Efficacy of Photobiomodulation Therapy in Older Adults: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Study Selection Criteria
2.3. Data Extraction
2.4. Quality Assessment
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnstone, D.M.; Moro, C.; Stone, J.; Benabid, A.L.; Mitrofanis, J. Turning on Lights to Stop Neurodegeneration: The Potential of near Infrared Light Therapy in Alzheimer’s and Parkinson’s Disease. Front. Neurosci. 2015, 9, 500. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, M.R. Shining Light on the Head: Photobiomodulation for Brain Disorders. BBA Clin. 2016, 6, 113–124. [Google Scholar] [CrossRef]
- Hamblin, M.R. How to Write a Good Photobiomodulation Article. Photobiomodul. Photomed. Laser Surg. 2019, 37, 325–326. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, M.R. Photobiomodulation for Alzheimer’s Disease: Has the Light Dawned? Photonics 2019, 6, 77. [Google Scholar] [CrossRef] [PubMed]
- Enengl, J.; Hamblin, M.R.; Dungel, P. Photobiomodulation for Alzheimer’s Disease: Translating Basic Research to Clinical Application. J. Alzheimers Dis. 2020, 75, 1073–1082. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.S.; Lee, T.L.; Hamblin, M.R.; Cheung, M.C. Photobiomodulation Enhances Memory Processing in Older Adults with Mild Cognitive Impairment: A Functional near-Infrared Spectroscopy Study. J. Alzheimers Dis. 2021, 83, 1471–1480. [Google Scholar] [CrossRef] [PubMed]
- Robijns, J.; Nair, R.G.; Lodewijckx, J.; Arany, P.; Barasch, A.; Bjordal, J.M.; Bossi, P.; Chilles, A.; Corby, P.M.; Epstein, J.B.; et al. Photobiomodulation Therapy in Management of Cancer Therapy-Induced Side Effects: Walt Position Paper 2022. Front. Oncol. 2022, 12, 927685. [Google Scholar] [CrossRef] [PubMed]
- Bensadoun, R.J.; Epstein, J.B.; Nair, R.G.; Barasch, A.; Raber-Durlacher, J.E.; Migliorati, C.; Genot-Klastersky, M.T.; Treister, N.; Arany, P.; Lodewijckx, J.; et al. Safety and Efficacy of Photobiomodulation Therapy in Oncology: A Systematic Review. Cancer Med. 2020, 9, 8279–8300. [Google Scholar] [CrossRef]
- Gauthier, S.; Aisen, P.S.; Cummings, J.; Detke, M.J.; Longo, F.M.; Raman, R.; Sabbagh, M.; Schneider, L.; Tanzi, R.; Tariot, P.; et al. Non-Amyloid Approaches to Disease Modification for Alzheimer’s Disease: An Eu/Us Ctad Task Force Report. J. Prev. Alzheimers Dis. 2020, 7, 152–157. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The Prisma 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Rev. Esp. Cardiol. (Engl. Ed.) 2021, 74, 790–799. [Google Scholar] [CrossRef]
- Wells, G.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (Nos) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. The Ottawa Hospital, Research Institute. Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 24 February 2024).
- Sterne, J.A.C.; Savovic, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. Rob 2: A Revised Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Herkes, G.; McGee, C.; Liebert, A.; Bicknell, B.; Isaac, V.; Kiat, H.; McLachlan, C.S. A Novel Transcranial Photobiomodulation Device to Address Motor Signs of Parkinson’s Disease: A Parallel Randomised Feasibility Study. eClinicalMedicine 2023, 66, 102338. [Google Scholar] [CrossRef]
- Degerman, M.; Ohman, M.; Bertilson, B.C. Photobiomodulation, as Additional Treatment to Traditional Dressing of Hard-to-Heal Venous Leg Ulcers, in Frail Elderly with Municipality Home Healthcare. PLoS ONE 2022, 17, e0274023. [Google Scholar] [CrossRef]
- Blivet, G.; Relano-Gines, A.; Wachtel, M.; Touchon, J. A Randomized, Double-Blind, and Sham-Controlled Trial of an Innovative Brain-Gut Photobiomodulation Therapy: Safety and Patient Compliance. J. Alzheimers Dis. 2022, 90, 811–822. [Google Scholar] [CrossRef] [PubMed]
- Markowitz, S.N.; Devenyi, R.G.; Munk, M.R.; Croissant, C.L.; Tedford, S.E.; Ruckert, R.; Walker, M.G.; Patino, B.E.; Chen, L.; Nido, M.; et al. A Double-Masked, Randomized, Sham-Controlled, Single-Center Study with Photobiomodulation for the Treatment of Dry Age-Related Macular Degeneration. Retina 2020, 40, 1471–1482. [Google Scholar] [CrossRef] [PubMed]
- Chao, L.L. Effects of Home Photobiomodulation Treatments on Cognitive and Behavioral Function, Cerebral Perfusion, and Resting-State Functional Connectivity in Patients with Dementia: A Pilot Trial. Photobiomodul. Photomed. Laser Surg. 2019, 37, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Maksimovich, I.V. Intracerebral Transcatheter Laser Photobiomodulation Therapy in the Treatment of Binswanger’s Disease and Vascular Parkinsonism: Research and Clinical Experience. Photobiomodul. Photomed. Laser Surg. 2019, 37, 606–614. [Google Scholar] [CrossRef]
- Brzak, B.L.; Cigic, L.; Baricevic, M.; Sabol, I.; Mravak-Stipetic, M.; Risovic, D. Different Protocols of Photobiomodulation Therapy of Hyposalivation. Photomed. Laser Surg. 2018, 36, 78–82. [Google Scholar] [CrossRef]
- Merry, G.F.; Munk, M.R.; Dotson, R.S.; Walker, M.G.; Devenyi, R.G. Photobiomodulation Reduces Drusen Volume and Improves Visual Acuity and Contrast Sensitivity in Dry Age-Related Macular Degeneration. Acta Ophthalmol. 2017, 95, e270–e277. [Google Scholar] [CrossRef]
- Saltmarche, A.E. Low Level Laser Therapy for Healing Acute and Chronic Wounds-the Extendicare Experience. Int. Wound J. 2008, 5, 351–360. [Google Scholar] [CrossRef]
- Lucas, C.; van Gemert, M.J.; de Haan, R.J. Efficacy of Low-Level Laser Therapy in the Management of Stage Iii Decubitus Ulcers: A Prospective, Observer-Blinded Multicentre Randomised Clinical Trial. Lasers Med. Sci. 2003, 18, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Wirdefeldt, K.; Adami, H.O.; Cole, P.; Trichopoulos, D.; Mandel, J. Epidemiology and Etiology of Parkinson’s Disease: A Review of the Evidence. Eur. J. Epidemiol. 2011, 26 (Suppl. 1), S1–S58. [Google Scholar] [PubMed]
- Hong, N. Photobiomodulation as a Treatment for Neurodegenerative Disorders: Current and Future Trends. Biomed. Eng. Lett. 2019, 9, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Xue, C.; Wang, P.; Li, Y.; Wu, L. Photon Penetration Depth in Human Brain for Light Stimulation and Treatment: A Realistic Monte Carlo Simulation Study. J. Innov. Opt. Health Sci. 2017, 10, 1743002. [Google Scholar] [CrossRef]
- Hong, C.T.; Hu, C.J.; Lin, H.Y.; Wu, D. Effects of Concomitant Use of Hydrogen Water and Photobiomodulation on Parkinson Disease: A Pilot Study. Medicine 2021, 100, e24191. [Google Scholar] [CrossRef]
- McGee, C.; Liebert, A.; Bicknell, B.; Pang, V.; Isaac, V.; McLachlan, C.S.; Kiat, H.; Herkes, G. A Randomized Placebo-Controlled Study of a Transcranial Photobiomodulation Helmet in Parkinson’s Disease: Post-Hoc Analysis of Motor Outcomes. J. Clin. Med. 2023, 12, 2846. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Chen, A.C.; Carroll, J.D.; Hamblin, M.R. Biphasic Dose Response in Low Level Light Therapy. Dose Response 2009, 7, 358–383. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.D.S.; Gonzalez-Lima, F.; da Silva, S.G. Photobiomodulation for the Aging Brain. Ageing Res. Rev. 2021, 70, 101415. [Google Scholar] [CrossRef]
- Saltmarche, A.E.; Naeser, M.A.; Ho, K.F.; Hamblin, M.R.; Lim, L. Significant Improvement in Cognition in Mild to Moderately Severe Dementia Cases Treated with Transcranial Plus Intranasal Photobiomodulation: Case Series Report. Photomed. Laser Surg. 2017, 35, 432–441. [Google Scholar] [CrossRef]
- Nagy, E.N.; Ali, A.Y.; Behiry, M.E.; Naguib, M.M.; Elsayed, M.M. Impact of Combined Photo-Biomodulation and Aerobic Exercise on Cognitive Function and Quality-of-Life in Elderly Alzheimer Patients with Anemia: A Randomized Clinical Trial. Int. J. Gen. Med. 2021, 14, 141–152. [Google Scholar] [CrossRef]
- Pruitt, T.; Wang, X.; Wu, A.; Kallioniemi, E.; Husain, M.M.; Liu, H. Transcranial Photobiomodulation (Tpbm) with 1,064-Nm Laser to Improve Cerebral Metabolism of the Human Brain In Vivo. Lasers Surg. Med. 2020, 52, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.D.S.; Martins, R.A.B.L.; da Silva, S.G. Therapeutic Potential of Photobiomodulation in Alzheimer’s Disease: A Systematic Review. J. Lasers Med. Sci. 2020, 11 (Suppl. 1), S16–S22. [Google Scholar] [CrossRef] [PubMed]
- Bicknell, B.; Liebert, A.; Borody, T.; Herkes, G.; McLachlan, C.; Kiat, H. Neurodegenerative and Neurodevelopmental Diseases and the Gut-Brain Axis: The Potential of Therapeutic Targeting of the Microbiome. Int. J. Mol. Sci. 2023, 24, 9577. [Google Scholar] [CrossRef]
- Liebert, A.; Bicknell, B.; Johnstone, D.M.; Gordon, L.C.; Kiat, H.; Hamblin, M.R. “Photobiomics”: Can Light, Including Photobiomodulation, Alter the Microbiome? Photobiomodul. Photomed. Laser Surg. 2019, 37, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Valverde, A.; Mitrofanis, J. Photobiomodulation for Hypertension and Alzheimer’s Disease. J. Alzheimers Dis. 2022, 90, 1045–1055. [Google Scholar] [CrossRef]
- Petz, F.F.C.; Felix, J.V.C.; Roehrs, H.; Pott, F.S.; Stocco, J.G.D.; Marcos, R.L.; Meier, M.J. Effect of Photobiomodulation on Repairing Pressure Ulcers in Adult and Elderly Patients: A Systematic Review. Photochem. Photobiol. 2020, 96, 191–199. [Google Scholar] [CrossRef]
- Mathur, R.K.; Sahu, K.; Saraf, S.; Patheja, P.; Khan, F.; Gupta, P.K. Low-Level Laser Therapy as an Adjunct to Conventional Therapy in the Treatment of Diabetic Foot Ulcers. Lasers Med. Sci. 2017, 32, 275–282. [Google Scholar] [CrossRef]
- Salman, S.; Guermonprez, C.; Peno-Mazzarino, L.; Lati, E.; Rousseaud, A.; Declercq, L.; Kerdine-Romer, S. Photobiomodulation Controls Keratinocytes Inflammatory Response through Nrf2 and Reduces Langerhans Cells Activation. Antioxidants 2023, 12, 766. [Google Scholar] [CrossRef]
- Suh, S.; Choi, E.H.; Mesinkovska, N.A. The Expression of Opsins in the Human Skin and Its Implications for Photobiomodulation: A Systematic Review. Photodermatol. Photoimmunol. Photomed. 2020, 36, 329–338. [Google Scholar] [CrossRef]
- Salehpour, F.; Gholipour-Khalili, S.; Farajdokht, F.; Kamari, F.; Walski, T.; Hamblin, M.R.; DiDuro, J.O.; Cassano, P. Therapeutic Potential of Intranasal Photobiomodulation Therapy for Neurological and Neuropsychiatric Disorders: A Narrative Review. Rev. Neurosci. 2020, 31, 269–286. [Google Scholar] [CrossRef]
- Hashmi, J.T.; Huang, Y.Y.; Sharma, S.K.; Kurup, D.B.; De Taboada, L.; Carroll, J.D.; Hamblin, M.R. Effect of Pulsing in Low-Level Light Therapy. Lasers Surg. Med. 2010, 42, 450–466. [Google Scholar] [CrossRef] [PubMed]
Author, Year Ref | Country | Study Design | Sample Size | Age | Medical Condition |
---|---|---|---|---|---|
Herkes, 2023 [13] | Australia | Controlled trial | 40 | 72 ± 5 * | Parkinson’s disease |
Degerman, 2022 [14] | Sweden | Cohort | 68 | 81 ± 7 * | Venous leg ulcer |
Blivet, 2022 [15] | France | Controlled trial | 53 | 73 ± 7 * | Cognitive disorders |
Markowitz, 2020 [16] | Canada | Controlled trial | 30 | 76 ± 8 * | Macular degeneration |
Chao, 2019 [17] | USA | Controlled trial | 8 | 80 ± 6 * | Cognitive disorders |
Maksimovich, 2019 [18] | Russia | Cohort | 27 | 78 [58–81] † | Binswanger’s disease |
62 | 77 [52–80] † | Vascular parkinsonism | |||
Brzak, 2018 [19] | Croatia | Controlled trial | 30 | 72 [52–85] ‡ | Hyposalivation |
Merry, 2017 [20] | Canada | Cohort | 24 | 78 ± 8 * | Macular degeneration |
Saltmarche, 2008 [21] | Canada | Cohort | 16 | 85 [76–97] † | Chronic wounds |
Lucas, 2003 [22] | Netherlands | Controlled trial | 86 | 83 ± 9 * | Decubitus ulcer |
Author, Year Ref | Device | Wave Length (nm) | Power Output (mW) | Irradiation Duration | Dose per Treatment (Joule/cm2) | Beam Spot Size | Pulse Frequency (Hz) | Target Location | Number of Sessions | Interval between Sessions |
---|---|---|---|---|---|---|---|---|---|---|
Neurodegenerative diseases | ||||||||||
Herkes, 2023 [13] | tPBM helmet ”Neuro” | 635 (red) 810 (IR) | 27 (red) 52 (IR) | 12 min (red) 12 min (IR) | 5.4 (red) 10.4 (NIR)) | ND | ND | Transcranial | 6 days per week for 12 weeks | 1 day |
Blivet, 2022 [15] | REGEnLIFE RGn530 | 660 (red) 850 (IR) 850 (laser) | 25.5 (red) 28.8 (IR) 21.4 (laser) | 25 min | 19.1 (red) 21.57 (IR) 16.02 (laser) | 929.6 mm2 (red) 94.8 mm2 (IR) 102.6 mm2 (laser) | 10 | Transcranial Abdomen | 5 times per week for 8 weeks | 2 days |
Chao, 2019 [17] | Vielight Neuro Gamma Device | 810 | 100 (posterior transcranial) 75 (anterior transcranial) 25 (intranasal LED) | 20 min | 120 (posterior) 90 (anterior) 30 (intranasal) | 100 mm2 | 40 | Transcranial Intranasal | 3 times per week for 12 weeks | 2–3 days |
Maksimovich, 2019 [18] | Helium-neon laser ULF-01 Anod Ltd. | 633 | 25–45 | 20–40 min | 29–106 | 0.8–1.6 mm2 | continuous | Intracerebral (intra-arterial) | 1 | NA |
Wounds and ulcers | ||||||||||
Degerman, 2022 [14] | MID-LASER (Irradia) | 635 (red) 904 (IR) | 75 (red) 60 (IR) | 30 + 120 | 2.4 (ulcer) 0.6 (intact skin) | 9 mm2 (635 nm) 5.5 mm2 (904 nm) | 250 (red) 700 (IR) | Venous Leg Ulcer (VLU) and intact skin close to VLU | 2 times per week | 2 and 3 days |
Saltmarche, 2008 [21] | MedX Low Level Laser 1000 Console System | 785 | 5–50 | 60 s (wound margin) 30 s (wound bed) 120 s (eschar) | 1 to 6 | ND | ND | Pressure ulcers Diabetes ulcers Venous ulcer At risk areas | Week 1: daily × 5 days Weeks 2–9: 3× weekly | Week 1: 1 day Weeks 2–9: 2–3 days |
Lucas, 2003 [22] | ND | 904 | 12 × 8 | 125 s | 1 | 30 cm2 | 830 | Wounds in different locations | 5 days per week for 6 weeks | 2 days |
Macular degeneration | ||||||||||
Markowitz, 2020 [16] | LumiThera Valeda Light Delivery System | 590 (yellow) 660 (red) 850 (NIR) | 5 (yellow) 65 (red) 8 (NIR) | 250 s | 20.8 (yellow) 54.16 (red) 6.7 (NIR) | 30 mm2 | Pulse (yellow) Pulse (NIR) Continuous (red) | Eye | 18 | 5 months |
Merry, 2017 [20] | Warp 10 (Quantum devices) and Gentlewaves (Light Bioscience) | 590 (yellow) 670 (red) 790 (NIR) | 50–80 (red) 4 (yellow) 0.6 (NIR) | 88 ± 8 s (red) 35 s (yellow) 35 s (NIR) | 0.1 4–7.68 0.1 | ND | 2.5 | Eye | 9 sessions over 3 weeks | 2–3 days |
Hyposalivation | ||||||||||
Brzak, 2018 [19] | BTL-2000 Medical Technologies | 685 (red) 830 (NIR) | 30 (red) 35 (NIR) | 5 min (red) 4:17 min (NIR) | 1.8 | ND | 5.2 | Parotide | 10 consecutive days | 1 day |
2 min (red) 1:43 min (NIR) | 1.8 | ND | Sub-mandibular | |||||||
1 min (red) 51 s (NIR) | 1.8 | ND | Sublingual |
Author, Year Ref | Study Design | Medical Condition | Primary Outcome | Group | Results | p |
---|---|---|---|---|---|---|
Neurodegenerative diseases | ||||||
Herkes, 2023 [13] | Controlled trial | Parkinson’s disease | MDS-UPDRS-III mean difference after stage 1 | Sham | Mean: 3.9 95% CI: −3.5–11.3 | NS |
Active | ||||||
MDS-UPDRS-III Mean difference after stage 2 | Sham | Mean: −3.1 95% CI: −10.6–2.7 | NS | |||
Active | ||||||
Blivet, 2022 [15] | Controlled trial | Cognitive disorders | ADAS-Cog (absolute change) | No PBM | 1.9 ± 4.1 | 0.49 |
PBM | 0.9 ± 4.9 | |||||
Chao, 2019 [17] | Controlled trial | Cognitive disorders | ADAS-Cog (week 12) | Usual care | 39.2 ± 2.6 | 0.007 |
PBM | 32.3 ± 4.8 | |||||
NPI-FS (week 12) | Usual care | 20.3 ± 3.5 | 0.03 | |||
PBM | 13.5 ± 2.0 | |||||
Maksimovich, 2019 [18] | Cohort | Binswanger’s disease | % good clinical result (12–24 months) | Intervention | 9/14 | <0.005 |
Control | 0/13 | |||||
Vascular parkinsonism | % good clinical result (12–24 months) | Intervention | 9/37 | <0.005 | ||
Control | 0/25 | |||||
Wounds and ulcers | ||||||
Degerman, 2022 [14] | Cohort | Venous leg ulcer | Healing time (days) | Intervention | 68.8 ± 64.1 | 0.0002 |
Control | 431.5 ± 498.1 | |||||
Saltmarche, 2008 [21] | Cohort | Chronic wounds | Difference in Push Score (paired) | Pre/Post | −3.2 ± 3.4 | 0.003 |
Lucas, 2003 [22] | Controlled trial | Decubitus ulcer | Absolute wound size reduction (mm2) | Control | 138 ± 270 | 0.23 |
PBM | 48 ± 394 | |||||
Relative wound size reduction (%) | Control | 34 ± 204 | 0.42 | |||
PBM | 5 ± 194 | |||||
Macular degeneration | ||||||
Markowitz, 2020 [16] | Controlled trial | Macular degeneration | BCVA letter score at month 1 | Sham | 1.2 ± 5.4 | 0.10 |
PBM | 3.8 ± 5.1 | |||||
BCVA letter score at month 7 | Sham | 1.7 ± 6.0 | 0.16 | |||
PBM | 4.3 ± 6.2 | |||||
Merry, 2017 [20] | Cohort | Macular degeneration | BCVA letter score | BL to V1 | +5.90 | <0.001 |
BL to V2 | +5.14 | <0.001 | ||||
Hyposalivation | ||||||
Brzak, 2018 [19] | Controlled trial | Hyposalivation | Salivary flow rate | 830 nm | 0.20 mL/min (Day 1) to 0.35 mL/min (Day 10) | 0.0019 |
685 nm | 0.15 mL/min (Day 1) to 0.25 mL/min (Day 10) | 0.0044 |
Author, Year Ref | Selection | Comparability | Outcome | Total Score | Quality Rating | |
---|---|---|---|---|---|---|
Degerman, 2022 [14] | **** | - | *** | 7 | High | |
Maksimovich, 2019 [18] | **** | - | *** | 7 | High | |
Merry, 2017 [20] | **** | - | *** | 7 | High | |
Saltmarche, 2008 [21] | **** | ** | *** | 9 | High | |
Risk of Bias | ||||||
Author, Year Ref | Randomization Process | Deviation from Intended Intervention | Missing Outcome Data | Measurement of the Outcome | Selection of the Reported Result | Overall Bias |
Herkes, 2023 [13] | Low | Low | Low | Low | Low | Low |
Blivet, 2022 [15] | Low | Low | Low | Low | Low | Low |
Markowitz, 2020 [16] | Low | Low | Low | High | High | High |
Chao, 2019 [17] | Low | Some concerns | Low | High | High | High |
Brzak, 2018 [19] | Low | Some concerns | Low | Low | Low | Low |
Lucas, 2003 [22] | Low | Low | Low | Low | Low | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godaert, L.; Dramé, M. Efficacy of Photobiomodulation Therapy in Older Adults: A Systematic Review. Biomedicines 2024, 12, 1409. https://doi.org/10.3390/biomedicines12071409
Godaert L, Dramé M. Efficacy of Photobiomodulation Therapy in Older Adults: A Systematic Review. Biomedicines. 2024; 12(7):1409. https://doi.org/10.3390/biomedicines12071409
Chicago/Turabian StyleGodaert, Lidvine, and Moustapha Dramé. 2024. "Efficacy of Photobiomodulation Therapy in Older Adults: A Systematic Review" Biomedicines 12, no. 7: 1409. https://doi.org/10.3390/biomedicines12071409
APA StyleGodaert, L., & Dramé, M. (2024). Efficacy of Photobiomodulation Therapy in Older Adults: A Systematic Review. Biomedicines, 12(7), 1409. https://doi.org/10.3390/biomedicines12071409