Uwitonze, A.M.; Razzaque, M.S. Role of magnesium in vitamin D activation and function. J. Osteopath. Med. 2018, 118, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Romero, F.; Micke, O.; Simental-Mendía, L.E.; Rodríguez-Morán, M.; Vormann, J.; Iotti, S.; Nechifor, M. Importance of magnesium status in COVID-19. Biology 2023, 12, 735. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Romero, F.; Mercado, M.; Rodriguez-Moran, M.; Ramírez-Renteria, C.; Martínez-Aguilar, G.; Marrero-Rodríguez, D.; Sanchez-García, M.L. Magnesium-to-calcium ratio and mortality from COVID-19. Nutrients 2022, 14, 1686. [Google Scholar] [CrossRef]
- Sugimoto, J.; Romani, A.M.; Valentin-Torres, A.M.; Luciano, A.A.; Ramirez Kitchen, C.M.; Funderburg, N.; Bernstein, H.B. Magnesium decreases inflammatory cytokine production: A novel innate immunomodulatory mechanism. J. Immunol. 2012, 188, 6338–6346. [Google Scholar] [CrossRef]
- Nielsen, F.H. Magnesium deficiency and increased inflammation: Current perspectives. J. Inflamm. Res. 2018, 11, 25–34. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; O’Keefe, J.H. Magnesium and vitamin D deficiency as a potential cause of immune dysfunction, cytokine storm and disseminated intravascular coagulation in COVID-19 patients. Mol. Med. 2021, 118, 68. [Google Scholar]
- Trapani, V.; Rosanoff, A.; Baniasadi, S.; Barbagallo, M.; Castiglioni, S.; Guerrero-Romero, F.; Maier, J.A. The relevance of magnesium homeostasis in COVID-19. Eur. J. Nutr. 2022, 61, 625–636. [Google Scholar] [CrossRef] [PubMed]
- Cappellini, F.; Brivio, R.; Casati, M.; Cavallero, A.; Contro, E.; Brambilla, P. Low levels of total and ionized calcium in blood of COVID-19 patients. Clin. Chem. Lab. Med. 2020, 58, e171–e173. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Frey, T.K.; Yang, J.J. Viral calciomics: Interplays between Ca2+ and virus. Cell Calcium 2009, 46, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Sun, Y.; Yang, Z.; Ding, C. Calcium ions signaling: Targets for attack and utilization by viruses. Front. Microbiol. 2022, 13, 889374. [Google Scholar] [CrossRef]
- El-Kurdi, B.; Khatua, B.; Rood, C.; Snozek, C.; Cartin-Ceba, R.; Singh, V.P.; Pannala, R. Mortality from coronavirus disease 2019 increases with unsaturated fat and may be reduced by early calcium and albumin supplementation. Gastroenterology 2020, 159, 1015–1018. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.K.; Zhang, W.H.; Zou, L.; Liu, Y.; Li, J.J.; Kan, X.H.; Qi, J.W. Serum calcium as a biomarker of clinical severity and prognosis in patients with coronavirus disease 2019. Aging 2020, 12, 11287. [Google Scholar] [CrossRef] [PubMed]
- Beheshti, M.; Neisi, N.; Parsanahad, M.; Rasti, M.; Nashibi, R.; Cheraghian, B. Correlation of vitamin D levels with serum parameters in Covid-19 patients. Clin. Nutr. ESPEN 2023, 55, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Suriawinata, E.; Mehta, K.J. Iron and iron-related proteins in COVID-19. Clin. Exp. Med. 2023, 23, 969–991. [Google Scholar] [CrossRef]
- Sonnweber, T.; Boehm, A.; Sahanic, S.; Pizzini, A.; Aichner, M.; Sonnweber, B.; Weiss, G. Persisting alterations of iron homeostasis in COVID-19 are associated with non-resolving lung pathologies and poor patients’ performance: A prospective observational cohort study. Respir. Res. 2020, 21, 276. [Google Scholar] [CrossRef]
- Hippchen, T.; Altamura, S.; Muckenthaler, M.U.; Merle, U. Hypoferremia is associated with increased hospitalization and oxygen demand in COVID-19 patients. Hemasphere 2020, 4, e492. [Google Scholar] [CrossRef]
- Yağcı, S.; Serin, E.; Acicbe, Ö.; Zeren, M.I.; Odabaşı, M.S. The relationship between serum erythropoietin, hepcidin, and haptoglobin levels with disease severity and other biochemical values in patients with COVID-19. Int. J. Lab. Hematol. 2021, 43, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Huang, J.; Dai, D.; Feng, Y.; Liu, L.; Nie, S. Serum iron level as a potential predictor of coronavirus disease 2019 severity and mortality: A retrospective study. Open Forum Infect. Dis. 2020, 7, 250. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Frost, J.N.; Aaron, L.; Donovan, K.; Drakesmith, H.; Collaborators. Systemic hypoferremia and severity of hypoxemic respiratory failure in COVID-19. Crit. Care 2020, 24, 320. [Google Scholar] [CrossRef] [PubMed]
- den Bakker, E.; Gemke, R.J.; Bökenkamp, A. Endogenous markers for kidney function in children: A review. Crit. Rev. Clin. Lab. Sci. 2018, 55, 163–183. [Google Scholar] [CrossRef] [PubMed]
- Chuang, G.T.; Tsai, I.J.; Tsau, Y.K. Serum Creatinine Reference Limits in Pediatric Population—A Single Center Electronic Health Record-Based Database in Taiwan. Front. Pediatr. 2021, 9, 793446. [Google Scholar] [CrossRef]
- González-Molero, I.; Morcillo, S.; Valdés, S.; Pérez-Valero, V.; Botas, P.; Delgado, E.; Soriguer, F. Vitamin D deficiency in Spain: A population-based cohort study. Eur. J. Clin. Nutr. 2011, 65, 321–328. [Google Scholar] [CrossRef]
Characteristics | COVID-19 78 (32.5) | NonCOVID-19 162 (67.5) | COVID-19 vs. Non-COVID-19 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Total COVID | Vitamin D | Total NonCOVID | Vitamin D | ||||||||
Def. 6 (7.69) | Insuf. 15 (19.23) | Normal 57 (73.08) | p | Def. 24 (14.81) | Insuf. 44 (27.16) | Normal 94 (58.02) | p | p | |||
Gender | |||||||||||
Male | 41 (52.56) | 3 (50.00) | 8 (53.33) | 30 (52.63) | 0.990 | 92 (56.79) | 10 (41.67) | 27 (61.36) | 55 (58.51) | 0.256 | 0.537 |
Female | 37 (47.44) | 3 (50.00) | 7 (46.67) | 27 (47.37) | 70 (43.21) | 14 (58.33) | 17 (38.64) | 39 (41.49) | |||
Age | |||||||||||
median (IQR) | 10.00 (6; 27) | 118.50 (46; 179) | 21.00 (8; 52) | 9.00 (6; 20) | 0.010 | 90.50 (31; 135) | 129.50 (93; 178) | 119.00 (91; 157) | 43.50 (17; 101) | 0.000 | 0.000 |
<1 year | 45 (57.69) | 1 (16.67) | 6 (40.00) | 38 (66.67) | 0.000 | 23 (14.20) | 1 (4.17) | 1 (2.27) | 21 (22.34) | 0.000 | 0.000 |
1–2 years | 10 (12.82) | 0 (0.00) | 2 (13.33) | 8 (14.04) | 13 (8.02) | 1 (4.17) | 0 (0.00) | 12 (12.77) | |||
2–6 years | 15 (19.23) | 1 (16.67) | 4 (26.67) | 10 (17.54) | 32 (19.75) | 0 (0.00) | 5 (11.36) | 27 (28.72) | |||
6–10 years | 2 (2.56) | 1 (16.67) | 0 (0.00) | 1 (1.75) | 39 (24.07) | 6 (25.00) | 17 (38.64) | 16 (17.02) | |||
>10 years | 6 (7.69) | 3 (50.00) | 3 (20.00) | 0 (0.00) | 55 (33.95) | 16 (66.67) | 21 (47.73) | 18 (19.15) | |||
Symptoms | |||||||||||
fever | 68 (87.18) | 4 (66.67) | 14 (93.33) | 50 (87.72) | 0.249 | 11 (6.79) | 2 (8.33) | 2 (4.55) | 7 (7.45) | 0.777 | 0.000 |
loss of appetite | 45 (57.69) | 2 (33.33) | 8 (53.33) | 35 (61.40) | 0.387 | 12 (7.41) | 2 (8.33) | 4 (9.09) | 6 (6.38) | 0.837 | 0.000 |
cough | 37 (47.44) | 2 (33.33) | 4 (26.67) | 31 (54.39) | 0.124 | 7 (4.32) | 1 (4.17) | 1 (2.27) | 5 (5.32) | 0.714 | 0.000 |
diarrhea | 23 (29.49) | 0 (0.00) | 3 (20.00) | 20 (35.09) | 0.134 | 5 (3.09) | 0 (0.00) | 2 (4.55) | 3 (3.19) | 0.582 | 0.000 |
vomiting | 26 (33.33) | 1 (16.67) | 4 (26.67) | 21 (36.84) | 0.505 | 8 (4.94) | 0 (0.00) | 5 (11.36) | 3 (3.19) | 0.057 | 0.000 |
headache | 14 (17.95) | 3 (50.00) | 4 (26.67) | 7 (12.28) | 0.045 | 17 (10.49) | 5 (20.83) | 5 (11.36) | 7 (7.45) | 0.158 | 0.107 |
rhinorrhea | 24 (30.77) | 2 (33.33) | 3 (20.00) | 19 (33.33) | 0.603 | 7 (4.32) | 1 (4.17) | 2 (4.55) | 4 (4.26) | 0.996 | 0.000 |
nasal congest. | 39 (50.00) | 4 (66.67) | 7 (46.67) | 28 (49.12) | 0.687 | 10 (6.17) | 2 (8.33) | 1 (2.27) | 7 (7.45) | 0.447 | 0.000 |
rash | 19 (24.36) | 0 (0.00) | 1 (6.67) | 18 (31.58) | 0.048 | 3 (1.85) | 0 (0.00) | 1 (2.27) | 2 (2.13) | 0.765 | 0.000 |
breathing diff. | 15 (19.23) | 0 (0.00) | 0 (0.00) | 15 (26.32) | 0.033 | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | - | 0.000 |
Laboratory Characteristics | All COVID-19 | COVID-19 78 (32.5) | All NonCOVID-19 | NonCOVID-19 162 (67.5) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
≤2 Years | >2 Years | ≤2 Years | >2 Years | |||||||||
r | p | r | p | r | p | r | p | r | p | r | p | |
calcium | 0.170 | 0.345 | 0.272 | 0.209 | 0.036 | 0.920 | 0.353 ** | 0.000 | 0.390 * | 0.027 | 0.162 | 0.077 |
magnesium | 0.470 * | 0.036 | 0.444 | 0.111 | −0.371 | 0.468 | 0.350 ** | 0.000 | 0.060 | 0.776 | 0.270 ** | 0.005 |
urea | −0.169 | 0.145 | −0.015 | 0.912 | −0.212 | 0.357 | −0.083 | 0.317 | 0.333 | 0.073 | 0.137 | 0.143 |
creatinine | −0.137 | 0.235 | 0.311 * | 0.021 | −0.547 ** | 0.008 | −0.446 ** | 0.000 | 0.046 | 0.812 | −0.281 ** | 0.002 |
iron | 0.011 | 0.926 | 0.101 | 0.496 | −0.245 | 0.285 | 0.027 | 0.771 | 0.305 | 0.108 | 0.090 | 0.392 |
AST | 0.247 * | 0.041 | 0.053 | 0.716 | 0.055 | 0.818 | 0.466 ** | 0.000 | 0.185 | 0.327 | 0.322 ** | 0.001 |
ALT | 0.145 | 0.208 | 0.071 | 0.605 | −0.121 | 0.593 | 0.124 | 0.129 | −0.055 | 0.765 | 0.008 | 0.928 |
CRP | 0.139 | 0.226 | 0.097 | 0.482 | 0.239 | 0.272 | −0.155 | 0.075 | −0.044 | 0.816 | −0.125 | 0.209 |
hemoglobin | −0.132 | 0.249 | 0.266 | 0.050 | −0.244 | 0.261 | −0.395 ** | 0.000 | −0.003 | 0.988 | −0.214 * | 0.018 |
leukocyte | −0.089 | 0.441 | −0.146 | 0.286 | 0.075 | 0.735 | 0.203 * | 0.010 | 0.056 | 0.744 | 0.063 | 0.489 |
neutrophils | −0.063 | 0.587 | 0.089 | 0.522 | 0.341 | 0.111 | −0.435 ** | 0.000 | 0.195 | 0.254 | −0.205 * | 0.023 |
lymphocytes | 0.028 | 0.811 | −0.078 | 0.576 | −0.254 | 0.242 | 0.428 ** | 0.000 | −0.154 | 0.371 | 0.215 * | 0.017 |
monocytes | 0.160 | 0.164 | −0.055 | 0.695 | −0.204 | 0.350 | 0.000 | 0.999 | 0.021 | 0.904 | 0.007 | 0.937 |
eosinophils | −0.023 | 0.842 | 0.032 | 0.817 | −0.265 | 0.223 | 0.109 | 0.173 | −0.043 | 0.804 | 0.054 | 0.555 |
basophils | 0.109 | 0.344 | 0.148 | 0.279 | −0.146 | 0.507 | −0.113 | 0.156 | 0.029 | 0.867 | −0.108 | 0.233 |
platelet | −0.080 | 0.485 | −0.192 | 0.161 | −0.094 | 0.668 | 0.079 | 0.322 | 0.000 | 0.998 | −0.074 | 0.413 |
NLR | −0.040 | 0.731 | 0.095 | 0.494 | 0.292 | 0.176 | −0.439 ** | 0.000 | 0.113 | 0.510 | −0.209 * | 0.020 |
PLR | −0.062 | 0.594 | −0.043 | 0.755 | 0.227 | 0.297 | −0.267 ** | 0.001 | −0.014 | 0.938 | −0.197 * | 0.029 |
LMR | −0.123 | 0.287 | −0.028 | 0.840 | −0.253 | 0.244 | 0.332 ** | 0.000 | −0.028 | 0.872 | 0.166 | 0.066 |
RBC | 0.048 | 0.676 | 0.283 * | 0.036 | −0.078 | 0.723 | −0.313 ** | 0.000 | −0.213 | 0.213 | −0.172 | 0.055 |
MCV | −0.330 * | 0.003 | −0.237 | 0.081 | −0.367 | 0.085 | −0.355 ** | 0.000 | 0.109 | 0.526 | −0.277 ** | 0.002 |
MCH | −0.270 * | 0.017 | −0.210 | 0.123 | 0.014 | 0.948 | −0.183 * | 0.020 | 0.055 | 0.750 | −0.063 | 0.484 |
MCHC | 0.093 | 0.419 | 0.102 | 0.460 | 0.553 ** | 0.006 | 0.287 ** | 0.000 | −0.069 | 0.690 | 0.339 ** | 0.000 |
≤2 Years | >2 Years | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
COVID-19, vit. D < 30 | COVID-19, vit. D ≥ 30 | NonCOVID-19, vit. D < 30 | NonCOVID-19, vit. D ≥ 30 | p | COVID-19, vit. D < 30 | COVID-19, vit. D ≥ 30 | NonCOVID-19, vit. D < 30 | NonCOVID-19, vit. D ≥ 30 | p | |
calcium | 2.36 (2.28; 2.48) | 2.40 (2.34; 2.48) | 2.49 (2.41; 2.57) | 2.53 (2.47; 2.60) | 0.001 | 2.41 (2.27; 2.43) | 2.45 (2.36; 2.47) | 2.41 (2.35; 2.49) | 2.43 (2.38; 2.51) | 0.354 |
magnesium | 0.83 (0.76; 0.89) | 0.97 (0.92; 1.01) | 0.86 (0.81; 0.90) | 0.87 (0.85; 0.93) | 0.032 | 0.82 (0.80; 0.88) | 0.86 (0.86; 0.86) | 0.81 (0.79; 0.85) | 0.85 (0.80; 0.88) | 0.023 |
urea | 17.00 (14.00; 20.00) | 18.00 (13.00; 22.00) | 16.00 (7.00; 47.00) | 18.00 (15.00; 22.00) | 0.913 | 20.00 (17.50; 27.60) | 19.00 (17,00; 27.00) | 25.00 (21.00; 30.00) | 27.00 (22.00; 31.00) | 0.060 |
creatinine | 0.39 (0.35; 0.41) | 0.43 (0.37; 0.46) | 0.36 (0.32; 0.44) | 0.41 (0.38; 0.43) | 0.197 | 0.60 (0.50; 0.72) | 0.48 (0.45; 0.55) | 0.57 (0.52; 0.65) | 0.52 (0.47; 0.60) | 0.011 |
iron | 5.53 (3.61; 8.01) | 6.68 (3.86; 9.06) | 7.02 (6.05; 7.98) | 11.56 (8.72; 14.93) | 0.002 | 5.27 (2.48; 14.67) | 4.25 (2.74; 7.48) | 12.51 (9.30; 18.20) | 14.40 (7.34; 19.21) | 0.000 |
AST | 53.00 (47.00; 71.00) | 55.00 (41.50; 64.00) | 37.50 (26.00; 49.00) | 41.00 (36.50; 49.50) | 0.021 | 27.00 (21.50; 48.00) | 39.00 (30.00; 43.00) | 23.00 (18.00; 29.00) | 30.00 (24.50; 33.00) | 0.001 |
ALT | 27.00 (23.00; 41.00) | 29.00 (20.00; 40.00) | 22.00 (11.00; 49.00) | 24.00 (17.00; 31.00) | 0.335 | 18.50 (14.50; 26.00) | 16.50 (12.00; 21.00) | 16.00 (12.00; 22.00) | 16.00 (13.00; 24.00) | 0.830 |
CRP | 3.51 (2.00; 6.97) | 4.35 (2.04; 11.86) | 2.00 (2.00; 2.00) | 2.00 (2.00; 2.00) | 0.000 | 7.69 (2.00; 25.41) | 9.46 (2.00; 26.50) | 2.00 (2.00; 3.00) | 2.00 (2.00; 2.00) | 0.009 |
hemoglobin | 9.60 (9.40; 10.40) | 11.10 (10.20; 11.70) | 10.30 (7.20; 11.10) | 11.40 (10.80; 11.80) | 0.004 | 12.80 (11.85; 13.40) | 12.60 (11.80; 13.40) | 13.40 (12.40; 14.20) | 12.58 (11.90; 13.60) | 0.039 |
leukocyte | 6.98 (4.82; 7.91) | 6.31 (4.69; 9.94) | 9.76 (8.34; 12.32) | 9.67 (7.91; 12.10) | 0.006 | 6.99 (5.10; 9.59) | 6.95 (5.49; 8.71) | 7.28 (6.28; 9.11) | 7.35 (6.31; 8.95) | 0.741 |
neutrophils | 37.10 (31.30; 47.30) | 41.10 (24.90; 53.80) | 18.60 (11.50; 29.20) | 16.70 (13.80; 23.60) | 0.000 | 64.60 (47.20; 76.50) | 69.20 (52.10; 84.00) | 48.80 (37.40; 53.40) | 40.90 (29.70; 53.30) | 0.000 |
lymphocytes | 44.90 (29.70; 57.60) | 42.60 (31.30; 56.10) | 72.60 (55.60; 79.60) | 70.50 (61.50; 74.80) | 0.000 | 25.15 (16.15; 41.65) | 24.40 (11.30; 33.60) | 40.00 (34.50; 50.10) | 46.10 (34.75; 54.70) | 0.000 |
monocytes | 15.60 (12.70; 19.60) | 15.20 (9.90; 21.00) | 6.50 (6.10; 12.30) | 9.20 (7.50; 10.40) | 0.000 | 7.50 (5.75; 10.80) | 5.50 (4.40; 8.60) | 8.70 (7.20; 10.10) | 9.00 (7.60; 10.70) | 0.020 |
eosinophils | 0.20 (0.00; 0.80) | 0.35 (0.00; 1.10) | 2.40 (2.30; 2.50) | 2.80 (2.40; 3.50) | 0.000 | 0.15 (0.00; 3.10) | 0.30 (0.00; 0.70) | 2.40 (1.40; 4.60) | 2.70 (1.60; 3.90) | 0.000 |
basophils | 0.30 (0.20; 0.40) | 0.20 (0.20; 0.50) | 0.20 (0.10; 0.30) | 0.30 (0.20; 0.40) | 0.669 | 0.15 (0.10; 0.45) | 0.20 (0.10; 0.30) | 0.30 (0.20; 0.50) | 0.30 (0.20; 0.50) | 0.010 |
platelet | 348.00 (315.00; 422.00) | 283.50 (230.00; 368.00) | 356.00 (251.00; 644.00) | 360.00 (291.00; 446.00) | 0.038 | 240.50 (220.00; 316.50) | 263.00 (212.00; 324.00) | 315.00 (245.00; 372.00) | 281.50 (223.00; 345.00) | 0.201 |
NLR | 0.90 (0.64; 1.44) | 0.99 (0.46; 0.68) | 0.26 (0.14; 0.53) | 0.24 (0.19; 0.40) | 0.000 | 2.57 (1.23; 4.64) | 2.84 (1.55; 7.43) | 0.24 (0.80; 1.59) | 0.88 (0.52; 1.60) | 0.000 |
PLR | 7.85 (6.31; 12.80) | 7.30 (5.32; 11.19) | 4.90 (3.15; 11.58) | 5.39 (4.17; 6.68) | 0.012 | 12.97 (5.54; 15.48) | 10.78 (6.42; 30.97) | 8.20 (5.88; 10.65) | 6.05 (4.89; 9.01) | 0.003 |
LMR | 1.94 (1.54; 4.95) | 2.58 (1.81; 4.52) | 11.90 (4.52; 12.25) | 7.69 (5.88; 9.72) | 0.000 | 4.70 (1.83; 5.80) | 3.36 (2.46; 4.44) | 4.47 (3.69; 5.72) | 5.04 (3.91; 6.24) | 0.038 |
RBC | 4.02 (3.32; 4.40) | 4.27 (3.93; 4.59) | 4.99 (4.27; 5.20) | 4.24 (4.10; 4.52) | 0.090 | 4.44 (4.29; 4.54) | 4.40 (4.20; 4.71) | 4.73 (4.43; 5.01) | 4.65 (4.31; 4.87) | 0.039 |
MCV | 77.30 (64.50; 84.30) | 77.80 (73.80; 80.80) | 70.00 (65.60; 70.50) | 76.40 (74.30; 79.00) | 0.191 | 82.45 (78.90; 83.10) | 79.10 (76.90; 81.50) | 82.30 (80.10; 85.40) | 79.20 (76.90; 83.20) | 0.001 |
MCH | 27.00 (21.80; 28.90) | 27.00 (25.60; 28.00) | 22.20 (20.40; 24.10) | 26.70 (26.20; 27.80) | 0.170 | 28.10 (27.55; 28.90) | 28.10 (27.10; 28.90) | 28.20 (27.20; 28.90) | 27.80 (26.80; 29.00) | 0.639 |
MCHC | 34.30 (33.80; 35.00) | 34.60 (34.10; 35.10) | 34.10 (31.50; 34.40) | 34.80 (34.30; 35.20) | 0.123 | 34.60 (34.40; 35.30) | 35.40 (35.10; 36.00) | 34.00 (33.20; 34.90) | 35.00 (34.20; 35.50) | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Totan, M.; Matacuta-Bogdan, I.-O.; Hasegan, A.; Maniu, I. Vitamin D Levels in COVID-19 and NonCOVID-19 Pediatric Patients and Its Relationship with Clinical and Laboratory Characteristics. Biomedicines 2024, 12, 905. https://doi.org/10.3390/biomedicines12040905
Totan M, Matacuta-Bogdan I-O, Hasegan A, Maniu I. Vitamin D Levels in COVID-19 and NonCOVID-19 Pediatric Patients and Its Relationship with Clinical and Laboratory Characteristics. Biomedicines. 2024; 12(4):905. https://doi.org/10.3390/biomedicines12040905
Chicago/Turabian StyleTotan, Maria, Ioana-Octavia Matacuta-Bogdan, Adrian Hasegan, and Ionela Maniu. 2024. "Vitamin D Levels in COVID-19 and NonCOVID-19 Pediatric Patients and Its Relationship with Clinical and Laboratory Characteristics" Biomedicines 12, no. 4: 905. https://doi.org/10.3390/biomedicines12040905
APA StyleTotan, M., Matacuta-Bogdan, I. -O., Hasegan, A., & Maniu, I. (2024). Vitamin D Levels in COVID-19 and NonCOVID-19 Pediatric Patients and Its Relationship with Clinical and Laboratory Characteristics. Biomedicines, 12(4), 905. https://doi.org/10.3390/biomedicines12040905