Thymus in Cardiometabolic Impairments and Atherosclerosis: Not a Silent Player?
Abstract
:1. Introduction
2. Basics of T Cell Selection in Thymus
3. Thymus Involution
4. Thymus and Metabolism
5. Thymus and Atherosclerosis
6. Thymic T Regulatory Lymphocytes Control Atherogenesis
7. Atherosclerosis and Thymus Function: The Shared Effector Molecules
8. Thymosins in Atherosclerosis
9. Retinoic Acid in Thymus and Atherosclerosis
10. Monitoring of Thymus Function
11. Future Perspectives and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sandstedt, M.; Chung, R.W.S.; Skoglund, C.; Lundberg, A.K.; Östgren, C.J.; Ernerudh, J.; Jonasson, L. Complete Fatty Degeneration of Thymus Associates with Male Sex, Obesity and Loss of Circulating Naïve CD8+ T Cells in a Swedish Middle-Aged Population. Immun. Ageing 2023, 20, 45. [Google Scholar] [CrossRef] [PubMed]
- Provin, N.; Giraud, M. Differentiation of Pluripotent Stem Cells into Thymic Epithelial Cells and Generation of Thymic Organoids: Applications for Therapeutic Strategies Against APECED. Front. Immunol. 2022, 13, 930963. [Google Scholar] [CrossRef] [PubMed]
- Drabkin, M.J.; Meyer, J.I.; Kanth, N.; Lobel, S.; Fogel, J.; Grossman, J.; Krumenacker, J.H. Age-stratified Patterns of Thymic Involution on Multidetector CT. J. Thorac. Imaging 2018, 33, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Kellogg, C.; Equils, O. The Role of the Thymus in COVID-19 Disease Severity: Implications for Antibody Treatment and Immunization. Hum. Vaccines Immunother. 2021, 17, 638–643. [Google Scholar] [CrossRef]
- Dai, X.; Zhang, D.; Wang, C.; Wu, Z.; Liang, C. The Pivotal Role of Thymus in Atherosclerosis Mediated by Immune and Inflammatory Response. Int. J. Med. Sci. 2018, 15, 1555–1563. [Google Scholar] [CrossRef] [PubMed]
- Wolf, D.; Ley, K. Immunity and Inflammation in Atherosclerosis. Circ. Res. 2019, 124, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.; Orecchioni, M.; Ley, K. How the Immune System Shapes Atherosclerosis: Roles of Innate and Adaptive Immunity. Nat. Rev. Immunol. 2022, 22, 251–265. [Google Scholar] [CrossRef] [PubMed]
- Razeghian-Jahromi, I.; Karimi Akhormeh, A.; Razmkhah, M.; Zibaeenezhad, M.J. Immune System and Atherosclerosis: Hostile or Friendly Relationship. Int. J. Immunopathol. Pharmacol. 2022, 36, 03946320221092188. [Google Scholar] [CrossRef] [PubMed]
- Tardif, J.C.; Kouz, S.; Waters, D.D.; Bertrand, O.F.; Diaz, R.; Maggioni, A.P.; Pinto, F.J.; Ibrahim, R.; Gamra, H.; Kiwan, G.S.; et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N. Engl. J. Med. 2019, 381, 2497–2505. [Google Scholar] [CrossRef]
- Everett, B.M.; MacFadyen, J.G.; Thuren, T.; Libby, P.; Glynn, R.J.; Ridker, P.M. Inhibition of Interleukin-1β and Reduction in Atherothrombotic Cardiovascular Events in the CANTOS Trial. J. Am. Coll. Cardiol. 2020, 76, 1660–1670. [Google Scholar] [CrossRef]
- Hester, A.K.; Semwal, M.K.; Cepeda, S.; Xiao, Y.; Rueda, M.; Wimberly, K.; Venables, T.; Dileepan, T.; Kraig, E.; Griffith, A.V. Redox Regulation of Age-Associated Defects in Generation and Maintenance of T Cell Self-Tolerance and Immunity to Foreign Antigens. Cell Rep. 2022, 38, 110363. [Google Scholar] [CrossRef]
- Baran-Gale, J.; Morgan, M.D.; Maio, S.; Dhalla, F.; Calvo-Asensio, I.; Deadman, M.E.; Handel, A.E.; Maynard, A.; Chen, S.; Green, F.; et al. Ageing Compromises Mouse Thymus Function and Remodels Epithelial Cell Differentiation. eLife 2020, 9, e56221. [Google Scholar] [CrossRef] [PubMed]
- Lagou, M.K.; Karagiannis, G.S. Obesity-Induced Thymic Involution and Cancer Risk. Semin. Cancer Biol. 2023, 93, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Sansom, S.N.; Shikama-Dorn, N.; Zhanybekova, S.; Nusspaumer, G.; Macaulay, I.C.; Deadman, M.E.; Heger, A.; Ponting, C.P.; Holländer, G.A. Population and Single-Cell Genomics Reveal the AIRE Dependency, Relief from Polycomb Silencing, and Distribution of Self-Antigen Expression in Thymic Epithelia. Genome Res. 2014, 24, 1918–1931. [Google Scholar] [CrossRef]
- Takaba, H.; Morishita, Y.; Tomofuji, Y.; Danks, L.; Nitta, T.; Komatsu, N.; Kodama, T.; Takayanagi, H. Fezf2 Orchestrates a Thymic Program of Self-Antigen Expression for Immune Tolerance. Cell 2015, 163, 975–987. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Zhang, R.; Lu, Y.; Zou, X.; Yang, W. Aire and Fezf2, Two Regulators in Medullary Thymic Epithelial Cells, Control Autoimmune Diseases by Regulating TSAs: Partner or Complementer? Front. Immunol. 2022, 13, 948259. [Google Scholar] [CrossRef] [PubMed]
- Youm, Y.H.; Kanneganti, T.D.; Vandanmagsar, B.; Zhu, X.; Ravussin, A.; Adijiang, A.; Owen, J.S.; Thomas, M.J.; Francis, J.; Parks, J.S.; et al. The Nlrp3 Inflammasome Promotes Age-Related Thymic Demise and Immunosenescence. Cell Rep. 2012, 1, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Langhi, L.G.; Andrade, L.R.; Shimabukuro, M.K.; van Ewijk, W.; Taub, D.D.; Borojevic, R.; de Mello Coelho, V. Lipid-Laden Multilocular Cells in the Aging Thymus Are Phenotypically Heterogeneous. PLoS ONE 2015, 10, e0141516. [Google Scholar] [CrossRef]
- Kooshesh, K.A.; Foy, B.H.; Sykes, D.B.; Gustafsson, K.; Scadden, D.T. Health Consequences of Thymus Removal in Adults. N. Engl. J. Med. 2023, 389, 406–417. [Google Scholar] [CrossRef]
- Liang, Z.; Dong, X.; Zhang, Z.; Zhang, Q.; Zhao, Y. Age-Related Thymic Involution: Mechanisms and Functional Impact. Aging Cell 2022, 21, e13671. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Zhang, K.; Jiang, F.; Wang, H.; Shao, Q. Epigenetic Modifications in Thymic Epithelial Cells: An Evolutionary Perspective Ffor Thymus Atrophy. Clin. Epigenet. 2021, 13, 210. [Google Scholar] [CrossRef]
- Griffith, A.V.; Venables, T.; Shi, J.; Farr, A.; van Remmen, H.; Szweda, L.; Fallahi, M.; Rabinovitch, P.; Petrie, H.T. Metabolic Damage and Premature Thymus Aging Caused by Stromal Catalase Deficiency. Cell Rep. 2015, 12, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Dixit, V.D. Thymic Fatness and Approaches to Enhance Thymopoietic Fitness in Aging. Curr. Opin. Immunol. 2010, 22, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Cavallotti, C.; D’Andrea, V.; Tonnarini, G.; Cavallotti, C.; Bruzzone, P. Age-Related Changes in the Human Thymus Studied with Scanning Electron Microscopy. Microsc. Res. Tech. 2008, 71, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Hauri-Hohl, M.M.; Zuklys, S.; Keller, M.P.; Jeker, L.T.; Barthlott, T.; Moon, A.M.; Roes, J.; Holländer, G.A. TGF-β Signaling in Thymic Epithelial Cells Regulates Thymic Involution and Postirradiation Reconstitution. Blood 2008, 112, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Wang, K.; Feng, Z.; Zhang, M.Y.; Wu, J.; Geng, J.J.; Chen, Z.N. CD147 Deficiency in T Cells Prevents Thymic Involution by Inhibiting the EMT Process in TECs in the Presence of TGFβ. Cell. Mol. Immunol. 2021, 18, 171–181. [Google Scholar] [CrossRef]
- Ramadoss, S.; Chen, X.; Wang, C.Y. Histone Demethylase KDM6B Promotes Epithelial-Mesenchymal Transition. J. Biol. Chem. 2012, 287, 44508–44517. [Google Scholar] [CrossRef]
- Ahmadian, M.; Suh, J.M.; Hah, N.; Liddle, C.; Atkins, A.R.; Downes, M.; Evans, R.M. PPARγ Signaling and Metabolism: The Good, the Bad and the Future. Nat. Med. 2013, 19, 557–566. [Google Scholar] [CrossRef]
- Guo, D.; Ye, Y.; Qi, J.; Zhang, L.; Xu, L.; Tan, X.; Yu, X.; Liu, Q.; Liu, J.; Zhang, Y.; et al. MicroRNA-181a-5p Enhances Cell Proliferation in Medullary Thymic Epithelial Cells Via Regulating TGF-β Signaling. Acta Biochim. Biophys. Sin. 2016, 48, 840–849. [Google Scholar] [CrossRef]
- Gregory, P.A.; Bert, A.G.; Paterson, E.L.; Barry, S.C.; Tsykin, A.; Farshid, G.; Vadas, M.A.; Khew-Goodall, Y.; Goodall, G.J. The MiR-200 Family and MiR-205 Regulate Epithelial to Mesenchymal Transition by Targeting ZEB1 and SIP1. Nat. Cell Biol. 2008, 10, 593–601. [Google Scholar] [CrossRef]
- Youm, Y.H.; Horvath, T.L.; Mangelsdorf, D.J.; Kliewer, S.A.; Dixit, V.D. Prolongevity Hormone FGF21 Protects Against Immune Senescence by Delaying Age-Related Thymic Involution. Proc. Natl. Acad. Sci. USA 2016, 113, 1026–1031. [Google Scholar] [CrossRef] [PubMed]
- Forteza, M.J.; Ketelhuth, D.F.J. Metabolism in Atherosclerotic Plaques: Immunoregulatory Mechanisms in the Arterial Wall. Clin. Sci. 2022, 136, 435–454. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; de la Morena, M.T.; van Oers, N.S.C. The Genetics and Epigenetics of 22q11.2 Deletion Syndrome. Front. Genet. 2020, 10, 1365. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Shah, N.J.; Cook, M.; Blackburn, M.; Serzan, M.T.; Advani, S.; Potosky, A.L.; Atkins, M.B.; Braithwaite, D. Association between Body Mass Index and Immune-Related Adverse Events (irAEs) among Advanced-Stage Cancer Patients Receiving Immune Checkpoint Inhibitors: A Pan-Cancer Analysis. Cancers 2021, 13, 6109, Erratum in Cancers 2022, 14, 4525. [Google Scholar] [CrossRef] [PubMed]
- Hick, R.W.; Gruver, A.L.; Ventevogel, M.S.; Haynes, B.F.; Sempowski, G.D. Leptin Selectively Augments Thymopoiesis in Leptin Deficiency and Lipopolysaccharide-Induced Thymic Atrophy. J. Immunol. 2006, 177, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Masoumi, J.; Jafarzadeh, A.; Khorramdelazad, H.; Abbasloui, M.; Abdolalizadeh, J.; Jamali, N. Role of Apelin/APJ Axis in Cancer Development and Progression. Adv. Med. Sci. 2020, 65, 202–213. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, H.; Chen, J.; Li, Y.; Xu, A.; Wang, Y. Adiponectin-Expressing Treg Facilitate T Lymphocyte Development in Thymic Nurse Cell Complexes. Commun. Biol. 2021, 4, 344. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Zafonte, R.; Pascuale-Leon, A.; Nadler, L.M.; Weisskopf, M.; Speizer, F.E.; Taylor, H.A.; Baggish, A.L. American-style Football and Cardiovascular Health. J. Am. Heart Assoc. 2018, 7, e008620. [Google Scholar] [CrossRef] [PubMed]
- Vick, L.V.; Collins, C.P.; Khuat, L.T.; Wang, Z.; Dunai, C.; Aguilar, E.G.; Stoffel, K.; Yendamuri, S.; Smith, R., Jr.; Mukherjee, S.; et al. Aging Augments Obesity-Induced Thymic Involution and Peripheral T Cell Exhaustion Altering the “Obesity Paradox”. Front. Immunol. 2023, 13, 1012016. [Google Scholar] [CrossRef]
- Wang, C.; Dehghani, B.; Magrisso, I.J.; Rick, E.A.; Bonhomme, E.; Cody, D.B.; Elenich, L.A.; Subramanian, S.; Murphy, S.J.; Kelly, M.J.; et al. GPR30 Contributes to Estrogen-Induced Thymic Atrophy. Mol. Endocrinol. 2008, 22, 636–648. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Guo, D.; Ma, Y.; Li, Y. iTRAQ-based Proteomic Analysis of 17β-Estradiol-Induced Anti-Proliferation and Apoptosis in Mouse Thymic Epithelial Cells by Disturbing Ribosomal Biogenesis. IUBMB Life 2022, 74, 1094–1114. [Google Scholar] [CrossRef] [PubMed]
- Dragin, N.; Bismuth, J.; Cizeron-Clairac, G.; Biferi, M.G.; Berthault, C.; Serraf, A.; Nottin, R.; Klatzmann, D.; Cumano, A.; Barkats, M.; et al. Estrogen-mediated Downregulation of AIRE Influences Sexual Dimorphism in Autoimmune Diseases. J. Clin. Investig. 2016, 126, 1525–1537. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Ding, R.; Lin, Y.; He, Z.; Wu, F.; Dai, X.; Chen, Y.; Gui, Y.; Huang, Z.; Wu, Z.; et al. Reduced T cell Thymic Export Reflected by sj-TREC in Patients with Coronary Artery Disease. J. Atheroscler. Thromb. 2016, 23, 632–643. [Google Scholar] [CrossRef]
- Wolf, D.; Gerhardt, T.; Winkels, H.; Michel, N.A.; Pramod, A.B.; Ghosheh, Y.; Brunel, S.; Buscher, K.; Miller, J.; McArdle, S.; et al. Pathogenic Autoimmunity in Atherosclerosis Evolves from Initially Protective Apolipoprotein B100-Reactive CD4+ T regulatory Cells. Circulation 2020, 142, 1279–1293. [Google Scholar] [CrossRef]
- Kimura, T.; Tse, K.; McArdle, S.; Gerhardt, T.; Miller, J.; Mikulski, Z.; Sidney, J.; Sette, A.; Wolf, D.; Ley, K. Regulatory CD4+ T Cells Recognize Major Histocompatibility Complex Class II Molecule–Restricted Peptide Epitopes of Apolipoprotein B. Circulation 2018, 138, 1130–1143. [Google Scholar] [CrossRef] [PubMed]
- Nettersheim, F.S.; Braumann, S.; Kobiyama, K.; Orecchioni, M.; Vassallo, M.; Miller, J.; Ali, A.; Roy, P.; Saigusa, R.; Wolf, D.; et al. Autoimmune Regulator (AIRE) Deficiency Does Not Affect Atherosclerosis and CD4 T Cell Immune Tolerance to Apolipoprotein B. Front. Cardiovasc. Med. 2022, 8, 812769. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Zhao, J.; Hua, L.; Chen, H.; Liang, C. Thymus Transplantation Regulates Blood Pressure and Alleviates Hypertension-Associated Heart and Kidney Damage Via Transcription Factors FoxN1 Pathway. Int. Immunopharmacol. 2023, 116, 109798. [Google Scholar] [CrossRef] [PubMed]
- Naryzhnaya, N.V.; Koshelskaya, O.A.; Kharitonova, O.A.; Zhigaleva, N.Y.; Zhuravleva, O.A.; Evtushenko, V.V.; Andreev, S.L.; Evtushenko, A.V.; Boshchenko, A.A. Morphological and Functional Characteristics of Retrosternal Adipose Tissue and Their Relation to Arterial Stiffness Parameters in Patients After Coronary Artery Bypass Grafting. Bull. Sib. Med. 2020, 19, 63–71. [Google Scholar] [CrossRef]
- Huang, L.; Zheng, Y.; Yuan, X.; Ma, Y.; Xie, G.; Wang, W.; Chen, H.; Shen, L. Decreased Frequencies and Impaired Functions of the CD31+ Subpopulation in Treg Cells Associated with Decreased Foxp3 Expression and Enhanced Treg Cell Defects in Patients with Coronary Heart Disease. Clin. Exp. Immunol. 2017, 187, 441–454. [Google Scholar] [CrossRef]
- Ait-Oufella, H.; Salomon, B.L.; Potteaux, S.; Robertson, A.K.; Gourdy, P.; Zoll, J.; Merval, R.; Esposito, B.; Cohen, J.L.; Fisson, S.; et al. Natural Regulatory T Cells Control the Development of Atherosclerosis in Mice. Nat. Med. 2006, 12, 178–180. [Google Scholar] [CrossRef]
- Klingenberg, R.; Gerdes, N.; Badeau, R.M.; Gisterå, A.; Strodthoff, D.; Ketelhuth, D.F.; Lundberg, A.M.; Rudling, M.; Nilsson, S.K.; Olivecrona, G.; et al. Depletion of FOXP3+ Regulatory T Cells Promotes Hypercholesterolemia and Atherosclerosis. J. Clin. Investig. 2013, 123, 1323–1334. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.C.; Wang, J.; Shu, Y.W.; Tang, T.T.; Zhu, Z.F.; Xia, N.; Nie, S.F.; Liu, J.; Zhou, S.F.; Li, J.J.; et al. Impaired Thymic Export and Increased Apoptosis Account for Regulatory T Cell Defects in Patients with Non-ST Segment Elevation Acute Coronary Syndrome. J. Biol. Chem. 2012, 287, 34157–34166. [Google Scholar] [CrossRef] [PubMed]
- Wigren, M.; Björkbacka, H.; Andersson, L.; Ljungcrantz, I.; Fredrikson, G.N.; Persson, M.; Bryngelsson, C.; Hedblad, B.; Nilsson, J. Low Levels of Circulating CD4+Foxp3+ T Cells are Associated with an Increased Risk for Development of Myocardial Infarction but not for Stroke. Arterioscler Thromb. Vasc. Biol. 2012, 32, 2000–2004. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Chen, F.; Hu, X.; Hu, Y.; Wang, Y.; Zhang, W.; Peng, Y.; Cheng, L. Decreased Helios Expression in Regulatory T Cells in Acute Coronary Syndrome. Dis. Markers 2017, 2017, 7909407. [Google Scholar] [CrossRef]
- Pastrana, J.L.; Sha, X.; Virtue, A.; Mai, J.; Cueto, R.; Lee, I.A.; Wang, H.; Yang, X.F. Regulatory T cells and Atherosclerosis. J. Clin. Exp. Cardiol. 2012, 2012 (Suppl. S12), 2. [Google Scholar] [CrossRef] [PubMed]
- Foks, A.C.; Lichtman, A.H.; Kuiper, J. Treating Atherosclerosis with Regulatory T Csells. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Charaix, J.; Borelli, A.; Santamaria, J.C.; Chasson, L.; Giraud, M.; Sergé, A.; Irla, M. Recirculating Foxp3+ Regulatory T Cells are Restimulated in the Thymus under Aire Control. Cell. Mol. Life Sci. 2022, 79, 355. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.; Zhang, W.; Zhu, Y.; Li, Y.; Li, D.; Li, B. FOXP3+ Regulatory T Cells and Age-Related Diseases. FEBS J. 2022, 289, 319–335. [Google Scholar] [CrossRef]
- Thornton, A.M.; Korty, P.E.; Tran, D.Q.; Wohlfert, E.A.; Murray, P.E.; Belkaid, Y.; Shevach, E.M. Expression of Helios, an Ikaros Transcription Factor Family Member, Differentiates Thymic-Derived from Peripherally Induced Foxp3+ T Regulatory Cells. J. Immunol. 2010, 184, 3433–3441. [Google Scholar] [CrossRef] [PubMed]
- Malchow, S.; Leventhal, D.S.; Lee, V.; Nishi, S.; Socci, N.D.; Savage, P.A. Aire Enforces Immune Tolerance by Directing Autoreactive T Cells into the Regulatory T Cell Lineage. Immunity 2016, 44, 1102–1113. [Google Scholar] [CrossRef]
- He, S.; Li, M.; Ma, X.; Lin, J.; Li, D. CD4+CD25+Foxp3+ Regulatory T Cells Protect the Proinflammatory Activation of Human Umbilical Vein Endothelial Cells. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 2621–2630. [Google Scholar] [CrossRef] [PubMed]
- Ohmichi, Y.; Hirakawa, J.; Imai, Y.; Fukuda, M.; Kawashima, H. Essential Role of Peripheral Node Addressin in Lymphocyte Homing to Nasal-Associated Lymphoid Tissues and Allergic Immune Responses. J. Exp. Med. 2011, 208, 1015–1025. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Schlegel, M.P.; Afonso, M.S.; Brown, E.J.; Rahman, K.; Weinstock, A.; Sansbury, B.E.; Corr, E.M.; van Solingen, C.; Koelwyn, G.J.; et al. Regulatory T Cells License Macrophage Pro-Resolving Functions During Atherosclerosis Regression. Circ. Res. 2020, 127, 335–353. [Google Scholar] [CrossRef] [PubMed]
- van Puijvelde, G.H.; Hauer, A.D.; de Vos, P.; van den Heuvel, R.; van Herwijnen, M.J.; van der Zee, R.; van Eden, W.; van Berkel, T.J.; Kuiper, J. Induction of Oral Tolerance to Oxidized Low-Density Lipoprotein Ameliorates Atherosclerosis. Circulation 2006, 114, 1968–1976. [Google Scholar] [CrossRef] [PubMed]
- van Puijvelde, G.H.; van Es, T.; van Wanrooij, E.J.; Habets, K.L.; de Vos, P.; van der Zee, R.; van Eden, W.; van Berkel, T.J.; Kuiper, J. Induction of Oral Tolerance to HSP60 or an HSP60-Peptide Activates T Cell Regulation and Reduces Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 2677–2783. [Google Scholar] [CrossRef] [PubMed]
- Herbin, O.; Ait-Oufella, H.; Yu, W.; Fredrikson, G.N.; Aubier, B.; Perez, N.; Barateau, V.; Nilsson, J.; Tedgui, A.; Mallat, Z. Regulatory T cell Response to Apolipoprotein B100-Derived Peptides Reduces the Development and Progression of Atherosclerosis in Mice. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; Wang, W.; Su, D.M. Contributions of Age-Related Thymic Involution to Immunosenescence and Inflammaging. Immun. Ageing 2020, 17, 2. [Google Scholar] [CrossRef]
- Kang, G.S.; Jo, H.J.; Lee, Y.R.; Oh, T.; Park, H.J.; Ahn, G.O. Sensing the Oxygen and Temperature in the Adipose Tissues—Who’s Sensing What? Exp. Mol. Med. 2023, 55, 2300–2307. [Google Scholar] [CrossRef]
- Adams, A.E.; Kelly, O.M.; Porter, R.K. Absence of Mitochondrial Uncoupling Protein 1 Affects Apoptosis in Thymocytes, Thymocyte/T cell Profile and Peripheral T cell Number. Biochim. Biophys. Acta 2010, 1797, 807–816. [Google Scholar] [CrossRef]
- Adachi, Y.; Ueda, K.; Nomura, S.; Ito, K.; Katoh, M.; Katagiri, M.; Yamada, S.; Hashimoto, M.; Zhai, B.; Numata, G.; et al. Beiging of Perivascular Adipose Tissue Regulates its Inflammation and Vascular Remodeling. Nat. Commun. 2022, 13, 5117. [Google Scholar] [CrossRef]
- Giardino, G.; Borzacchiello, C.; De Luca, M.; Romano, R.; Prencipe, R.; Cirillo, E.; Pignata, C. T cell Immunodeficiencies with Congenital Alterations of Thymic Development: Genes Implicated and Differential Immunological and Clinical Features. Front. Immunol. 2020, 11, 1837. [Google Scholar] [CrossRef] [PubMed]
- Banfai, K.; Ernszt, D.; Pap, A.; Bai, P.; Garai, K.; Belharazem, D.; Pongracz, J.E.; Kvell, K. “Beige” Cross Talk Between the Immune System and Metabolism. Front. Endocrinol. 2019, 10, 369. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, L.; Kasikara, C.; Yurdagul, A., Jr.; Kuriakose, G.; Hubbard, B.; Serrano-Wu, M.H.; Tabas, I. Allosteric MAPKAPK2 Inhibitors Improve Plaque Stability in Advanced Atherosclerosis. PLoS ONE 2021, 16, e0246600. [Google Scholar] [CrossRef] [PubMed]
- Stalmans, I.; Lambrechts, D.; De Smet, F.; Jansen, S.; Wang, J.; Maity, S.; Kneer, P.; von der Ohe, M.; Swillen, A.; Maes, C.; et al. VEGF: A Modifier of the Del22q11 (DiGeorge) Syndrome? Nat. Med. 2003, 9, 173–182. [Google Scholar] [CrossRef]
- Žuklys, S.; Handel, A.; Zhanybekova, S.; Govani, F.; Keller, M.; Maio, S.; Mayer, C.E.; The, H.Y.; Hafen, K.; Gallone, G.; et al. Foxn1 Regulates Key Targets Genes Essential for T Cell Development in Postnatal Thymic Epithelial Cells. Nat. Immunol. 2016, 17, 1206–1215. [Google Scholar] [CrossRef] [PubMed]
- Walendzik, K.; Kopcewicz, M.; Bukowska, J.; Panasiewicz, G.; Szafranska, B.; Gawronska-Kozak, B. The Transcription Factor FOXN1 Regulates Skin Adipogenesis and Affects Susceptibility to Diet-Induced Obesity. J. Investig. Dermatol. 2020, 140, 1166–1175.e9. [Google Scholar] [CrossRef]
- Gawronska-Kozak, B.; Walendzik, K.; Machcinska, S.; Padzik, A.; Kopcewicz, M.; Wiśniewska, J. Dermal White Adipose Tissue (dWAT) is Regulated by Foxn1 and Hif-1α during the Early Phase of Skin Wound Healing. Int. J. Mol. Sci. 2021, 23, 257. [Google Scholar] [CrossRef]
- Diman, N.Y.; Remacle, S.; Bertrand, N.; Picard, J.J.; Zaffran, S.; Rezsohazy, R. A Retinoic Acid Responsive Hoxa3 Transgene Expressed in Embryonic Pharyngeal Endoderm, Cardiac Neural Crest and a Subdomain of The Second Heart Field. PLoS ONE 2011, 6, e27624. [Google Scholar] [CrossRef]
- Xu, C.; Sun, D.; Wei, C.; Chang, H. Bioinformatic Analysis and Experimental Validation Identified DNA Methylation-Related Biomarkers and Immune-Cell Infiltration of Atherosclerosis. Front. Genet. 2022, 13, 989459. [Google Scholar] [CrossRef]
- Mace, K.A.; Hansen, S.L.; Myers, C.; Young, D.M.; Boudreau, N. HOXA3 Induces Cell Migration in Endothelial and Epithelial Cells Promoting Angiogenesis and Wound Repair. J. Cell Sci. 2005, 118 Pt 12, 2567–2577. [Google Scholar] [CrossRef]
- Moretti, S.; Oikonomou, V.; Garaci, E.; Romani, L. Thymosin α1: Burying Secrets in the Thymus. Expert. Opin. Biol. Ther. 2015, 15 (Suppl. S1), S51–S58. [Google Scholar] [CrossRef] [PubMed]
- Halder, S.K.; Matsunaga, H.; Ishii, K.J.; Ueda, H. Prothymosin-Alpha Preconditioning Activates TLR4-TRIF Signaling to Induce Protection of Ischemic Retina. J. Neurochem. 2015, 135, 1161–1177. [Google Scholar] [CrossRef] [PubMed]
- Gladka, M.M.; Kohela, A.; Molenaar, B.; Versteeg, D.; Kooijman, L.; Monshouwer-Kloots, J.; Kremer, V.; Vos, H.R.; Huibers, M.M.H.; Haigh, J.J.; et al. Cardiomyocytes Stimulate Angiogenesis After Ischemic Injury in a ZEB2-Dependent Manner. Nat. Commun. 2021, 12, 84. [Google Scholar] [CrossRef]
- Ying, Y.; Tao, N.; Zhang, F.; Wen, X.; Zhou, M.; Gao, J. Thymosin β4 Regulates the Differentiation of Thymocytes by Controlling the Cytoskeletal Rearrangement and Mitochondrial Transfer of Thymus Epithelial Cells. Int. J. Mol. Sci. 2024, 25, 1088. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Ye, Y.; Zuo, H.; Li, Y. Progress on the Function and Application of Thymosin β4. Front. Endocrinol. 2021, 12, 767785. [Google Scholar] [CrossRef] [PubMed]
- Munshaw, S.; Redpath, A.N.; Pike, B.T.; Smart, N. Thymosin β4 Preserves Vascular Smooth Muscle Phenotype in Atherosclerosis via Regulation of Low Density Lipoprotein Related Protein 1 (LRP1). Int. Immunopharmacol. 2023, 115, 109702. [Google Scholar] [CrossRef] [PubMed]
- Wendland, K.; Niss, K.; Kotarsky, K.; Wu, N.Y.H.; White, A.J.; Jendholm, J.; Rivollier, A.; Izarzugaza, J.M.G.; Brunak, S.; Holländer, G.A.; et al. Retinoic Acid Signaling in Thymic Epithelial Cells Regulates Thymopoiesis. J. Immunol. 2018, 201, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Kalisz, M.; Chmielowska, M.; Martyńska, L.; Domańska, A.; Bik, W.; Litwiniuk, A. All-trans-Retinoic Acid Ameliorates Atherosclerosis, Promotes Perivascular Adipose Tissue Browning, and Increases Adiponectin Production in Apo-E Mice. Sci. Rep. 2021, 11, 4451. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Chen, J. Potential Therapeutic Effect of All-Trans Retinoic Acid on Atherosclerosis. Biomolecules 2022, 12, 869. [Google Scholar] [CrossRef]
- Cai, W.; Wang, J.; Hu, M.; Chen, X.; Lu, Z.; Bellanti, J.A.; Zheng, S.G. All Trans-Retinoic Acid Protects Against Acute Ischemic Stroke by Modulating Neutrophil Functions Through STAT1 Signaling. J. Neuroinflamm. 2019, 16, 175. [Google Scholar] [CrossRef]
- Achan, V.; Tran, C.T.; Arrigoni, F.; Whitley, G.S.; Leiper, J.M.; Vallance, P. All-trans-Retinoic acid Increases Nitric Oxide Synthesis by Endothelial Cells: A Role for The Induction of Dimethylarginine Dimethylaminohydrolase. Circ. Res. 2002, 90, 764–769. [Google Scholar] [CrossRef] [PubMed]
- Yokota, J.; Kawana, M.; Hidai, C.; Aoka, Y.; Ichikawa, K.; Iguchi, N.; Okada, M.; Kasanuki, H. Retinoic Acid Suppresses Endothelin-1 Gene Expression at the Transcription Level in Endothelial Cells. Atherosclerosis 2001, 159, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, L.; Lydersen, L.; Khandelia, H. ATP-Bound State of the Uncoupling Protein 1 (UCP1) from Molecular Simulations. J. Phys. Chem. B 2023, 127, 9685–9696. [Google Scholar] [CrossRef] [PubMed]
- Carroll, A.M.; Haines, L.R.; Pearson, T.W.; Fallon, P.G.; Walsh, C.M.; Brennan, C.M.; Breen, E.P.; Porter, R.K. Identification of a Functioning Mitochondrial Uncoupling Protein 1 in Thymus. J. Biol. Chem. 2005, 280, 15534–15543. [Google Scholar] [CrossRef] [PubMed]
- Adams, A.E.; Carroll, A.M.; Fallon, P.G.; Porter, R.K. Mitochondrial Uncoupling Protein 1 Expression in Thymocytes. Biochim. Biophys. Acta 2008, 1777, 772–776. [Google Scholar] [CrossRef] [PubMed]
- Gu, P.; Hui, X.; Zheng, Q.; Gao, Y.; Jin, L.; Jiang, W.; Zhou, C.; Liu, T.; Huang, Y.; Liu, Q.; et al. Mitochondrial Uncoupling Protein 1 Antagonizes Atherosclerosis by Blocking NLRP3 Inflammasome-Dependent Interleukin-1β Production. Sci. Adv. 2021, 7, eabl4024. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ruan, Y.; Wu, S. ET-1 Regulates the Human Umbilical Vein Endothelial Cell Cycle by Adjusting the ERβ/FOXN1 Signaling Pathway. Ann. Transl. Med. 2020, 8, 1499. [Google Scholar] [CrossRef]
- Figueiredo, M.; Zilhão, R.; Neves, H. Thymus Inception: Molecular Network in the Early Stages of Thymus Organogenesis. Int. J. Mol. Sci. 2020, 21, 5765. [Google Scholar] [CrossRef]
- Chojnowski, J.L.; Trau, H.A.; Masuda, K.; Manley, N.R. Temporal and Spatial Requirements for Hoxa3 in Mouse Embryonic Development. Dev. Biol. 2016, 415, 33–45. [Google Scholar] [CrossRef]
- Gan, B.L.; He, R.Q.; Zhang, Y.; Wei, D.M.; Hu, X.H.; Chen, G. Downregulation of HOXA3 in Lung Adenocarcinoma and its Relevant Molecular Mechanism Analyzed by RT-qPCR, TCGA and In Silico Analysis. Int. J. Oncol. 2018, 53, 1557–1579. [Google Scholar] [CrossRef]
- Hoch, K.; Volk, D.E. Structures of Thymosin Proteins. Vitam. Horm 2016, 102, 1–24. [Google Scholar] [CrossRef]
- Matteucci, C.; Minutolo, A.; Balestrieri, E.; Petrone, V.; Fanelli, M.; Malagnino, V.; Ianetta, M.; Giovinazzo, A.; Barreca, F.; Di Cesare, S.; et al. Thymosin Alpha 1 Mitigates Cytokine Storm in Blood Cells from Coronavirus Disease 2019 Patients. Open. Forum. Infect. Dis. 2020, 8, ofaa588. [Google Scholar] [CrossRef]
- Romani, L.; Bistoni, F.; Gaziano, R.; Bozza, S.; Montagnoli, C.; Perruccio, K.; Pitzurra, L.; Bellocchio, S.; Velardi, A.; Rasi, G.; et al. Thymosin α 1 Activates Dendritic Cells for Antifungal Th1 Resistance Through Toll-Like Receptor Signaling. Blood 2004, 103, 4232–4239. [Google Scholar] [CrossRef]
- Ademoglu, E.; Gökkuşu, C.; Oz, B. Thymosin Alpha-1: Evidence for an Antiatherogenic Effect. Ann. Nutr. Metab. 1998, 42, 283–289. [Google Scholar] [CrossRef]
- Freeman, K.W.; Bowman, B.R.; Zetter, B.R. Regenerative Protein Thymosin β-4 is a Novel Regulator of Purinergic Signaling. FASEB J. 2011, 25, 907–915. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, J.; Bi, X.; Gao, J.; Shen, Z.; Zhu, J.; Fu, G. Thymosin β4 Promotes Endothelial Progenitor Cell Angiogenesis via a Vascular Endothelial Growth Factor-Dependent Mechanism. Mol. Med. Rep. 2018, 18, 2314–2320. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Kumar, S.; Sopko, N.; Qin, Y.; Wei, C.; Kim, I.K. Thymosin β4 and Cardiac Protection: Implication in Inflammation and Fibrosis. Ann. N. Y. Acad. Sci. 2012, 1269, 84–91. [Google Scholar] [CrossRef]
- Chung, K.Y.; Kim, J.; Johnson, B.J. All-trans Retinoic Acid Alters the Expression of Adipogenic Genes during the Differentiation of Bovine Intramuscular and Subcutaneous Adipocytes. J. Anim. Sci. Technol. 2021, 63, 1397–1410. [Google Scholar] [CrossRef]
- Herz, C.T.; Kiefer, F.W. The Transcriptional Role of Vitamin A and the Retinoid Axis in Brown Fat Function. Front. Endocrinol. 2020, 11, 608. [Google Scholar] [CrossRef] [PubMed]
- Ayaori, M.; Yakushiji, E.; Ogura, M.; Nakaya, K.; Hisada, T.; Uto-Kondo, H.; Takiguchi, S.; Terao, Y.; Sasaki, M.; Komatsu, T.; et al. Retinoic Acid Receptor Agonists Regulate Expression of ATP-Binding Cassette Transporter G1 in Macrophages. Biochim. Biophys. Acta 2012, 1821, 561–572. [Google Scholar] [CrossRef] [PubMed]
- Lynch, H.E.; Sempowski, G.D. Molecular Measurement of T Cell Receptor Excision Circles. Methods Mol. Biol. 2013, 979, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Douek, D.C.; McFarland, R.D.; Keiser, P.H.; Gage, E.A.; Massey, J.M.; Haynes, B.F.; Polis, M.A.; Haase, A.T.; Feinberg, M.B.; Sullivan, J.L.; et al. Changes in Thymic Function with Age and During the Treatment of HIV Infection. Nature 1998, 396, 690–695. [Google Scholar] [CrossRef]
- Paparazzo, E.; Geracitano, S.; Lagani, V.; Citrigno, L.; Bartolomeo, D.; Aceto, M.A.; Bruno, F.; Maletta, R.; Passarino, G.; Montesanto, A. Thymic Function and Survival at Advance Ages in Nursing Home Residents from Southern Italy. Immun. Ageing 2023, 20, 16. [Google Scholar] [CrossRef] [PubMed]
- Junge, S.; Kloeckener-Gruissem, B.; Zufferey, R.; Keisker, A.; Salgo, B.; Fauchere, J.C.; Scherer, F.; Shalaby, T.; Grotzer, M.; Siler, U.; et al. Correlation Between Recent Thymic Emigrants and CD31+ (PECAM-1) CD4+ T Cells in Normal Individuals During Aging and in Lymphopenic Children. Eur. J. Immunol. 2007, 37, 3270–3280. [Google Scholar] [CrossRef] [PubMed]
- Araki, T.; Nishino, M.; Gao, W.; Dupuis, J.; Hunninghake, G.M.; Murakami, T.; Washko, G.R.; O’Connor, G.T.; Hatabu, H. Normal Thymus in Adults: Appearance on CT And Associations with Age, Sex, BMI and Smoking. Eur. Radiol. 2016, 26, 15–24. [Google Scholar] [CrossRef]
- Suzuki, K.; Kitami, A.; Okada, M.; Takamiya, S.; Ohashi, S.; Tanaka, Y.; Uematsu, S.; Kadokura, M.; Suzuki, T.; Hashizume, N.; et al. Evaluation of Age-Related Thymic Changes Using Computed Tomography Images: A Retrospective Observational Study. Medicine 2022, 101, e29950. [Google Scholar] [CrossRef]
- Greenish, D.; Evans, C.J.; Khine, C.K.; Rodrigues, J.C.L. The Thymus: What’s Normal and What’s Not? Problem-Solving with MRI. Clin. Radiol. 2023, 78, 885–894. [Google Scholar] [CrossRef]
- Hussein, S.A.; Sabri, Y.Y.; Fouad, M.A.; Mohamed, N.M. Role of Different Imaging Modalities in the Evaluation of Normal and Diseased Thymus. Egypt. J. Bronchol. 2020, 14, 5. [Google Scholar] [CrossRef]
- Claflin, K.E.; Flippo, K.H.; Sullivan, A.I.; Naber, M.C.; Zhou, B.; Neff, T.J.; Jensen-Cody, S.O.; Potthoff, M.J. Conditional Gene Targeting Using UCP1-Cre Mice Directly Targets the Central Nervous System Beyond Thermogenic Adipose Tissues. Mol. Metab. 2022, 55, 101405. [Google Scholar] [CrossRef]
- Dhindsa, D.S.; Sandesara, P.B.; Shapiro, M.D.; Wong, N.D. The Evolving Understanding and Approach to Residual Cardiovascular Risk Management. Front. Cardiovasc. Med. 2020, 7, 88. [Google Scholar] [CrossRef]
- Larouche, J.D.; Laumont, C.M.; Trofimov, A.; Vincent, K.; Hesnard, L.; Brochu, S.; Côté, C.; Humeau, J.F.; Bonneil, É.; Lanoix, J.; et al. Transposable Elements Regulate Thymus Development and Function. Elife 2024, 12, RP91037. [Google Scholar] [CrossRef]
- Liang, Y.; Qu, X.; Shah, N.M.; Wang, T. Towards Targeting Transposable Elements for Cancer Therapy. Nat. Rev. Cancer 2024, 24, 123–140. [Google Scholar] [CrossRef]
- Gentile, A.M.; Lhamyani, S.; Mengual Mesa, M.; Pavón-Morón, F.J.; Pearson, J.R.; Salas, J.; Clemente-Postigo, M.; Pérez Costillas, L.; Fuster, G.O.; El Bekay Rizky, R. A Network Comprised of miR-15b and miR-29a Is Involved in Vascular Endothelial Growth Factor Pathway Regulation in Thymus Adipose Tissue from Elderly Ischemic Cardiomyopathy Subjects. Int. J. Mol. Sci. 2023, 24, 14456. [Google Scholar] [CrossRef]
- Sannier, A.; Stroumza, N.; Caligiuri, G.; Le Borgne-Moynier, M.; Andreata, F.; Senemaud, J.; Louedec, L.; Even, G.; Gaston, A.T.; Deschildre, C.; et al. Thymic Function Is a Major Determinant of Onset of Antibody-Mediated Rejection in Heart Transplantation. Am. J. Transplant. 2018, 18, 964–971. [Google Scholar] [CrossRef]
- Markert, M.L.; Gupton, S.E.; McCarthy, E.A. Experience with Cultured Thymus Tissue in 105 Children. J. Allergy Clin. Immunol. 2022, 149, 747–757. [Google Scholar] [CrossRef]
- Kwun, J.; Li, J.; Rouse, C.; Park, J.B.; Farris, A.B.; Kuchibhatla, M.; Turek, J.W.; Knechtle, S.J.; Kirk, A.D.; Markert, M.L. Cultured Thymus Tissue Implantation Promotes Donor-Specific Tolerance to Allogeneic Heart Transplants. JCI Insight 2020, 5, e129983. [Google Scholar] [CrossRef]
- Pullen, L.C. T Cells Prepare for a Test: Can They Tolerate a Donor Heart? Am. J. Transplant. 2022, 22, 1731–1732. [Google Scholar] [CrossRef]
- Vasiliev, A.P.; Streltsova, N.N. Cholesterol and its Biological Significance. Atherosclerosis. Statin Therapy (Part 1). Sib. J. Clin. Exp. Med. 2022, 37, 27–35. [Google Scholar] [CrossRef]
Protective Mechanism | Result of Failure | Object of Study | References |
---|---|---|---|
Negative selection of auto-specific T lymphocytes | 1. Diminished expression of tissue restricted antigens in thymus (ApoB-antigen) 2. Decreased frequency of cells undergoing clonal deletion in thymus 3. Appearance of ApoB-specific T lymphocytes in circulation | C57BL/6J mice (males and females; young and aged animals) | Hester A.K. et al. (2022) [11] |
Maintenance of T cell homeostasis | 1. Decreased numbers of recent thymic migrants in patients with non-ST elevation acute coronary syndrome (NSTACS) compared to stable angina and control (according to the signal joint T cell receptor excision circles number) 2. Decreased numbers of recent thymic migrants in severer atherosclerosis compared to less severe atherosclerosis (according to the signal joint T cell receptor excision circles number) | CAD patients | Huang S. et al. (2016) [43] |
1. Decreased frequency of recent thymic migrants in patients with acute coronary syndrome compared to healthy controls (according to the numbers of CD31+ cells) 2. Decreased production of anti-inflammatory TGF-β and IL-10 | CAD patients | Huang L. et al. (2017) [49] | |
Generation of atheroprotective natural T regulatory cells | Development of larger plaques | ApoE−/− mice depleted of Tregs | Ait-Oufella H. et al. (2006) [50] |
1. 2.1-fold increase in the size of atherosclerotic lesions 2. 1.7-fold increase in plasma cholesterol 3. Increased levels of very low density lipoproteins cholesterol 4. Altered systemic lipid metabolism | LDLR−/− mice depeleted of Tregs | Klingenberg R. et al. (2013) [51] | |
1. Decreased CD4(+)CD25(+)CD127(low)CD45RO(−)CD45RA(+)CD31(+) numbers of recent thymic emigrant Treg cells in NSTACS patients compared to patients with chronic stable angina and chest pain syndrome 2. Decreased numbers of Treg cells with T cell receptor excision circle in NSTACS patients 3. Increased apoptosis in Treg cells 4. Increased markers of inflammation (TNF concentration; decreased IL-10/TNF ratio | CAD patients | Zhang W.C. et al. (2012) [52] | |
1. Low levels of CD4+FoxP3+ cells associated with development of myocardial infarction 2. Increased release of IL-2, IL-6, IL-8, IFN-γ, TNF-α and IL-1β in patients with low numbers of Treg cells | Participants of Malmö Diet and Cancer Study | Wigren M. et al. (2012) [53] | |
1. Decreased numbers of thymic Helios+ Treg cells in patients with acute coronary syndrome compared to patients with stable angina and control. 2. Negative correlation between CD4+Foxp3+Helios+ Tregs and IL-6 and positive correlation with circulating TGF-β and HDL-C in CAD patients and control | CAD patients | Jiang L. et al. (2017) [54] | |
Secretory activity of thymic adipocytes | Increased secretion of leptin and decreased secretion of insulin are associated with increased arterial stiffness | CAD patients undergoing CABG | Naryzhnaya N.V. et al. (2020) [48] |
Title | Function | Role in Thymus | Role in Atherogenesis | Activation/Inhibitory Agents | References |
---|---|---|---|---|---|
Mitochondrial uncoupling protein (UCP1) | Uncouples oxidative phosphorylation through the leakage of protons across inner mitochondrial membrane and provides thermogenesis | Regulation of positive and negative selection through apoptosis | Browning of perivascular adipose tissue, switch to anti-inflammatory phenotype of adipose tissue | β3-adrenoreceptor agonists; catecholamines, fibroblast growth factor (FGF)−21, thyroid hormones activate | Kang G.S. et al. (2023) [68]; Adams A.E. et al. (2010) [69]; Adachi Y. et al. (2022) [70] |
T-box transcription factor (TBX1) | Transcription factor, controlling development of organs and tissue; target genes are not known | Critical for development of normal thymus (athymia and DiGeorge Syndrome in case of absence) | Browning of adipose tissue; inhibition of intracellular signaling pathways of inflammation, cell differentiation and apoptosis | Vascular endothelial growth factor activates | Giardino G. et al. (2020) [71]; Banfai K. et al. (2019) [72]; Ozcan L. et al. (2021) [73]; Stalmans I. et al. (2003) [74] |
Forkhead box protein N1 (Foxn1) | Transcription factor. Controls expression of threonine peptidases, components of the proteasome complex, protein transporters and CD83 | 1. Recruitment of hematopoietic cell progenitors to thymus and their differentiation towards T lymphocytes 2. Regulation of positive selection | 1. Increases pro-adipogenic factors PPAR-γ, insulin-dependent glucose transporter GLUT4 and IGF2 and favors obesity 2. Induces oxidative stress in endothelial cells | LDL-C inhibits; Endothelin-1 activates | Žuklys S. et al. (2016) [75]; Dai X. et al. (2018) [5]; Walendzik K. et al. (2020) [76]; Gawronska-Kozak B. et al. (2021) [77] |
Homeobox Protein A3 (HOXA3) | Transcription factor. Regulates morphogenesis and cellular differentiation; predictive targets include 273 genes | Regulates early stages of development in thymus | 1. Controls development of M1/M2 macrophages in vessel wall; 2. Controls endothelial cell migration and angiogenesis | Retinoic acid | Giardino G. (2020) [71]; Diman N.Y. et al. (2011) [78]; Xu C. et al. (2022) [79]; Mace K.A. et al. (2005) [80] |
Thymosin α1 (Tα1) | 28 amino-acid peptide, immune modulator | 1. Regulation of AIRE expression; 2. Activation of tolerogenic dendritic cells | 1. Inhibition of pro-inflammatory signaling pathways in ischemia; 2. Recruitment of endothelial cells; angiogenesis 3. Recombinant substance exists | ? | Moretti S. et al. (2015) [81]; Halder S.K. et al. (2015) [82]; Gladka M.M. et al. (2021) [83] |
Thymosin β4 (Tβ4) | 43 amino-acid peptide, G-actin sequestering peptide | 1. Regulates differentiation of thymocytes through cytoskeletal rearrangement of thymus epithelial cells | 1. Improves function of endothelial cells; 2. Anti-inflammatory action in myocardial infarction 3. Regulates expression of low density lipoprotein receptor related protein 1 expression on vascular smooth muscle cells 4. Recombinant substance exists | ? | Ying Y. et al. (2024) [84]; Xing Y. et al. (2021) [85]; Munshaw S. et al. (2023) [86] |
Retinoic acid | Metabolite of vitamin A | 1. Limits the rate of negative selection in thymus | 1. Induces browning of perivascular adipose tissue 2. Prevents formation of foam cells 3. Reduces the size of atherosclerotic lesions 4. Inhibits activation of inflammatory neutrophils 5. Stimulates production of endogenous NO 6. Decreases expression of endothelin-1 by endothelial cells | 1. Dietary vitamin A 2. Short-chain retinol dehydrogenases (catalyze synthesis of retinoic acid from retinol) | Wendland K. et al. (2018) [87]; Kalisz M. et al. (2021) [88]; Deng Q., Chen J. (2022) [89]; Cai W. et al. (2019) [90]; Achan V. et al. (2002) [91]; Yokota J. et al. (2001) [92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kologrivova, I.V.; Naryzhnaya, N.V.; Suslova, T.E. Thymus in Cardiometabolic Impairments and Atherosclerosis: Not a Silent Player? Biomedicines 2024, 12, 1408. https://doi.org/10.3390/biomedicines12071408
Kologrivova IV, Naryzhnaya NV, Suslova TE. Thymus in Cardiometabolic Impairments and Atherosclerosis: Not a Silent Player? Biomedicines. 2024; 12(7):1408. https://doi.org/10.3390/biomedicines12071408
Chicago/Turabian StyleKologrivova, Irina V., Natalia V. Naryzhnaya, and Tatiana E. Suslova. 2024. "Thymus in Cardiometabolic Impairments and Atherosclerosis: Not a Silent Player?" Biomedicines 12, no. 7: 1408. https://doi.org/10.3390/biomedicines12071408
APA StyleKologrivova, I. V., Naryzhnaya, N. V., & Suslova, T. E. (2024). Thymus in Cardiometabolic Impairments and Atherosclerosis: Not a Silent Player? Biomedicines, 12(7), 1408. https://doi.org/10.3390/biomedicines12071408