Molecular Changes in the Ischemic Brain as Non-Invasive Brain Stimulation Targets—TMS and tDCS Mechanisms, Therapeutic Challenges, and Combination Therapies
Abstract
:1. Introduction
1.1. Stroke Statistics and Current Rehabilitation Methods
1.2. TMS and tDCS: Characteristics and Differences
2. Discussion
2.1. Cell Death: Apoptosis, Pyroptosis, Ferroptosis, Necroptosis
2.2. Oxidative Stress
2.3. Glial Cells
2.4. Neurogenesis
2.5. Combination Therapies
2.6. Personalised Therapy
3. Conclusion, Limitations, and Directions for Further Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AKT | (=PKB) protein kinase B |
ASCL4 | acyl-coa synthetase long-chain family member 4 |
Bak | bcl-2 homologous antagonist/killer |
Bax | bcl-2-associated protein X |
BBB | blood-brain barrier |
Bcl-2 | b-cell lymphoma 2 |
BDNF | brain-derived neurotrophic factor |
BMSC | bone marrow-derived mesenchymal stem cells |
COX2 | cyclooxygenase 2 |
DLPFC | dorsolateral prefrontal cortex |
DR | death receptor |
DTI | diffusion tensor imaging |
FA | fractional anisotropy |
GAP-43 | growth-associated protein 43 |
GDNF | glial cell line-derived neurotrophic factor |
GFAP | glial fibrillary acidic protein |
GPX4 | glutathione peroxidase 4 |
GSDM | gasdermin |
IFN | interferon |
iNOS | inducible nitric oxide synthase |
LTD | long-term depression |
LTP | long-term potentiation |
MCAO | middle cerebral artery occlusion |
MRI | magnetic resonance imaging |
MSCs | mesenchymal stem cells |
NADPH | nicotinamide adenine dinucleotide phosphate |
NGF | nerve growth factor |
NIBS | non-invasive brain stimulation |
NIHSS | National Institutes of Health Stroke Scale |
NLRP | nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing |
NSC | neural stem cells |
PDGF | platelet-derived growth factor |
PDGF-BB | platelet-derived growth factor—two b subunits |
PI3K | phosphoinositide 3-kinase |
PT | photothrombotic |
SOD | superoxide dismutase |
SPION | superparamagnetic iron oxide nanoparticles |
SVZ | subventricular zone |
TBS | theta burst stimulation |
tDCS | transcranial direct current stimulation |
TFRC | transferrin receptor |
TLR4 | toll-like receptor |
TMS | transcranial magnetic stimulation |
TNF | tumor necrosis factor |
TRAIL | TNF-related apoptosis-inducing ligand |
TUNEL | terminal deoxynucleotidyl transferase dUTP nick end labeling |
References
- Feigin, V.L.; Brainin, M.; Norrving, B.; Martins, S.; Sacco, R.L.; Hacke, W.; Fisher, M.; Pandian, J.; Lindsay, P. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. Int. J. Stroke 2022, 17, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Almeida, O.P. Stroke, depression, and self-harm in later life. Curr. Opin. Psychiatry 2023, 36, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Rafsten, L.; Danielsson, A.; Sunnerhagen, K.S. Anxiety after stroke: A systematic review and meta-analysis. J. Rehabil. Med. 2018, 50, 769–778. [Google Scholar] [CrossRef]
- Rost, N.S.; Brodtmann, A.; Pase, M.P.; Veluw, S.J.v.; Biffi, A.; Duering, M.; Hinman, J.D.; Dichgans, M. Post-Stroke Cognitive Impairment and Dementia. Circ. Res. 2022, 130, 1252–1271. [Google Scholar] [CrossRef] [PubMed]
- Wafa, H.A.; Wolfe, C.D.A.; Emmett, E.; Roth, G.A.; Johnson, C.O.; Wang, Y. Burden of Stroke in Europe: Thirty-Year Projections of Incidence, Prevalence, Deaths, and Disability-Adjusted Life Years. Stroke 2020, 51, 2418–2427. [Google Scholar] [CrossRef] [PubMed]
- Scheldeman, L.; Wouters, A.; Lemmens, R. Imaging selection for reperfusion therapy in acute ischemic stroke beyond the conventional time window. J. Neurol. 2022, 269, 1715–1723. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.C.; Cutler, D.M.; Rosen, A.B. Trends in thrombolytic use for ischemic stroke in the United States. J. Hosp. Med. 2010, 5, 406–409. [Google Scholar] [CrossRef] [PubMed]
- Acherqui, M.; Khattab, H.; Habtany, Y.; Amzil, R.; Bellakhdar, S.; Otmani, H.E.; Moutawakil, B.E.; Rafai, M.A. Assessment of eligibility for thrombolysis in acute ischaemic stroke patients in Morocco. Pan Afr. Med. J. 2020, 36, 351. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Geng, X.; Fan, F.; Fu, X.; He, S.; Li, T. The efficacy of therapies for post-stroke depression in aging: An umbrella review. Front. Aging Neurosci. 2022, 14, 993250. [Google Scholar] [CrossRef] [PubMed]
- Tombak, Y.; Karaahmet, O.Z.; Umay, E.; Tombak, A.; Gurcay, E. Factors influencing the willingness to participate in rehabilitation in patients with subacute stroke. J. Clin. Neurosci. 2023, 116, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Sheng, R.; Chen, C.; Chen, H.; Yu, P. Repetitive transcranial magnetic stimulation for stroke rehabilitation: Insights into the molecular and cellular mechanisms of neuroinflammation. Front. Immunol. 2023, 14, 1197422. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, S.; Nazzi, C.; Fullana, M.A.; di Pellegrino, G.; Borgomaneri, S. ‘Nip it in the bud’: Low-frequency rTMS of the prefrontal cortex disrupts threat memory consolidation in humans. Behav. Res. Ther. 2024, 178, 104548. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, S.; Avenanti, A.; Vécsei, L.; Tanaka, M. Neurodegeneration in Cognitive Impairment and Mood Disorders for Experimental, Clinical and Translational Neuropsychiatry. Biomedicines 2024, 12, 574. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, S.; Nazzi, C.; Di Fazio, C.; Borgomaneri, S. The role of pre-supplementary motor cortex in action control with emotional stimuli: A repetitive transcranial magnetic stimulation study. Ann. N. Y. Acad. Sci. 2024, 1536, 151–166. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Vécsei, L. A Decade of Dedication: Pioneering Perspectives on Neurological Diseases and Mental Illnesses. Biomedicines 2024, 12, 1083. [Google Scholar] [CrossRef] [PubMed]
- Sanches, C.; Stengel, C.; Godard, J.; Mertz, J.; Teichmann, M.; Migliaccio, R.; Valero-Cabré, A. Past, Present, and Future of Non-invasive Brain Stimulation Approaches to Treat Cognitive Impairment in Neurodegenerative Diseases: Time for a Comprehensive Critical Review. Front. Aging Neurosci. 2020, 12, 578339. [Google Scholar] [CrossRef] [PubMed]
- Cirillo, G.; Di Pino, G.; Capone, F.; Ranieri, F.; Florio, L.; Todisco, V.; Tedeschi, G.; Funke, K.; Di Lazzaro, V. Neurobiological after-effects of non-invasive brain stimulation. Brain Stimul. 2017, 10, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Antal, A.; Luber, B.; Brem, A.K.; Bikson, M.; Brunoni, A.R.; Cohen Kadosh, R.; Dubljević, V.; Fecteau, S.; Ferreri, F.; Flöel, A.; et al. Non-invasive brain stimulation and neuroenhancement. Clin. Neurophysiol. Pract. 2022, 7, 146–165. [Google Scholar] [CrossRef] [PubMed]
- Chisari, C.; Fanciullacci, C.; Lamola, G.; Rossi, B.; Cohen, L.G. NIBS-driven brain plasticity. Arch. Ital. Biol. 2014, 152, 247–258. [Google Scholar] [CrossRef]
- Kesikburun, S. Non-invasive brain stimulation in rehabilitation. Turk. J. Phys. Med. Rehabil. 2022, 68, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.Y.; Zheng, J.J.; Wang, X.Q. Non-invasive Brain Stimulation for Chronic Pain: State of the Art and Future Directions. Front. Mol. Neurosci. 2022, 15, 888716. [Google Scholar] [CrossRef] [PubMed]
- Cole, E.; O’Sullivan, S.J.; Tik, M.; Williams, N.R. Accelerated Theta Burst Stimulation: Safety, Efficacy, and Future Advancements. Biol. Psychiatry 2024, 95, 523–535. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.W.; Yang, Q.H.; Chen, P.J.; Wang, X.Q. Repetitive transcranial magnetic stimulation regulates neuroinflammation in neuropathic pain. Front. Immunol. 2023, 14, 1172293. [Google Scholar] [CrossRef] [PubMed]
- Schambra, H.M. Repetitive Transcranial Magnetic Stimulation for Upper Extremity Motor Recovery: Does It Help? Curr. Neurol. Neurosci. Rep. 2018, 18, 97. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.W.; Hoy, K.E.; Fitzgerald, P.B. Theta-burst stimulation: A new form of TMS treatment for depression? Depress. Anxiety 2015, 32, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Hu, H.; Wu, J.; Koleske, A.J.; Chen, H.; Wang, N.; Yu, K.; Wu, Y.; Xiao, X.; Zhang, Q. Integrin α3 is required for high-frequency repetitive transcranial magnetic stimulation-induced glutamatergic synaptic transmission in mice with ischemia. CNS Neurosci. Ther. 2024, 30, e14498. [Google Scholar] [CrossRef] [PubMed]
- Cambiaghi, M.; Cherchi, L.; Masin, L.; Infortuna, C.; Briski, N.; Caviasco, C.; Hazaveh, S.; Han, Z.; Buffelli, M.; Battaglia, F. High-frequency repetitive transcranial magnetic stimulation enhances layer II/III morphological dendritic plasticity in mouse primary motor cortex. Behav. Brain Res. 2021, 410, 113352. [Google Scholar] [CrossRef] [PubMed]
- Cambiaghi, M.; Infortuna, C.; Gualano, F.; Elsamadisi, A.; Malik, W.; Buffelli, M.; Han, Z.; Solhkhah, R.; Thomas, F.P.; Battaglia, F. High-frequency rTMS modulates emotional behaviors and structural plasticity in layers II/III and V of the mPFC. Front. Cell Neurosci. 2022, 16, 1082211. [Google Scholar] [CrossRef] [PubMed]
- Solomon, E.A.; Sperling, M.R.; Sharan, A.D.; Wanda, P.A.; Levy, D.F.; Lyalenko, A.; Pedisich, I.; Rizzuto, D.S.; Kahana, M.J. Theta-burst stimulation entrains frequency-specific oscillatory responses. Brain Stimul. 2021, 14, 1271–1284. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Chevidikunnan, F. Theta burst stimulation a new paradigm of non-invasive brain stimulation for post-stroke upper limb motor rehabilitation. Turk. J. Phys. Med. Rehabil. 2017, 63, 193–196. [Google Scholar] [CrossRef]
- William, M.; McDonald, M.D. Theta Burst TMS Technology: Great Promise and a Lot to Learn. Am. J. Psychiatry 2024, 181, 14–15. [Google Scholar] [CrossRef]
- Huang, Y.-Z.; Edwards, M.J.; Rounis, E.; Bhatia, K.P.; Rothwell, J.C. Theta Burst Stimulation of the Human Motor Cortex. Neuron 2005, 45, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Voigt, J.D.; Leuchter, A.F.; Carpenter, L.L. Theta burst stimulation for the acute treatment of major depressive disorder: A systematic review and meta-analysis. Transl. Psychiatry 2021, 11, 330. [Google Scholar] [CrossRef] [PubMed]
- Woods, A.J.; Antal, A.; Bikson, M.; Boggio, P.S.; Brunoni, A.R.; Celnik, P.; Cohen, L.G.; Fregni, F.; Herrmann, C.S.; Kappenman, E.S.; et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin. Neurophysiol. 2016, 127, 1031–1048. [Google Scholar] [CrossRef] [PubMed]
- Bornheim, S.; Croisier, J.L.; Maquet, P.; Kaux, J.F. Transcranial direct current stimulation associated with physical-therapy in acute stroke patients—A randomized, triple blind, sham-controlled study. Brain Stimul. 2020, 13, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Peruzzotti-Jametti, L.; Cambiaghi, M.; Bacigaluppi, M.; Gallizioli, M.; Gaude, E.; Mari, S.; Sandrone, S.; Cursi, M.; Teneud, L.; Comi, G.; et al. Safety and efficacy of transcranial direct current stimulation in acute experimental ischemic stroke. Stroke 2013, 44, 3166–3174. [Google Scholar] [CrossRef] [PubMed]
- Blaschke, S.J.; Vlachakis, S.; Pallast, N.; Walter, H.L.; Volz, L.J.; Wiedermann, D.; Fink, G.R.; Hoehn, M.; Aswendt, M.; Schroeter, M.; et al. Transcranial Direct Current Stimulation Reverses Stroke-Induced Network Alterations in Mice. Stroke 2023, 54, 2145–2155. [Google Scholar] [CrossRef] [PubMed]
- Longo, V.; Barbati, S.A.; Re, A.; Paciello, F.; Bolla, M.; Rinaudo, M.; Miraglia, F.; Alù, F.; Di Donna, M.G.; Vecchio, F.; et al. Transcranial Direct Current Stimulation Enhances Neuroplasticity and Accelerates Motor Recovery in a Stroke Mouse Model. Stroke 2022, 53, 1746–1758. [Google Scholar] [CrossRef] [PubMed]
- Calderón, M.A.F.; Jiménez, L.O.; Ledesma, M.J.S. Transcranial Magnetic Stimulation versus Transcranial Direct Current Stimulation as neuromodulatory techniques in stroke rehabilitation. In Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality, Salamanca, Spain, 24–26 October 2018; pp. 422–427. [Google Scholar]
- Doris Miu, K.Y.; Kok, C.; Leung, S.S.; Chan, E.Y.L.; Wong, E. Comparison of Repetitive Transcranial Magnetic Stimulation and Transcranial Direct Current Stimulation on Upper Limb Recovery among Patients with Recent Stroke. Ann. Rehabil. Med. 2020, 44, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Nicolo, P.; Magnin, C.; Pedrazzini, E.; Plomp, G.; Mottaz, A.; Schnider, A.; Guggisberg, A.G. Comparison of Neuroplastic Responses to Cathodal Transcranial Direct Current Stimulation and Continuous Theta Burst Stimulation in Subacute Stroke. Arch. Phys. Med. Rehabil. 2018, 99, 862–872.e861. [Google Scholar] [CrossRef] [PubMed]
- Murase, N.; Duque, J.; Mazzocchio, R.; Cohen, L.G. Influence of interhemispheric interactions on motor function in chronic stroke. Ann. Neurol. 2004, 55, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Goodwill, A.M.; Teo, W.P.; Morgan, P.; Daly, R.M.; Kidgell, D.J. Bihemispheric-tDCS and Upper Limb Rehabilitation Improves Retention of Motor Function in Chronic Stroke: A Pilot Study. Front. Hum. Neurosci. 2016, 10, 258. [Google Scholar] [CrossRef] [PubMed]
- Bolognini, N.; Vallar, G.; Casati, C.; Latif, L.A.; El-Nazer, R.; Williams, J.; Banco, E.; Macea, D.D.; Tesio, L.; Chessa, C.; et al. Neurophysiological and Behavioral Effects of tDCS Combined with Constraint-Induced Movement Therapy in Poststroke Patients. Neurorehabilit. Neural Repair 2011, 25, 819–829. [Google Scholar] [CrossRef] [PubMed]
- André-Obadia, N.; Hodaj, H.; Hodaj, E.; Simon, E.; Delon-Martin, C.; Garcia-Larrea, L. Better Fields or Currents? A Head-to-Head Comparison of Transcranial Magnetic (rTMS) Versus Direct Current Stimulation (tDCS) for Neuropathic Pain. Neurotherapeutics 2023, 20, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, W.; Chen, J.; Bai, J.; Yu, H.; Ma, H.; Rao, J.; Xu, G. Comparative efficacy of different noninvasive brain stimulation therapies for recovery of global cognitive function, attention, memory, and executive function after stroke: A network meta-analysis of randomized controlled trials. Ther. Adv. Chronic Dis. 2023, 14, 20406223231168754. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Liu, J.; Guo, Y.; Hou, Q.; Song, J.; Wang, X.; Yu, W.; Lü, Y. Comparative efficacy of non-invasive brain stimulation for post-stroke cognitive impairment: A network meta-analysis. Aging Clin. Exp. Res. 2024, 36, 37. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, A.; Mrudula, K.; Sreepada, S.S.; Sathyaprabha, T.N.; Pal, P.K.; Chen, R.; Udupa, K. An Overview of Noninvasive Brain Stimulation: Basic Principles and Clinical Applications. Can. J. Neurol. Sci./J. Can. Des Sci. Neurol. 2022, 49, 479–492. [Google Scholar] [CrossRef] [PubMed]
- Priori, A.; Hallett, M.; Rothwell, J.C. Repetitive transcranial magnetic stimulation or transcranial direct current stimulation? Brain Stimul. 2009, 2, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Wick, S. What Are TMS Machines & How They Work. Available online: https://www.neuraliatms.com.au/tms-therapy/machine/ (accessed on 4 May 2024).
- What Is Transcranial Direct Current Stimulation? Available online: https://neuromodec.org/what-is-transcranial-direct-current-stimulation-tdcs/ (accessed on 4 May 2024).
- Huang, Y.Z.; Lu, M.K.; Antal, A.; Classen, J.; Nitsche, M.; Ziemann, U.; Ridding, M.; Hamada, M.; Ugawa, Y.; Jaberzadeh, S.; et al. Plasticity induced by non-invasive transcranial brain stimulation: A position paper. Clin. Neurophysiol. 2017, 128, 2318–2329. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Wei, S.; Nguyen, T.H.; Jo, Y.; Zhang, Y.; Park, W.; Gariani, K.; Oh, C.-M.; Kim, H.H.; Ha, K.-T.; et al. Mitochondria-associated programmed cell death as a therapeutic target for age-related disease. Exp. Mol. Med. 2023, 55, 1595–1619. [Google Scholar] [CrossRef]
- Bayir, H.; Kagan, V.E. Bench-to-bedside review: Mitochondrial injury, oxidative stress and apoptosis—There is nothing more practical than a good theory. Crit. Care 2008, 12, 206. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhang, H.-X.; Shi, S.-T.; Bai, Y.-L.; Zhe, X.; Zhang, S.-J.; Li, Y.-J. Interleukin-11 treatment protected against cerebral ischemia/reperfusion injury. Biomed. Pharmacother. 2019, 115, 108816. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Sun, Y.; Liu, S.; Yang, S.; Chen, C.; Zhang, Z.; Chu, S.; Yang, Y.; Pei, G.; Lin, M.; et al. Targeting pyroptosis as a preventive and therapeutic approach for stroke. Cell Death Discov. 2023, 9, 155. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Wang, X.; Zhou, Y.; Wang, X.; Yu, Y. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct. Target. Ther. 2022, 7, 196. [Google Scholar] [CrossRef] [PubMed]
- Radak, D.; Katsiki, N.; Resanovic, I.; Jovanovic, A.; Sudar-Milovanovic, E.; Zafirovic, S.; Mousad, A.S.; Isenovic, R.E. Apoptosis and Acute Brain Ischemia in Ischemic Stroke. Curr. Vasc. Pharmacol. 2017, 15, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Wang, K.; Wan, W.; Cheng, Y.; Pu, X.; Ye, X. Resveratrol provides neuroprotection by regulating the JAK2/STAT3/PI3K/AKT/mTOR pathway after stroke in rats. Genes Dis. 2018, 5, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xiao, G.; Wang, H.; He, S.; Zhu, Y. A preparation of Ginkgo biloba L. leaves extract inhibits the apoptosis of hippocampal neurons in post-stroke mice via regulating the expression of Bax/Bcl-2 and Caspase-3. J. Ethnopharmacol. 2021, 280, 114481. [Google Scholar] [CrossRef] [PubMed]
- Uzdensky, A.B. Apoptosis regulation in the penumbra after ischemic stroke: Expression of pro- and antiapoptotic proteins. Apoptosis 2019, 24, 687–702. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Kong, T.; Shao, Z.; Liu, M.; Zhang, R.; Zhang, S.; Kong, Q.; Chen, J.; Cheng, B.; Wang, C. Orexin-A alleviates astrocytic apoptosis and inflammation via inhibiting OX1R-mediated NF-κB and MAPK signaling pathways in cerebral ischemia/reperfusion injury. Biochim. Biophys. Acta BBA-Mol. Basis Dis. 2021, 1867, 166230. [Google Scholar] [CrossRef] [PubMed]
- Mirzayans, R.; Murray, D. Do TUNEL and Other Apoptosis Assays Detect Cell Death in Preclinical Studies? Int. J. Mol. Sci. 2020, 21, 9090. [Google Scholar] [CrossRef]
- Guo, F.; Lou, J.; Han, X.; Deng, Y.; Huang, X. Repetitive Transcranial Magnetic Stimulation Ameliorates Cognitive Impairment by Enhancing Neurogenesis and Suppressing Apoptosis in the Hippocampus in Rats with Ischemic Stroke. Front. Physiol. 2017, 8, 559. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.Y.; Rui, G.; Zhang, J.P.; Guo, L.; An, G.Z.; Lin, J.J.; He, W.; Ding, G.R. Cathodal tDCS exerts neuroprotective effect in rat brain after acute ischemic stroke. BMC Neurosci. 2020, 21, 21. [Google Scholar] [CrossRef] [PubMed]
- Zong, X.; Dong, Y.; Li, Y.; Yang, L.; Li, Y.; Yang, B.; Tucker, L.; Zhao, N.; Brann, D.W.; Yan, X.; et al. Beneficial Effects of Theta-Burst Transcranial Magnetic Stimulation on Stroke Injury via Improving Neuronal Microenvironment and Mitochondrial Integrity. Transl. Stroke Res. 2020, 11, 450–467. [Google Scholar] [CrossRef] [PubMed]
- Sussman, M.A. Mitochondrial integrity: Preservation through Akt/Pim-1 kinase signaling in the cardiomyocyte. Expert Rev. Cardiovasc. Ther. 2009, 7, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Chen, Y.; Tang, H.; Zhang, L.; Ma, Y.; Bai, D.; Kong, Y. Transcranial direct current stimulation alleviated ischemic stroke induced injury involving the BDNF-TrkB signaling axis in rats. Heliyon 2023, 9, e14946. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Shen, N.; Kong, L.; Huang, H.; Wang, X.; Zhang, Y.; Wang, G.; Xu, P.; Hu, W. STING mediates microglial pyroptosis via interaction with NLRP3 in cerebral ischaemic stroke. Stroke Vasc. Neurol. 2024, 9, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xu, P.; Hong, Y.; Xie, Y.; Peng, M.; Sun, R.; Guo, H.; Zhang, X.; Zhu, W.; Wang, J.; et al. Lipocalin-2-mediated astrocyte pyroptosis promotes neuroinflammatory injury via NLRP3 inflammasome activation in cerebral ischemia/reperfusion injury. J. Neuroinflamm. 2023, 20, 148. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Liang, J.; Ding, L.; Zhang, W.; Liu, X.; Song, B.; Xu, Y. Edaravone dexborneol provides neuroprotective benefits by suppressing NLRP3 inflammasome-induced microglial pyroptosis in experimental ischemic stroke. Int. Immunopharmacol. 2022, 113, 109315. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Yang, Y.; Si, X.; Liu, H.; Wang, H. The Role of Pyroptosis and Autophagy in Ischemia Reperfusion Injury. Biomolecules 2022, 12, 1010. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Liu, M.; Fan, Y.; Zhang, J.; Liu, L.; Li, Y.; Zhang, Q.; Xie, H.; Jiang, C.; Wu, J.; et al. Intermittent theta-burst stimulation improves motor function by inhibiting neuronal pyroptosis and regulating microglial polarization via TLR4/NFκB/NLRP3 signaling pathway in cerebral ischemic mice. J. Neuroinflamm. 2022, 19, 141. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Bai, X.Y.; Sun, K.Y.; Li, X.; Zhang, Z.Q.; Liu, Y.D.; Xiang, Y.; Liu, X.L. A New Perspective in the Treatment of Ischemic Stroke: Ferroptosis. Neurochem. Res. 2024, 49, 815–833. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Tuo, Q.-Z.; Lei, P. Iron, ferroptosis, and ischemic stroke. J. Neurochem. 2023, 165, 487–520. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cao, F.; Yin, H.-L.; Huang, Z.-J.; Lin, Z.-T.; Mao, N.; Sun, B.; Wang, G. Ferroptosis: Past, present and future. Cell Death Dis. 2020, 11, 88. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, K.; Zhao, Y.; Zhou, L.; Liu, Y.; Zhao, J. Role of Ferroptosis in Stroke. Cell. Mol. Neurobiol. 2023, 43, 205–222. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Wu, Y.; Liu, S.; Luo, C.; Lu, Y.; Liu, M.; Wang, L.; Zhang, Y.; Liu, X. Rehmannioside A improves cognitive impairment and alleviates ferroptosis via activating PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway after ischemia. J. Ethnopharmacol. 2022, 289, 115021. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.-J.; Liu, D.-N.; Huang, X.-R.; Wu, Q.; Feng, W.-B.; Zeng, Y.-H.; Liu, H.-Y.; Yu, J.; Xiao, Z.-J.; Zhou, J. High-frequency repetitive transcranial magnetic stimulation protects against cerebral ischemia/reperfusion injury in rats: Involving the mitigation of ferroptosis and inflammation. Brain Behav. 2023, 13, e2988. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.Y.; Zhang, X.Y.; Han, P.P.; Zhao, Y.N.; Xu, G.H.; Bi, X. Mechanisms of intermittent theta-burst stimulation attenuating nerve injury after ischemic reperfusion in rats through endoplasmic reticulum stress and ferroptosis. Mol. Biol. Rep. 2024, 51, 377. [Google Scholar] [CrossRef] [PubMed]
- Jakubczyk, K.; Dec, K.; Kałduńska, J.; Kawczuga, D.; Kochman, J.; Janda, K. Reactive oxygen species—Sources, functions, oxidative damage. Pol. Merkur. Lek. 2020, 48, 124–127. [Google Scholar]
- Yao, H.; Ago, T.; Kitazono, T.; Nabika, T. NADPH Oxidase-Related Pathophysiology in Experimental Models of Stroke. Int. J. Mol. Sci. 2017, 18, 2123. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Gao, S.; Tu, S.; Lenahan, C.; Shao, A.; Sheng, J. Pathophysiology and Therapeutic Potential of NADPH Oxidases in Ischemic Stroke-Induced Oxidative Stress. Oxid. Med. Cell Longev. 2021, 2021, 6631805. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.N.; Cairns, B.; Kim, J.Y.; Yenari, M.A. NADPH oxidase in stroke and cerebrovascular disease. Neurol. Res. 2012, 34, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.F.; Guo, F.; Cao, Y.Z.; Shi, W.; Xia, Q. Neuroprotection by manganese superoxide dismutase (MnSOD) mimics: Antioxidant effect and oxidative stress regulation in acute experimental stroke. CNS Neurosci. Ther. 2012, 18, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Rahman, I.; Biswas, S.K. Oxidants and Antioxidants|Antioxidants, Enzymatic. In Encyclopedia of Respiratory Medicine; Laurent, G.J., Shapiro, S.D., Eds.; Academic Press: Oxford, UK, 2006; pp. 258–266. [Google Scholar]
- Kaviannejad, R.; Karimian, S.M.; Riahi, E.; Ashabi, G. Using dual polarities of transcranial direct current stimulation in global cerebral ischemia and its following reperfusion period attenuates neuronal injury. Metab. Brain Dis. 2022, 37, 1503–1516. [Google Scholar] [CrossRef] [PubMed]
- Ruohonen, J.; Karhu, J. tDCS possibly stimulates glial cells. Clin. Neurophysiol. 2012, 123, 2006–2009. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, S.J.; Lagacé, M.; St-Amour, I.; Arsenault, D.; Cisbani, G.; Chabrat, A.; Fecteau, S.; Lévesque, M.; Cicchetti, F. The morphological and molecular changes of brain cells exposed to direct current electric field stimulation. Int. J. Neuropsychopharmacol. 2014, 18, pyu090. [Google Scholar] [CrossRef]
- Fenoy, A.J.; Goetz, L.; Chabardès, S.; Xia, Y. Deep brain stimulation: Are astrocytes a key driver behind the scene? CNS Neurosci. Ther. 2014, 20, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Mishima, T.; Nagai, T.; Yahagi, K.; Akther, S.; Oe, Y.; Monai, H.; Kohsaka, S.; Hirase, H. Transcranial Direct Current Stimulation (tDCS) Induces Adrenergic Receptor-Dependent Microglial Morphological Changes in Mice. eNeuro 2019, 6, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Woodburn, S.C.; Bollinger, J.L.; Wohleb, E.S. The semantics of microglia activation: Neuroinflammation, homeostasis, and stress. J. Neuroinflamm. 2021, 18, 258. [Google Scholar] [CrossRef] [PubMed]
- Gava-Junior, G.; Ferreira, S.A.; Roque, C.; Mendes-Oliveira, J.; Serrenho, I.; Pinto, N.; Patto, M.V.; Baltazar, G. High-frequency repetitive magnetic stimulation rescues ischemia-injured neurons through modulation of glial-derived neurotrophic factor present in the astrocyte’s secretome. J. Neurochem. 2023, 164, 813–828. [Google Scholar] [CrossRef] [PubMed]
- Roque, C.; Pinto, N.; Vaz Patto, M.; Baltazar, G. Astrocytes contribute to the neuronal recovery promoted by high-frequency repetitive magnetic stimulation in in vitro models of ischemia. J. Neurosci. Res. 2021, 99, 1414–1432. [Google Scholar] [CrossRef] [PubMed]
- Bathina, S.; Das, U.N. Brain-derived neurotrophic factor and its clinical implications. Arch. Med. Sci. 2015, 11, 1164–1178. [Google Scholar] [CrossRef]
- Cancel, L.M.; Silas, D.; Bikson, M.; Tarbell, J.M. Direct current stimulation modulates gene expression in isolated astrocytes with implications for glia-mediated plasticity. Sci. Rep. 2022, 12, 17964. [Google Scholar] [CrossRef]
- Paolicelli, R.C.; Bolasco, G.; Pagani, F.; Maggi, L.; Scianni, M.; Panzanelli, P.; Giustetto, M.; Ferreira, T.A.; Guiducci, E.; Dumas, L.; et al. Synaptic Pruning by Microglia Is Necessary for Normal Brain Development. Science 2011, 333, 1456–1458. [Google Scholar] [CrossRef]
- Gellner, A.K.; Reis, J.; Fiebich, B.L.; Fritsch, B. Electrified microglia: Impact of direct current stimulation on diverse properties of the most versatile brain cell. Brain Stimul. 2021, 14, 1248–1258. [Google Scholar] [CrossRef]
- Qiao, C.; Liu, Z.; Qie, S. The Implications of Microglial Regulation in Neuroplasticity-Dependent Stroke Recovery. Biomolecules 2023, 13, 571. [Google Scholar] [CrossRef]
- Hong, Y.; Liu, Q.; Peng, M.; Bai, M.; Li, J.; Sun, R.; Guo, H.; Xu, P.; Xie, Y.; Li, Y.; et al. High-frequency repetitive transcranial magnetic stimulation improves functional recovery by inhibiting neurotoxic polarization of astrocytes in ischemic rats. J. Neuroinflamm. 2020, 17, 150. [Google Scholar] [CrossRef]
- Cherchi, L.; Anni, D.; Buffelli, M.; Cambiaghi, M. Early Application of Ipsilateral Cathodal-tDCS in a Mouse Model of Brain Ischemia Results in Functional Improvement and Perilesional Microglia Modulation. Biomolecules 2022, 12, 588. [Google Scholar] [CrossRef]
- Walter, H.L.; Pikhovych, A.; Endepols, H.; Rotthues, S.; Bärmann, J.; Backes, H.; Hoehn, M.; Wiedermann, D.; Neumaier, B.; Fink, G.R.; et al. Transcranial-Direct-Current-Stimulation Accelerates Motor Recovery after Cortical Infarction in Mice: The Interplay of Structural Cellular Responses and Functional Recovery. Neurorehabilit. Neural Repair 2022, 36, 701–714. [Google Scholar] [CrossRef]
- Hong, Y.; Lyu, J.; Zhu, L.; Wang, X.; Peng, M.; Chen, X.; Deng, Q.; Gao, J.; Yuan, Z.; Wang, D.; et al. High-frequency repetitive transcranial magnetic stimulation (rTMS) protects against ischemic stroke by inhibiting M1 microglia polarization through let-7b-5p/HMGA2/NF-κB signaling pathway. BMC Neurosci. 2022, 23, 49. [Google Scholar] [CrossRef]
- Chen, J.; Zeng, Y.; Hong, J.; Li, C.; Zhang, X.; Wen, H. Effects of HF-rTMS on microglial polarization and white matter integrity in rats with poststroke cognitive impairment. Behav. Brain Res. 2023, 439, 114242. [Google Scholar] [CrossRef]
- Braun, R.; Klein, R.; Walter, H.L.; Ohren, M.; Freudenmacher, L.; Getachew, K.; Ladwig, A.; Luelling, J.; Neumaier, B.; Endepols, H.; et al. Transcranial direct current stimulation accelerates recovery of function, induces neurogenesis and recruits oligodendrocyte precursors in a rat model of stroke. Exp. Neurol. 2016, 279, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Li, H.; Zhang, Y.; Zhou, Y.; Liu, H.; Xu, H.; Zhu, L.; Zhang, G.; Wang, J.; Li, Z.; et al. Microglia Exhibit Distinct Heterogeneity Rather than M1/M2 Polarization within the Early Stage of Acute Ischemic Stroke. Aging Dis. 2023, 14, 2284–2302. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.A.; Amruta, N.; Pinteaux, E.; Bix, G.J. Neurogenesis after Stroke: A Therapeutic Perspective. Transl. Stroke Res. 2021, 12, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Markowska, A.; Koziorowski, D.; Szlufik, S. Microglia and Stem Cells for Ischemic Stroke Treatment—Mechanisms, Current Status, and Therapeutic Challenges. Front. Biosci. Landmark Ed. 2023, 28, 269. [Google Scholar] [CrossRef] [PubMed]
- Marques, B.L.; Carvalho, G.A.; Freitas, E.M.M.; Chiareli, R.A.; Barbosa, T.G.; Di Araújo, A.G.P.; Nogueira, Y.L.; Ribeiro, R.I.; Parreira, R.C.; Vieira, M.S.; et al. The role of neurogenesis in neurorepair after ischemic stroke. Semin. Cell Dev. Biol. 2019, 95, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Lindvall, O.; Kokaia, Z. Neurogenesis following Stroke Affecting the Adult Brain. Cold Spring Harb. Perspect. Biol. 2015, 7, a019034. [Google Scholar] [CrossRef] [PubMed]
- Koh, S.-H.; Park, H.-H. Neurogenesis in Stroke Recovery. Transl. Stroke Res. 2017, 8, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Song, Y.; He, T.; Wen, R.; Li, Y.; Chen, T.; Huang, S.; Wang, Y.; Tang, Y.; Shen, F.; et al. M2 microglial small extracellular vesicles reduce glial scar formation via the miR-124/STAT3 pathway after ischemic stroke in mice. Theranostics 2021, 11, 1232–1248. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Luo, L.; Wang, J.; Shen, H.; Li, Y.; Mamtilahun, M.; Liu, C.; Shi, R.; Lee, J.H.; Tian, H.; et al. Stroke subtype-dependent synapse elimination by reactive gliosis in mice. Nat. Commun. 2021, 12, 6943. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Feng, Y.; Hong, Z.; Yin, M.; Zheng, H.; Zhang, L.; Hu, X. High-frequency repetitive transcranial magnetic stimulation promotes neural stem cell proliferation after ischemic stroke. Neural Regen. Res. 2024, 19, 1772–1780. [Google Scholar] [CrossRef] [PubMed]
- Zong, X.; Gu, J.; Zhou, S.; Ding, D.; Hu, Y.; Tucker, L.; Huang, Z.; Geng, D.; Gao, D. Continuous theta-burst stimulation enhances and sustains neurogenesis following ischemic stroke. Theranostics 2022, 12, 5710–5726. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.-J.; Sha, R.; Li, M.-X.; Chen, L.-T.; Han, X.-H.; Guo, F.; Chen, H.; Huang, X.-L. Repetitive transcranial magnetic stimulation promotes functional recovery and differentiation of human neural stem cells in rats after ischemic stroke. Exp. Neurol. 2019, 313, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lei, R.; Wang, S.; Liu, A.; Cheng, J.; Zhang, Z.; Ren, J.; Yao, X.; Kong, X.; Ma, W.; Che, F.; et al. Bilateral transcranial direct-current stimulation promotes migration of subventricular zone-derived neuroblasts toward ischemic brain. FASEB Bioadv. 2023, 5, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Guo, L.; Zhang, J.; Rui, G.; An, G.; Zhou, Y.; Lin, J.; Xing, J.; Zhao, T.; Ding, G. tDCS Accelerates the Rehabilitation of MCAO-Induced Motor Function Deficits via Neurogenesis Modulated by the Notch1 Signaling Pathway. Neurorehabil. Neural Repair 2020, 34, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Pikhovych, A.; Stolberg, N.P.; Jessica Flitsch, L.; Walter, H.L.; Graf, R.; Fink, G.R.; Schroeter, M.; Rueger, M.A. Transcranial Direct Current Stimulation Modulates Neurogenesis and Microglia Activation in the Mouse Brain. Stem Cells Int. 2016, 2016, 2715196. [Google Scholar] [CrossRef] [PubMed]
- De Michele, M.; Piscopo, P.; Costanzo, M.; Lorenzano, S.; Crestini, A.; Rivabene, R.; Manzini, V.; Petraglia, L.; Iacobucci, M.; Berto, I.; et al. Can Repetitive Transcranial Magnetic Stimulation (rTMS) Promote Neurogenesis and Axonogenesis in Subacute Human Ischemic Stroke? Biomedicines 2024, 12, 670. [Google Scholar] [CrossRef] [PubMed]
- Niimi, M.; Hashimoto, K.; Kakuda, W.; Miyano, S.; Momosaki, R.; Ishima, T.; Abo, M. Role of Brain-Derived Neurotrophic Factor in Beneficial Effects of Repetitive Transcranial Magnetic Stimulation for Upper Limb Hemiparesis after Stroke. PLoS ONE 2016, 11, e0152241. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Shang, J.; Zhang, C.; Lu, R.; Chen, J.; Zhou, X. Repetitive Transcranial Magnetic Stimulation Alleviates Neurological Deficits after Cerebral Ischemia through Interaction Between RACK1 and BDNF exon IV by the Phosphorylation-Dependent Factor MeCP2. Neurotherapeutics 2020, 17, 651–663. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zhang, T.; Wen, M.; Sun, L. Impact of repetitive transcranial magnetic stimulation on post-stroke dysmnesia and the role of BDNF Val66Met SNP. Med. Sci. Monit. 2015, 21, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; He, D. Repetitive transcranial magnetic stimulation (rTMS) fails to increase serum brain-derived neurotrophic factor (BDNF). Neurophysiol. Clin. 2019, 49, 295–300. [Google Scholar] [CrossRef]
- Feng, S.; Wang, S.; Sun, S.; Su, H.; Zhang, L. Effects of combination treatment with transcranial magnetic stimulation and bone marrow mesenchymal stem cell transplantation or Raf inhibition on spinal cord injury in rats. Mol. Med. Rep. 2021, 23, 294. [Google Scholar] [CrossRef] [PubMed]
- Jæger, H.S.; Tranberg, D.; Larsen, K.; Valentin, J.B.; Blauenfeldt, R.A.; Luger, S.; Bache, K.G.; Gude, M.F. Diagnostic performance of Glial Fibrillary Acidic Protein and Prehospital Stroke Scale for identification of stroke and stroke subtypes in an unselected patient cohort with symptom onset < 4.5 h. Scand. J. Trauma Resusc. Emerg. Med. 2023, 31, 1. [Google Scholar] [CrossRef] [PubMed]
- Puspitasari, V.; Gunawan, P.Y.; Wiradarma, H.D.; Hartoyo, V. Glial Fibrillary Acidic Protein Serum Level as a Predictor of Clinical Outcome in Ischemic Stroke. Open Access Maced. J. Med. Sci. 2019, 7, 1471–1474. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Kim, H.S.; Kim, S.H.; Kim, H.S.; Cho, B.P. Combination of Human Mesenchymal Stem Cells and Repetitive Transcranial Magnetic Stimulation Enhances Neurological Recovery of 6-Hydroxydopamine Model of Parkinsonian’s Disease. Tissue Eng. Regen. Med. 2020, 17, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Danuaji, R.; Hambarsari, Y.; Hamidi, B.L.; Hutabarat, E.A.J.; Tedjo, R.A.A.; Fairuzya, A.F.; Savitri, M.O.D. Combination of stem cell and repetitive transcranial magnetic stimulation in acute ischaemic stroke as a promising treatment: A case report. JKKI J. Kedokt. Dan Kesehat. Indones. 2024, 15, 132–140. [Google Scholar] [CrossRef]
- Li, L.M.; Uehara, K.; Hanakawa, T. The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Front. Cell Neurosci. 2015, 9, 181. [Google Scholar] [CrossRef] [PubMed]
- Salazar, C.A.; Feng, W.; Bonilha, L.; Kautz, S.; Jensen, J.H.; George, M.S.; Rowland, N.C. Transcranial Direct Current Stimulation for Chronic Stroke: Is Neuroimaging the Answer to the Next Leap Forward? J. Clin. Med. 2023, 12, 2601. [Google Scholar] [CrossRef]
- Lee, J.; Lee, A.; Kim, H.; Shin, M.; Yun, S.M.; Jung, Y.; Chang, W.H.; Kim, Y.H. Different Brain Connectivity between Responders and Nonresponders to Dual-Mode Noninvasive Brain Stimulation over Bilateral Primary Motor Cortices in Stroke Patients. Neural Plast. 2019, 2019, 3826495. [Google Scholar] [CrossRef] [PubMed]
- Nyffeler, T.; Vanbellingen, T.; Kaufmann, B.C.; Pflugshaupt, T.; Bauer, D.; Frey, J.; Chechlacz, M.; Bohlhalter, S.; Müri, R.M.; Nef, T.; et al. Theta burst stimulation in neglect after stroke: Functional outcome and response variability origins. Brain 2019, 142, 992–1008. [Google Scholar] [CrossRef] [PubMed]
- Bradnam, L.V.; Stinear, C.M.; Barber, P.A.; Byblow, W.D. Contralesional hemisphere control of the proximal paretic upper limb following stroke. Cereb. Cortex 2012, 22, 2662–2671. [Google Scholar] [CrossRef] [PubMed]
- Lindenberg, R.; Zhu, L.L.; Rüber, T.; Schlaug, G. Predicting functional motor potential in chronic stroke patients using diffusion tensor imaging. Hum. Brain Mapp. 2012, 33, 1040–1051. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Schlaug, G. Structural white matter changes in descending motor tracts correlate with improvements in motor impairment after undergoing a treatment course of tDCS and physical therapy. Front. Hum. Neurosci. 2015, 9, 229. [Google Scholar] [CrossRef] [PubMed]
- Parchure, S.; Harvey, D.Y.; Shah-Basak, P.P.; DeLoretta, L.; Wurzman, R.; Sacchetti, D.; Faseyitan, O.; Lohoff, F.W.; Hamilton, R.H. Brain-Derived Neurotrophic Factor Gene Polymorphism Predicts Response to Continuous Theta Burst Stimulation in Chronic Stroke Patients. Neuromodulation 2022, 25, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Dresang, H.C.; Harvey, D.Y.; Xie, S.X.; Shah-Basak, P.P.; DeLoretta, L.; Wurzman, R.; Parchure, S.Y.; Sacchetti, D.; Faseyitan, O.; Lohoff, F.W.; et al. Genetic and Neurophysiological Biomarkers of Neuroplasticity Inform Post-Stroke Language Recovery. Neurorehabil. Neural Repair 2022, 36, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Kolmos, M.; Madsen, M.J.; Liu, M.L.; Karabanov, A.; Johansen, K.L.; Thielscher, A.; Gandrup, K.; Lundell, H.; Fuglsang, S.; Thade, E.; et al. Patient-tailored transcranial direct current stimulation to improve stroke rehabilitation: Study protocol of a randomized sham-controlled trial. Trials 2023, 24, 216. [Google Scholar] [CrossRef] [PubMed]
- Yoo, Y.J.; Park, H.J.; Kim, T.Y.; Yoon, M.J.; Oh, H.M.; Lee, Y.J.; Hong, B.Y.; Kim, D.; Kim, T.W.; Lim, S.H. MRI-Based Personalized Transcranial Direct Current Stimulation to Enhance the Upper Limb Function in Patients with Stroke: Study Protocol for a Double-Blind Randomized Controlled Trial. Brain Sci. 2022, 12, 1673. [Google Scholar] [CrossRef] [PubMed]
- Choung, J.S.; Bhattacharjee, S.; Son, J.P.; Kim, J.M.; Cho, D.S.; Cho, C.S.; Kim, M. Development and application of rTMS device to murine model. Sci. Rep. 2023, 13, 5490. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Hevner, R.F. Growth and folding of the mammalian cerebral cortex: From molecules to malformations. Nat. Rev. Neurosci. 2014, 15, 217–232. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Huang, T.; Ran, Y.; Li, D.; Ye, L.; Tian, G.; Xi, J.; Liu, Z. New Insights Into the Roles of Microglial Regulation in Brain Plasticity-Dependent Stroke Recovery. Front. Cell Neurosci. 2021, 15, 727899. [Google Scholar] [CrossRef] [PubMed]
- Tai, J.; Hu, R.; Fan, S.; Wu, Y.; Wang, T.; Wu, J. Theta-burst transcranial magnetic stimulation for dysphagia patients during recovery stage of stroke: A randomized controlled trial. Eur. J. Phys. Rehabil. Med. 2023, 59, 543–553. [Google Scholar] [CrossRef]
- Tedesco Triccas, L.; Burridge, J.H.; Hughes, A.M.; Pickering, R.M.; Desikan, M.; Rothwell, J.C.; Verheyden, G. Multiple sessions of transcranial direct current stimulation and upper extremity rehabilitation in stroke: A review and meta-analysis. Clin. Neurophysiol. 2016, 127, 946–955. [Google Scholar] [CrossRef] [PubMed]
- Hordacre, B.; Moezzi, B.; Ridding, M.C. Neuroplasticity and network connectivity of the motor cortex following stroke: A transcranial direct current stimulation study. Hum. Brain Mapp. 2018, 39, 3326–3339. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.H.; Kim, M.W.; Park, K.H.; Choi, Y.A. The effects of additional electrical stimulation combined with repetitive transcranial magnetic stimulation and motor imagery on upper extremity motor recovery in the subacute period after stroke: A preliminary study. Medicine 2021, 100, e27170. [Google Scholar] [CrossRef] [PubMed]
- Chu, M.; Zhang, Y.; Chen, J.; Chen, W.; Hong, Z.; Zhang, Y.; Yu, H.; Zhang, F.; Ye, X.; Li, J.; et al. Efficacy of Intermittent Theta-Burst Stimulation and Transcranial Direct Current Stimulation in Treatment of Post-Stroke Cognitive Impairment. J. Integr. Neurosci. 2022, 21, 130. [Google Scholar] [CrossRef] [PubMed]
- Gröhn, H.; Gillick, B.T.; Tkáč, I.; Bednařík, P.; Mascali, D.; Deelchand, D.K.; Michaeli, S.; Meekins, G.D.; Leffler-McCabe, M.J.; MacKinnon, C.D.; et al. Influence of Repetitive Transcranial Magnetic Stimulation on Human Neurochemistry and Functional Connectivity: A Pilot MRI/MRS Study at 7 T. Front. Neurosci. 2019, 13, 1260. [Google Scholar] [CrossRef] [PubMed]
- Chhatbar, P.Y.; Ramakrishnan, V.; Kautz, S.; George, M.S.; Adams, R.J.; Feng, W. Transcranial Direct Current Stimulation Post-Stroke Upper Extremity Motor Recovery Studies Exhibit a Dose-Response Relationship. Brain Stimul. 2016, 9, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Zhang, J.; Fong, K.N.K. Effects of transcranial magnetic stimulation in modulating cortical excitability in patients with stroke: A systematic review and meta-analysis. J. Neuroeng. Rehabil. 2022, 19, 24. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Chen, X.; Lyu, Z.; Xiu, H.; Lin, S.; Liu, F. Repetitive transcranial magnetic stimulation (rTMS) for post-stroke sleep disorders: A systematic review of randomized controlled trials. Neurol. Sci. 2022, 43, 6783–6794. [Google Scholar] [CrossRef]
- Veldema, J.; Gharabaghi, A. Non-invasive brain stimulation for improving gait, balance, and lower limbs motor function in stroke. J. Neuroeng. Rehabil. 2022, 19, 84. [Google Scholar] [CrossRef] [PubMed]
- Gómez-García, N.; Álvarez-Barrio, L.; Leirós-Rodríguez, R.; Soto-Rodríguez, A.; Andrade-Gómez, E.; Hernández-Lucas, P. Transcranial direct current stimulation for post-stroke dysphagia: A meta-analysis. J. Neuroeng. Rehabil. 2023, 20, 165. [Google Scholar] [CrossRef]
- Li, R.; Wang, J.; Yu, X.; Xu, P.; Zhang, S.; Xu, J.; Bai, Y.; Dai, Z.; Sun, Y.; Ye, R.; et al. Enhancing the effects of transcranial magnetic stimulation with intravenously injected magnetic nanoparticles. Biomater. Sci. 2019, 7, 2297–2307. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Pan, J.; Chen, J.; Zhang, D.; Jin, S. Acupuncture combined with repeated transcranial magnetic stimulation for upper limb motor function after stroke: A systematic review and meta-analysis. NeuroRehabilitation 2023, 53, 423–438. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Lin, Y.; Yu, N.W.; Liao, X.L.; Shi, L. The Clinical Efficacy and Possible Mechanism of Combination Treatment of Cerebral Ischemic Stroke with Ginkgo Biloba Extract and Low-Frequency Repetitive Transcranial Magnetic Stimulation. Sichuan Da Xue Xue Bao Yi Xue Ban 2021, 52, 883–889. [Google Scholar] [CrossRef] [PubMed]
- Bonin Pinto, C.; Morales-Quezada, L.; de Toledo Piza, P.V.; Zeng, D.; Saleh Vélez, F.G.; Ferreira, I.S.; Lucena, P.H.; Duarte, D.; Lopes, F.; El-Hagrassy, M.M.; et al. Combining Fluoxetine and rTMS in Poststroke Motor Recovery: A Placebo-Controlled Double-Blind Randomized Phase 2 Clinical Trial. Neurorehabil. Neural Repair 2019, 33, 643–655. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Wang, X.; Li, X.; Wang, Q. Effect of Transcranial Direct Current Stimulation Combined with Donepezil on stroke patients with memory impairment. Pak. J. Med. Sci. 2023, 39, 898–901. [Google Scholar] [CrossRef] [PubMed]
- Hirakawa, Y.; Koyama, S.; Tanabe, S.; Takeda, K.; Ueda, T.; Motoya, I.; Sakurai, H.; Kanada, Y.; Kawamura, N.; Kawamura, M.; et al. Combined effects of botulinum toxin type A and repetitive transcranial magnetic stimulation with intensive motor training immediately after injection in a patient with chronic stroke: A case report. J. Hand Ther. 2019, 32, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Yamada, N.; Kakuda, W.; Kondo, T.; Mitani, S.; Shimizu, M.; Abo, M. Local muscle injection of botulinum toxin type a synergistically improves the beneficial effects of repetitive transcranial magnetic stimulation and intensive occupational therapy in post-stroke patients with spastic upper limb hemiparesis. Eur. Neurol. 2014, 72, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Graef, P.; Dadalt, M.L.R.; Rodrigués, D.; Stein, C.; Pagnussat, A.S. Transcranial magnetic stimulation combined with upper-limb training for improving function after stroke: A systematic review and meta-analysis. J. Neurol. Sci. 2016, 369, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.E.; VanDerwerker, C.J.; George, M.S.; Gregory, C.M. Feasibility of performing a multi-arm clinical trial examining the novel combination of repetitive transcranial magnetic stimulation and aerobic exercise for post-stroke depression. Top. Stroke Rehabil. 2023, 30, 649–662. [Google Scholar] [CrossRef]
- Garrido, M.M.; Álvarez, E.E.; Acevedo, P.F.; Moyano, V.Á.; Castillo, N.N.; Cavada Ch, G. Early transcranial direct current stimulation with modified constraint-induced movement therapy for motor and functional upper limb recovery in hospitalized patients with stroke: A randomized, multicentre, double-blind, clinical trial. Brain Stimul. 2023, 16, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Jeun, Y.J.; Park, H.Y.; Jung, Y.J. Effect of Transcranial Direct Current Stimulation Combined with Rehabilitation on Arm and Hand Function in Stroke Patients: A Systematic Review and Meta-Analysis. Healthcare 2021, 9, 1705. [Google Scholar] [CrossRef] [PubMed]
- Navarro-López, V.; Molina-Rueda, F.; Jiménez-Jiménez, S.; Alguacil-Diego, I.M.; Carratalá-Tejada, M. Effects of Transcranial Direct Current Stimulation Combined with Physiotherapy on Gait Pattern, Balance, and Functionality in Stroke Patients. A Systematic Review. Diagnostics 2021, 11, 656. [Google Scholar] [CrossRef] [PubMed]
- Navarro-López, V.; Del Valle-Gratacós, M.; Fernández-Matías, R.; Carratalá-Tejada, M.; Cuesta-Gómez, A.; Molina-Rueda, F. The Long-Term Maintenance of Upper Limb Motor Improvements Following Transcranial Direct Current Stimulation Combined with Rehabilitation in People with Stroke: A Systematic Review of Randomized Sham-Controlled Trials. Sensors 2021, 21, 5216. [Google Scholar] [CrossRef] [PubMed]
- Sivaramakrishnan, A.; Madhavan, S. Combining transcranial direct current stimulation with aerobic exercise to optimize cortical priming in stroke. Appl. Physiol. Nutr. Metab. 2021, 46, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Yan, Z.; Gu, F.; Tao, X.; Xue, T.; Liu, D.; Wang, Z. Transcranial direct current stimulation with virtual reality versus virtual reality alone for upper extremity rehabilitation in stroke: A meta-analysis. Heliyon 2023, 9, e12695. [Google Scholar] [CrossRef] [PubMed]
- Llorens, R.; Fuentes, M.A.; Borrego, A.; Latorre, J.; Alcañiz, M.; Colomer, C.; Noé, E. Effectiveness of a combined transcranial direct current stimulation and virtual reality-based intervention on upper limb function in chronic individuals post-stroke with persistent severe hemiparesis: A randomized controlled trial. J. Neuroeng. Rehabil. 2021, 18, 108. [Google Scholar] [CrossRef] [PubMed]
- San Agustín, A.; Crevillén, D.; Soto-León, V.; Moreno, J.C.; Oliviero, A.; Pons, J.L. Transcranial magnetic stimulation combined with endogenous human hippocampal and motor cortical activity enhances memory. PLoS ONE 2023, 18, e0295413. [Google Scholar] [CrossRef] [PubMed]
- Tatsuno, H.; Hamaguchi, T.; Sasanuma, J.; Kakita, K.; Okamoto, T.; Shimizu, M.; Nakaya, N.; Abo, M. Does a combination treatment of repetitive transcranial magnetic stimulation and occupational therapy improve upper limb muscle paralysis equally in patients with chronic stroke caused by cerebral hemorrhage and infarction?: A retrospective cohort study. Medicine 2021, 100, e26339. [Google Scholar] [CrossRef] [PubMed]
- Kakuda, W.; Abo, M.; Kobayashi, K.; Momosaki, R.; Yokoi, A.; Fukuda, A.; Ito, H.; Tominaga, A. Combination treatment of low-frequency rTMS and occupational therapy with levodopa administration: An intensive neurorehabilitative approach for upper limb hemiparesis after stroke. Int. J. Neurosci. 2011, 121, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Li, W.; Chen, Y.; Zhang, S.; Sun, Z.; Yang, Y.; Lv, P.; Yin, Y. Effects of repetitive transcranial magnetic stimulation combined with music therapy in non-fluent aphasia after stroke: A randomised controlled study. Int. J. Lang. Commun. Disord. 2024, 59, 1211–1222. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Long, X.M.; Xu, Y.; Cai, X.Y.; Ye, M. Effects of repetitive transcranial magnetic stimulation combined with transcranial direct current stimulation on motor function and cortex excitability in subacute stroke patients: A randomized controlled trial. Clin. Rehabil. 2021, 35, 718–727. [Google Scholar] [CrossRef]
TMS | tDCS | |
---|---|---|
Characteristics | Uses a magnetic field to induce electrical currents in the brain to modulate the excitability of the cortex | Delivers weak direct electric current (1–2 mA) through the electrodes placed on the scalp as anode and cathode to modulate the excitability of the cortex |
Mechanism of interhemispheric modulation | Induces more focal electrical field and generates action potentials in a specific neural circuit [40] | Causes weak polarization of a larger number of neurons, which modulates synaptic activity during motor activation [40] |
Possible adverse effects | Seizure and syncope [48] | Fatigue, headache, skin redness, itching, and burning sensation under the stimulation electrodes [48] |
Size and portability of TMS and tDCS devices | Large, heavy, not portable [49] | Light, small, portable, and can be used at home [49] |
Power supply requirements | Requires power supply | Battery driven |
Costs | Higher cost (up to around USD 80,000) [50] | Lower cost (from around USD 100 to thousands of dollars) [51] |
Neurophysiologic specificity | High temporal and spatial resolution allows for targeting specific neural circuits [49] | Low spatial resolution and difficulty in precisely localizing the electric field current [48] |
Target regions | Mostly targets cortical regions and cannot stimulate subcortical areas without affecting the cortex [48] | Mostly targets cortical regions and cannot stimulate subcortical areas without affecting the cortex [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markowska, A.; Tarnacka, B. Molecular Changes in the Ischemic Brain as Non-Invasive Brain Stimulation Targets—TMS and tDCS Mechanisms, Therapeutic Challenges, and Combination Therapies. Biomedicines 2024, 12, 1560. https://doi.org/10.3390/biomedicines12071560
Markowska A, Tarnacka B. Molecular Changes in the Ischemic Brain as Non-Invasive Brain Stimulation Targets—TMS and tDCS Mechanisms, Therapeutic Challenges, and Combination Therapies. Biomedicines. 2024; 12(7):1560. https://doi.org/10.3390/biomedicines12071560
Chicago/Turabian StyleMarkowska, Aleksandra, and Beata Tarnacka. 2024. "Molecular Changes in the Ischemic Brain as Non-Invasive Brain Stimulation Targets—TMS and tDCS Mechanisms, Therapeutic Challenges, and Combination Therapies" Biomedicines 12, no. 7: 1560. https://doi.org/10.3390/biomedicines12071560
APA StyleMarkowska, A., & Tarnacka, B. (2024). Molecular Changes in the Ischemic Brain as Non-Invasive Brain Stimulation Targets—TMS and tDCS Mechanisms, Therapeutic Challenges, and Combination Therapies. Biomedicines, 12(7), 1560. https://doi.org/10.3390/biomedicines12071560