Platelet Levels of Brain-Derived Neurotrophic Factor in Adults with Autism Spectrum Disorder: Is There a Specific Association with Autism Spectrum Psychopathology?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample and Procedures
2.2. Psychometric Instruments
2.2.1. Adult Autism Subthreshold Spectrum (AdAS Spectrum)
2.2.2. Work and Social Adjustment Scale (WSAS)
2.2.3. Trauma and Loss Spectrum—Self Report (TALS-SR)
2.2.4. Social Anxiety Spectrum—Self Report (SHY-SR)
2.2.5. Mood Spectrum—Self Report (MOODS-SR)
2.3. Biochemical Evaluations
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual for Mental Disorders, 5th ed.; Text revision (DSM-5-TR); American Psychiatric Publishing: Arlington, VA, USA, 2023. [Google Scholar]
- Dell’Osso, L.; Dalle Luche, R.; Maj, M. Adult autism spectrum as a transnosographic dimension. CNS Spectr. 2016, 21, 131–133. [Google Scholar] [CrossRef] [PubMed]
- Baron-Cohen, S.; Wheelwright, S.; Skinner, R.; Martin, J.; Clubley, E. The autism-spectrum quotient (AQ): Evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. J. Autism Dev. Disord. 2001, 31, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Carpita, B.; Nardi, B.; Pronestì, C.; Parri, F.; Giovannoni, F.; Cremone, I.M.; Pini, S.; Dell’Osso, L. May Female Autism Spectrum Be Masked by Eating Disorders, Borderline Personality Disorder, or Complex PTSD Symptoms? A Case Series. Brain Sci. 2023, 14, 37. [Google Scholar] [CrossRef] [PubMed]
- Dell’Osso, L.; Lorenzi, P.; Carpita, B. Camouflaging: Psychopathological meanings and clinical relevance in autism spectrum conditions. CNS Spectr. 2020, 26, 437–439. [Google Scholar] [CrossRef] [PubMed]
- Dell’Osso, L.; Amatori, G.; Bonelli, C.; Nardi, B.; Massimetti, E.; Cremone, I.M.; Carpita, B. Panic-agoraphobic symptoms in adults with ASD: The role of ruminative thinking and inflexibility. CNS Spectr. 2024, 9, 1–24. [Google Scholar] [CrossRef]
- Ishizuka, K.; Ishiguro, T.; Nomura, N.; Inada, T. Autistic traits as predictors of persistent depression. Eur. Arch. Psychiatry Clin. Neurosci. 2022, 272, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Ziermans, T.B.; Schirmbeck, F.; Oosterwijk, F.; Geurts, H.M.; de Haan, L.; Genetic Risk and Outcome of Psychosis (GROUP) Investigators. Autistic traits in psychotic disorders: Prevalence, familial risk, and impact on social functioning. Psychol. Med. 2021, 51, 1704–1713. [Google Scholar] [CrossRef]
- Richards, G.; Kenny, R.; Griffiths, S.; Allison, C.; Mosse, D.; Holt, R.; O’Connor, R.C.; Cassidy, S.; Baron-Cohen, S. Autistic traits in adults who have attempted suicide. Mol. Autism 2019, 10, 26. [Google Scholar] [CrossRef]
- Losh, M.; Childress, D.; Lam, K.; Piven, J. Defining key features of the broad autism phenotype: A comparison across parents of multiple- and single-incidence autism families. Am. J. Med. Genet B 2008, 147B, 424–433. [Google Scholar] [CrossRef]
- Sucksmith, E.; Roth, I.; Hoekstra, R.A. Autistic traits below the clinical threshold: Re-examining the broader autism phenotype in the 21st century. Neuropsychol. Rev. 2011, 21, 360–389. [Google Scholar] [CrossRef]
- Baron-Cohen, S.; Hammer, J. Parents of children with Asperger syndrome: What is the cognitive phenotype? J. Cogn. Neurosci. 1997, 9, 548–554. [Google Scholar] [CrossRef] [PubMed]
- Dell’Osso, L.; Amatori, G.; Bonelli, C.; Nardi, B.; Massimetti, E.; Cremone, I.M.; Carpita, B. Autistic traits underlying social anxiety, obsessive-compulsive, and panic disorders. CNS Spectr. 2024, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Carpita, B.; Nardi, B.; Bonelli, C.; Massimetti, E.; Amatori, G.; Cremone, I.M.; Pini, S.; Dell’Osso, L. Presence and correlates of autistic traits among patients with social anxiety disorder. Front. Psychiatry 2024, 14, 1320558. [Google Scholar] [CrossRef] [PubMed]
- Dell’Osso, L.; Nardi, B.; Bonelli, C.; Amatori, G.; Pereyra, M.A.; Massimetti, E.; Cremone, I.M.; Pini, S.; Carpita, B. Autistic Traits as Predictors of Increased Obsessive-Compulsive Disorder Severity: The Role of Inflexibility and Communication Impairment. Brain Sci. 2024, 14, 64. [Google Scholar] [CrossRef]
- Carpita, B.; Muti, D.; Muscarella, A.; Dell’Oste, V.; Diadema, E.; Massimetti, G.; Signorelli, M.S.; Fusar Poli, L.; Gesi, C.; Aguglia, E.; et al. Sex Differences in the Relationship between PTSD Spectrum Symptoms and Autistic Traits in a Sample of University Students. Clin. Pract. Epidemiol. Ment. Health 2019, 15, 110–119. [Google Scholar] [CrossRef]
- Carpita, B.; Muti, D.; Cremone, I.M.; Fagiolini, A.; Dell’Osso, L. Eating disorders and autism spectrum: Links and risks. CNS Spectr. 2022, 27, 272–280. [Google Scholar] [CrossRef]
- Dell’Osso, L.; Lorenzi, P.; Carpita, B. The neurodevelopmental continuum towards a neurodevelopmental gradient hypothesis. J. Psychopathol. 2019, 25, 179–182. [Google Scholar]
- Fabbro, F. Manuale di Neuropsichiatria Infantile: Una Prospettiva Psicoeducativa; Carocci Editore: Roma, Italy, 2012. [Google Scholar]
- Folstein, S.; Rutter, M. Infantile autism: A genetic study of 21 twin pairs. J. Child Psychol. Psychiatry 1977, 18, 297–321. [Google Scholar] [CrossRef]
- Ronald, A.; Hoekstra, R.A. Autism spectrum disorders and autistic traits: A decade of new twin studies. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2011, 156, 255–274. [Google Scholar] [CrossRef]
- Carpita, B.; Muti, D.; Dell’Osso, L. Oxidative stress, maternal diabetes, and autism spectrum disorders. Oxid. Med. Cell. Longev. 2018, 2018, 3717215. [Google Scholar] [CrossRef]
- Bai, D.; Yip, B.H.K.; Windham, G.C.; Sourander, A.; Francis, R.; Yoffe, R.; Glasson, E.; Mahjani, B.; Suominen, A.; Leonard, H.; et al. Association of Genetic and Environmental Factors With Autism in a 5-Country Cohort. JAMA Psychiatry 2019, 76, 1035–1043. [Google Scholar] [CrossRef] [PubMed]
- Croonenberghs, J.; Bosmans, E.; Deboutte, D.; Kenis, G.; Maes, M. Activation of the inflammatory response system in autism. Neuropsychobiology 2002, 45, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Masi, A.; Quintana, D.S.; Glozier, N.; Lloyd, A.R.; Hickie, I.B.; Guastella, A.J. Cytokine aberrations in autism spectrum disorder: A systematic review and meta-analysis. Mol. Psychiatry 2015, 20, 440446. [Google Scholar] [CrossRef] [PubMed]
- Bjorklund, G.; Saad, K.; Chirumbolo, S.; Kern, J.K.; Geier, D.A.; Geier, M.R.; Urbina, M.A. Immune dysfunction and neuroinflammation in autism spectrum disorder. Acta Neurobiol. Exp. 2016, 76, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Carpita, B.; Marazziti, D.; Palego, L.; Giannaccini, G.; Betti, L.; Dell’Osso, L. Microbiota, Immune System and Autism Spectrum Disorders: An Integrative Model towards Novel Treatment Options. Curr. Med. Chem. 2020, 27, 5119–5136. [Google Scholar] [CrossRef] [PubMed]
- Francis, K.; Dougali, A.; Sideri, K.; Kroupis, C.; Vasdekis, V.; Dima, K.; Douzenis, A. Brain-derived neurotrophic factor (BDNF) in children with ASD and their parents: A 3-year follow-up. Acta Psychiatr. Scand. 2018, 137, 433–441. [Google Scholar] [CrossRef]
- Armeanu, R.; Mokkonen, M.; Crespi, B. Meta-Analysis of BDNF Levels in Autism. Cell. Mol. Neurobiol. 2017, 37, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Halepoto, D.M.; Bashir, S.; A L-Ayadhi, L. Possible role of brain-derived neurotrophic factor (BDNF) in autism spectrum disorder: Current status. J. Coll. Physicians Surg. Pak. 2014, 24, 274–278. [Google Scholar]
- Martinowich, K.; Lu, B. Interaction between BDNF and serotonin: Role in mood disorders. Neuropsychopharmacology 2008, 33, 73–83. [Google Scholar] [CrossRef]
- Colucci-D’Amato, L.; Speranza, L.; Volpicelli, F. Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. Int. J. Mol. Sci. 2020, 21, 7777. [Google Scholar] [CrossRef]
- Molendijk, M.L.; Spinhoven, P.; Polak, M.; Bus, B.A.; Penninx, B.W.; Elzinga, B.M. Serum BDNF concentrations as peripheral manifestations of depression: Evidence from a systematic review and meta-analyses on 179 associations (N = 9484). Mol. psychiatry 2014, 19, 791–800. [Google Scholar] [CrossRef]
- Ormstad, H.; Bryn, V.; Verkerk, R.; Skjeldal, O.H.; Halvorsen, B.; Saugstad, O.D.; Isaksen, J.; Maes, M. Serum Tryptophan, Tryptophan Catabolites and Brain-derived Neurotrophic Factor in Subgroups of Youngsters with Autism Spectrum Disorders. CNS Neurol. Disord. Drug Targets 2018, 17, 626–639. [Google Scholar] [CrossRef]
- Fernandes, B.S.; Molendijk, M.L.; Köhler, C.A.; Soares, J.C.; Leite, C.M.; Machado-Vieira, R.; Ribeiro, T.L.; Silva, J.C.; Sales, P.M.; Quevedo, J.; et al. Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in bipolar disorder: A meta-analysis of 52 studies. BMC Med. 2015, 13, 289. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.O.; Mantini, A.M.; Fridberg, D.J.; Buckley, P.F. Brain-derived neurotrophic factor (BDNF) and neurocognitive deficits in people with schizophrenia: A meta-analysis. Psychiatry Res. 2015, 226, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Carpita, B.; Stagnari, R.; Palego, L.; Baroni, D.; Massimetti, G.; Nardi, B.; Cremone, I.M.; Betti, L.; Giannaccini, G.; Dell’Osso, L. Circulating Levels of 5-HT and BDNF in Adults with Autism Spectrum Conditions: An Investigation in a Sample of Subjects with Autism Spectrum Disorder, their First-degree Relatives and Controls. Curr. Med. Chem. 2024, 31, 776–790. [Google Scholar] [CrossRef] [PubMed]
- Saghazadeh, A.; Rezaei, N. Brain-derived neurotrophic factor levels in autism: A systematic review and meta-analysis. J. Autism Dev. Disord. 2017, 47, 1018–1029. [Google Scholar] [CrossRef] [PubMed]
- Farmer, C.A.; Thurm, A.E.; Honnekeri, B.; Kim, P.; Swedo, S.E.; Han, J.C. The contribution of platelets to peripheral BDNF elevation in children with autism spectrum disorder. Sci. Rep. 2021, 11, 18158. [Google Scholar] [CrossRef]
- Dell’Osso, L.; Gesi, C.; Massimetti, E.; Cremone, I.M.; Barbuti, M.; Maccariello, G.; Moroni, I.; Barlati, S.; Castellini, G.; Luciano, M.; et al. Adult Autism Subthreshold Spectrum (AdAS Spectrum): Validation of a questionnaire investigating subthreshold autism spectrum. Compr. Psychiatry 2017, 73, 61–83. [Google Scholar] [CrossRef] [PubMed]
- Dell’Osso, L.; Carmassi, C.; Cremone, I.M.; Muti, D.; Salerni, A.; Barberi, F.M.; Massimetti, E.; Gesi, C.; Politi, P.; Aguglia, E.; et al. Defining the Optimal Threshold Scores for Adult Autism Subthreshold Spectrum (AdAS Spectrum) in Clinical and General Population. Clin. Pract. Epidemiol. Ment. Health 2020, 16, 204–211. [Google Scholar] [CrossRef]
- Mundt, J.C.; Marks, I.M.; Shear, M.K.; Greist, J.H. The Work and Social Adjustment Scale: A simple measure of impairment in functioning. Br. J. Psychiatry 2002, 180, 461–464. [Google Scholar] [CrossRef]
- Dell’Osso, L.; Carmassi, C.; Rucci, P.; Conversano, C.; Shear, M.K.; Calugi, S.; Maser, J.D.; Endicott, J.; Fagiolini, A.; Cassano, G.B. A multidimensional spectrum approach to post-traumatic stress disorder: Comparison between the Structured Clinical Interview for Trauma and Loss Spectrum (SCI-TALS) and the Self-Report instrument (TALS-SR). Compr. Psychiatry 2009, 50, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Dell’Osso, L.; Rucci, P.; Cassano, G.B.; Maser, J.D.; Endicott, J.; Shear, M.K.; Sarno, N.; Saettoni, M.; Grochocinski, V.J.; Frank, E. Measuring social anxiety and obsessive-compulsive spectra: Comparison of interviews and self-report instruments. Compr. Psychiatry 2002, 43, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Dell’Osso, L.; Cremone, I.M.; Amatori, G.; Cappelli, A.; Cuomo, A.; Barlati, S.; Massimetti, G.; Vita, A.; Fagiolini, A.; Carmassi, C.; et al. Investigating the Relationship between Autistic Traits, Ruminative Thinking, and Suicidality in a Clinical Sample of Subjects with Bipolar Disorder and Borderline Personality Disorder. Brain Sci. 2021, 11, 621. [Google Scholar] [CrossRef] [PubMed]
- Dell’Osso, L.; Cremone, I.M.; Chiarantini, I.; Nardi, B.; Pronestì, C.; Amatori, G.; Massimetti, E.; Signorelli, M.; Rocchetti, M.; Castellini, G.; et al. Autistic traits are associated with the presence of post-traumatic stress symptoms and suicidality among subjects with Autism spectrum conditions and Anorexia nervosa. J. Psychiatry Res. 2024; submitted. [Google Scholar]
- Cremone, I.M.; Nardi, B.; Amatori, G.; Palego, L.; Baroni, D.; Casagrande, D.; Massimetti, E.; Betti, L.; Giannaccini, G.; Dell’Osso, L.; et al. Unlocking the Secrets: Exploring the Biochemical Correlates of Suicidal Thoughts and Behaviors in Adults with Autism Spectrum Conditions. Biomedicines 2023, 11, 1600. [Google Scholar] [CrossRef] [PubMed]
- Betti, L.; Palego, L.; Unti, E.; Mazzucchi, S.; Kiferle, L.; Palermo, G.; Bonuccelli, U.; Giannaccini, G.; Ceravolo, R. Brain-Derived Neurotrophic Factor (BDNF) and Serotonin Transporter (SERT) in Platelets of Patients with Mild Huntington’s Disease: Relationships with Social Cognition Symptoms. Arch. Ital. Biol. 2018, 156, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Carpita, B.; Cremone, I.M.; Nardi, B.; Amatori, G.; Bonelli, C.; Massimetti, E.; Casagrande, D.; Pini, S.; Dell’Osso, L. Implications of Social Anxiety Symptoms in Adults with Autism Spectrum Disorder: Is There a Predictive Role of Interpersonal Sensitivity and Substance Abuse? Brain Sci. 2023, 13, 1559. [Google Scholar] [CrossRef] [PubMed]
- Bejerot, S.; Mörtberg, E. Do autistic traits play a role in the bullying of obsessive-compulsive disorder and social phobia sufferers? Psychopathology 2009, 42, 170–176. [Google Scholar] [CrossRef]
- Salazar, F.; Baird, G.; Chandler, S.; Tseng, E.; O’sullivan, T.; Howlin, P.; Pickles, A.; Simonoff, E. Co-occurring Psychiatric Disorders in Preschool and Elementary School-Aged Children with Autism Spectrum Disorder. J. Autism Dev. Disord. 2015, 45, 2283–2294. [Google Scholar] [CrossRef]
- Vickerstaff, S.; Heriot, S.; Wong, M.; Lopes, A.; Dossetor, D. Intellectual ability, self-perceived social competence, and depressive symptomatology in children with high-functioning autistic spectrum disorders. J. Autism Dev. Disord. 2007, 37, 1647–1664. [Google Scholar] [CrossRef]
- Li, S.T.; Chien, W.C.; Chung, C.H.; Tzeng, N.S. Increased risk of acute stress disorder and post-traumatic stress disorder in children and adolescents with autism spectrum disorder: A nation-wide cohort study in Taiwan. Front. Psychiatry 2024, 15, 1329836. [Google Scholar] [CrossRef] [PubMed]
- Palmer, S.J.; Dvir, Y. Trauma and psychosocial adversity in youth with autism spectrum disorder and intellectual disability. Front. Psychiatry 2024, 15, 1322056. [Google Scholar] [CrossRef]
- O’Halloran, L.; Coey, P.; Wilson, C. Suicidality in autistic youth: A systematic review and meta-analysis. Clin. Psychol. Rev. 2022, 93, 102144. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Chen, Y.L.; Gau, S.S. Suicidality in Children with Elevated Autistic Traits. Autism Res. 2020, 13, 1811–1821. [Google Scholar] [CrossRef] [PubMed]
- Zahid, S.; Upthegrove, R. Suicidality in Autistic Spectrum Disorders. Crisis 2017, 38, 237–246. [Google Scholar] [CrossRef]
- Chen, M.H.; Pan, T.L.; Lan, W.H.; Hsu, J.W.; Huang, K.L.; Su, T.P.; Li, C.T.; Lin, W.C.; Wei, H.T.; Chen, T.J.; et al. Risk of Suicide Attempts Among Adolescents and Young Adults With Autism Spectrum Disorder: A Nationwide Longitudinal Follow-Up Study. J. Clin. Psychiatry 2017, 78, e1174–e1179. [Google Scholar] [CrossRef] [PubMed]
- Kirby, A.V.; Bakian, A.V.; Zhang, Y.; Bilder, D.A.; Keeshin, B.R.; Coon, H. A 20-year study of suicide death in a statewide autism population. Autism Res. 2019, 12, 658–666. [Google Scholar] [CrossRef]
- Mayes, S.D.; Calhoun, S.L.; Baweja, R.; Mahr, F. Suicide ideation and attempts in children with psychiatric disorders and typical development. Crisis 2015, 36, 55–60. [Google Scholar] [CrossRef]
- Leibrock, J.; Lottspeich, F.; Hohn, A.; Hofer, M.; Hengerer, B.; Masiakowski, P.; Thoenen, H.; Barde, Y.A. Molecular cloning and expression of brain-derived neurotrophic factor. Nature 1989, 341, 149–152. [Google Scholar] [CrossRef]
- Binder, D.K.; Scharfman, H.E. Brain-derived neurotrophic factor. Growth Fact. 2004, 22, 123. [Google Scholar] [CrossRef] [PubMed]
- Huang, E.J.; Reichardt, L.F. Neurotrophins: Roles in neuronal development and function. Annu. Rev. Neurosci. 2001, 24, 677–736. [Google Scholar] [CrossRef] [PubMed]
- Nickl-Jockschat, T.; Michel, T. The role of neurotrophic factors in autism. Mol. Psychiatry 2011, 16, 478–490. [Google Scholar] [CrossRef] [PubMed]
- Angelucci, F.; Gelfo, F.; De Bartolo, P.; Caltagirone, C.; Petrosini, L. BDNF concentrations are decreased in serum and parietal cortex in immunotoxin 192 IgG-Saporin rat model of cholinergic degeneration. Neurochem. Int. 2011, 59, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Morichi, S.; Yamanaka, G.; Ishida, Y.; Oana, S.; Kashiwagi, Y.; Kawashima, H. Brain-derived neurotrophic factor and interleukin-6 levels in the serum and cerebrospinal fluid of children with viral infection-induced encephalopathy. Neurochem. Res. 2014, 39, 2143–2149. [Google Scholar] [CrossRef] [PubMed]
- Galderisi, S.; Maj, M.; Kirkpatrick, B.; Piccardi, P.; Mucci, A.; Invernizzi, G.; Rossi, A.; Pini, S.; Vita, A.; Cassano, P.; et al. COMT Val(158)Met and BDNF C(270)T polymorphisms in schizophrenia: A case-control study. Schizophr. Res. 2005, 73, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.H.; Shi, X.J.; Fan, F.C.; Cheng, Y. Peripheral blood neurotrophic factor levels in children with autism spectrum disorder: A meta-analysis. Sci. Rep. 2021, 11, 15. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.-Y.; Feng, J.-C.; Cao, C.; Wu, H.-T.; Loh, Y.P.; Cheng, Y. Association of peripheral blood levels of brain-derived neurotrophic factor with autism spectrum disorder in children: A systematic review and meta-analysis. JAMA Pediatr. 2016, 170, 1079–1086. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Zhang, L.; Zhu, T.; Huang, J.; Qu, Y.; Mu, D. Peripheral brain-derived neurotrophic factor in autism spectrum disorder: A systematic review and meta-analysis. Sci. Rep. 2016, 6, 31241. [Google Scholar] [CrossRef]
- Barbosa, A.G.; Pratesi, R.; Paz, G.S.C.; Dos Santos, M.A.A.L.; Uenishi, R.H.; Nakano, E.Y.; Gandolfi, L.; Pratesi, C.B. Assessment of BDNF serum levels as a diagnostic marker in children with autism spectrum disorder. Sci. Rep. 2020, 10, 17348. [Google Scholar] [CrossRef]
- Fujimura, H.; Altar, C.A.; Chen, R.; Nakamura, T.; Nakahashi, T.; Kambayashi, J.; Sun, B.; Tandon, N.N. Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation. Thromb. Haemost. 2002, 87, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Pini, S.; Martini, C.; Abelli, M.; Muti, M.; Gesi, C.; Montali, M.; Chelli, B.; Lucacchini, A.; Cassano, G.B. Peripheral-type benzodiazepine receptor binding sites in platelets of patients with panic disorder associated to separation anxiety symptoms. Psychopharmacology 2005, 181, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Chelli, B.; Pini, S.; Abelli, M.; Cardini, A.; Lari, L.; Muti, M.; Gesi, C.; Cassano, G.B.; Lucacchini, A.; Martini, C. Platelet 18 kDa Translocator Protein density is reduced in depressed patients with adult separation anxiety. Eur. Neuropsychopharmacol. 2008, 18, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Tang, X.; Feng, C.; Gao, Y.; Hong, Q.; Zhang, J.; Zhang, X.; Zheng, Q.; Lin, J.; Liu, X.; et al. The use of data independent acquisition based proteomic analysis and machine learning to reveal potential biomarkers for autism spectrum disorder. J. Proteom. 2023, 278, 104872. [Google Scholar] [CrossRef] [PubMed]
- White, S.W.; Ollendick, T.; Bray, B.C. College students on the autism spectrum: Prevalence and associated problems. Autism 2011, 15, 683–701. [Google Scholar] [CrossRef] [PubMed]
- Muris, P.; Ollendick, T.H. Selective mutism and its relations to social anxiety disorder and autism spectrum disorder. Clin. Child Fam. Psychol. Rev. 2021, 24, 294–325. [Google Scholar] [CrossRef] [PubMed]
- Noris, B.; Barker, M.; Nadel, J.; Hentsch, F.; Ansermet, F.; Billard, A. Measuring gaze of children with autism spectrum disorders in naturalistic interactions. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 5356–5359. [Google Scholar]
- Bögels, S.M.; Mansell, W. Attention processes in the maintenance and treatment of social phobia: Hypervigilance, avoidance and self-focused attention. Clin. Psychol. Rev. 2004, 24, 827–856. [Google Scholar] [CrossRef]
- White, S.W.; Oswald, D.; Ollendick, T.; Scahill, L. Anxiety in children and adolescents with autism spectrum disorders. Clin. Psychol. Rev. 2009, 29, 216–229. [Google Scholar] [CrossRef]
- Simonoff, E.; Pickles, A.; Charman, T.; Chandler, T.; Baird, G. Psychiatric disorders in children with autism spectrum disorders: Prevalence, comorbidity, and associated factors in a population-derived sample. J. Am. Acad. Child Adolesc. Psychiatry 2008, 47, 921–929. [Google Scholar] [CrossRef]
- Puleo, C.M.; Kendall, P.C. Anxiety disorders in typically developing youth: Autism spectrum symptoms as a predictor of cognitive-behavioral treatment. J. Autism Dev. Disord. 2011, 41, 275–286. [Google Scholar] [CrossRef]
- Farrugia, S.; Hudson, J. Anxiety in adolescents with Asperger syndrome: Negative thoughts, behavioral problems, and life interference. Focus Autism Other Dev. Disabil. 2006, 21, 25–35. [Google Scholar] [CrossRef]
- Kuusikko-Gauffin, S.; Pollock-Wurman, R.; Mattila, M.L.; Jussila, K.; Ebeling, H.; Pauls, D.; Moilanen, I. Social anxiety in parents of high-functioning children with autism and Asperger syndrome. J. Autism Dev. Disord. 2013, 43, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Cath, D.C.; Ran, N.; Smit, J.H.; Van Balkom, A.J.; Comijs, H.C. Symptom overlap between autism spectrum disorder, generalized social anxiety disorder and obsessive-compulsive disorder in adults: A preliminary case-controlled study. Psychopathology 2007, 41, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Marazziti, D.; Abelli, M.; Baroni, S.; Carpita, B.; Piccinni, A.; Dell’Osso, L. Recent findings on the pathophysiology of social anxiety disorder. Clin. Neuropsychiatry J. Treat. Eval. 2014, 11, 91–100. [Google Scholar]
- Nolen-Hoeksema, S.; Wisco, B.E.; Lyubomirsky, S. Rethinking rumination. Perspect. Psychol. Sci. 2008, 3, 400–424. [Google Scholar] [CrossRef] [PubMed]
- Dell’Osso, L.; Carpita, B.; Nardi, B.; Benedetti, F.; Dell’Oste, V.; Massimetti, G.; Cremone, I.M.; Barlati, S.; Castellini, G.; Luciano, M.; et al. Autistic traits distribution in different psychiatric conditions: A cluster analysis on the basis of the Adult Autism Subthreshold Spectrum (AdAS Spectrum) questionnaire. Psychiatry Res. 2023, 326, 115270. [Google Scholar] [CrossRef] [PubMed]
- Mihić, L.; Novović, Z.; Lazić, M.; Dozois, D.J.A.; Belopavlović, R. The Dimensions of Ruminative Thinking: One for All or All for One. Assessment 2019, 26, 684–694. [Google Scholar] [CrossRef]
- Silveira Éde, M., Jr.; Kauer-Sant’Anna, M. Rumination in bipolar disorder: A systematic review. Braz. J. Psychiatry 2015, 37, 256–263. [Google Scholar] [CrossRef]
- Thomas, J.; Bentall, R.P. Hypomanic traits and response styles to depression. Br. J. Clin. Psychol. 2002, 41, 309–313. [Google Scholar] [CrossRef]
- Shkundin, A.; Halaris, A. Associations of BDNF/BDNF-AS SNPs with Depression, Schizophrenia, and Bipolar Disorder. J. Pers. Med. 2023, 13, 1395. [Google Scholar] [CrossRef]
- Chiou, Y.J.; Huang, T.L. Brain-derived neurotrophic factor (BDNF) and bipolar disorder. Psychiatry Res. 2019, 274, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Abdolhosseinzadeh, S.; Alizadeh, N.; Shams, J.; Asadi, S.; Ahmadiani, A. BDNF association study with obsessive-compulsive disorder, its clinical characteristics, and response to fluvoxamine-treatment in Iranian patients. Exp. Clin. Psychopharmacol. 2020, 28, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Treadway, M.T.; Zald, D.H. Reconsidering anhedonia in depression: Lessons from translational neuroscience. Neurosci. Biobehav. Rev. 2011, 35, 537–555. [Google Scholar] [CrossRef] [PubMed]
- Gerber, H.A.; Griffin, W.J.; Keifer, M.C.; Lerner, D.M.; McPartland, C.J. Social Anhedonia Accounts for Greater Variance in Internalizing Symptoms than Autism Symptoms in Autistic and Non-Autistic Youth. J. Autism Dev. Disord. 2024, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Dichter, G.S.; Rodriguez-Romaguera, J. Anhedonia and Hyperhedonia in Autism and Related Neurodevelopmental Disorders. Curr. Top. Behav. Neurosci. 2022, 58, 237–254. [Google Scholar] [PubMed]
- Moran, E.K.; Culbreth, A.J.; Barch, D.M. Anhedonia in Schizophrenia. Curr. Top. Behav. Neurosci. 2022, 58, 129–145. [Google Scholar]
- Mula, M.; Pini, S.; Calugi, S.; Preve, M.; Masini, M.; Giovannini, I.; Rucci, P.; Cassano, G.B. Distinguishing affective depersonalization from anhedonia in major depression and bipolar disorder. Compr. Psychiatry 2010, 51, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Keren, H.; O’Callaghan, G.; Vidal-Ribas, P.; Buzzell, G.A.; Brotman, M.A.; Leibenluft, E.; Pan, P.M.; Meffert, L.; Kaiser, A.; Wolke, S.; et al. Reward Processing in Depression: A Conceptual and Meta-Analytic Review Across fMRI and EEG Studies. Am. J. Psychiatry 2018, 175, 1111–1120. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Ren, J.; Lei, X.; Wang, Y.; Chen, X.; Zhang, R.; Li, Q.; Teng, X.; Guo, C.; Wu, Z.; et al. Association of anhedonia with brain-derived neurotrophic factor and interleukin-10 in major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2024, 133, 111023. [Google Scholar] [CrossRef]
- Woelfer, M.; Kasties, V.; Kahlfuss, S.; Walter, M. The role of depressive subtypes within the neuroinflammation hypothesis of major depressive disorder. Neuroscience 2019, 403, 93–110. [Google Scholar] [CrossRef]
- Hashmi, A.M.; Butt, Z.; Umair, M. Is depression an inflammatory condition? A review of available evidence. J. Pak. Med. Assoc. 2013, 63, 899–906. [Google Scholar] [PubMed]
- Minichiello, L. TrkB signalling pathways in LTP and learning. Nat. Rev. Neurosci. 2009, 10, 850–860. [Google Scholar] [CrossRef] [PubMed]
- Andero, R.; Ressler, K.J. Fear extinction and BDNF: Translating animal models of PTSD to the clinic. Genes Brain Behav. 2012, 11, 503–512. [Google Scholar] [CrossRef]
- Hauck, S.; Kapczinski, F.; Roesler, R.; de Moura Silveira, E.; Magalhães, P.V.; Kruel, L.R.P.; Schestatsky, S.S.; Ceitlin, L.H.F. Serum brain-derived neurotrophic factor in patients with trauma psychopathology. Prog. Neuropsychopharmacol. Psychiatry 2010, 34, 459–462. [Google Scholar] [CrossRef]
- Mojtabavi, H.; Saghazadeh, A.; Van den Heuvel, L.; Bucker, J.; Rezaei, N. Peripheral blood levels of brain-derived neurotrophic factor in patients with post-traumatic stress disorder (PTSD): A systematic review and meta-analysis. PLoS ONE 2020, 15, e0241928. [Google Scholar] [CrossRef] [PubMed]
- Rattiner, L.M.; Davis, M.; French, C.T.; Ressler, K.J. Brain-derived neurotrophic factor and tyrosine kinase receptor B involvement in amygdala-dependent fear conditioning. J. Neurosci. 2004, 24, 4796–4806. [Google Scholar] [CrossRef]
- Chhatwal, J.P.; Ressler, K.J. Modulation of fear and anxiety by the endogenous cannabinoid system. CNS Spectr. 2007, 12, 211–220. [Google Scholar] [CrossRef]
- Loomes, R.; Hull, L.; Mandy, W.P.L. What is the male-to-female ratio in autism spectrum disorder? A systematic review and meta-analysis. J. Am. Acad. Child Adolesc. Psychiatry 2017, 56, 466–474. [Google Scholar] [CrossRef]
- Anderson, G. Gut Microbiome and Circadian Interactions with Platelets Across Human Diseases, including Alzheimer’s Disease, Amyotrophic Lateral Sclerosis, and Cancer. Curr. Top. Med. Chem. 2023, 23, 2699–2719. [Google Scholar] [CrossRef]
- Esposito, D.; Cruciani, G.; Zaccaro, L.; Di Carlo, E.; Spitoni, G.F.; Manti, F.; Carducci, C.; Fiori, E.; Leuzzi, V.; Pascucci, T. A Systematic Review on Autism and Hyperserotonemia: State-of-the-Art, Limitations, and Future Directions. Brain Sci. 2024, 14, 481. [Google Scholar] [CrossRef]
- Pagan, C.; Goubran-Botros, H.; Delorme, R.; Benabou, M.; Lemière, N.; Murray, K.; Amsellem, F.; Callebert, J.; Chaste, P.; Jamain, S.; et al. Disruption of melatonin synthesis is associated with impaired 14-3-3 and miR-451 levels in patients with autism spectrum disorders. Sci. Rep. 2017, 7, 2096. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.W.; Liu, X.; Pradoldej, S.; Tosini, G.; Chang, Q.; Iuvone, P.M.; Ye, K. N-acetylserotonin activates TrkB receptor in a circadian rhythm. Proc. Natl. Acad. Sci. USA 2010, 107, 3876–3881. [Google Scholar] [CrossRef] [PubMed]
- Yoo, D.Y.; Nam, S.M.; Kim, W.; Lee, C.H.; Won, M.H.; Hwang, I.K.; Yoon, Y.S. N-acetylserotonin increases cell proliferation and differentiating neuroblasts with tertiary dendrites through upregulation of brain-derived neurotrophic factor in the mouse dentate gyrus. J. Vet. Med. Sci. 2011, 73, 1411–1416. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.; Anderson, G. Gut-Amygdala Interactions in Autism Spectrum Disorders: Developmental Roles via regulating Mitochondria, Exosomes, Immunity and microRNAs. Curr. Pharm. Des. 2019, 25, 4344–4356. [Google Scholar] [CrossRef] [PubMed]
ASD (n = 22) (Mean ± SD, Mean Rank) | HC (n = 22) (Mean ± SD, Mean Rank) | H | p * | ||
---|---|---|---|---|---|
Age | 28.36 ± 6.97, 18.25 | 33.91 ± 8.13, 26.75 | 335.50 | 0.028 * | |
n (%) | n (%) | Chi-square | p | ||
Sex | M | 15(68.2%) | 7(31.8%) | 5.82 | 0.016 * |
F | 7(31.8%) | 15(68.2%) |
ASD (n = 22) (Mean ± SD, Mean Rank) | HC (n = 22) (Mean ± SD, Mean Rank) | H | p * | |
---|---|---|---|---|
Platelet BDNF ng/mg prot | 3.18 ± 1.25, 18.48 | 4.55 ± 2.46, 26.52 | 330.50 | 0.038 * |
AdAS Spectrum | ASD (n = 22) (Mean ± SD, Mean Rank) | HC (n = 22) (Mean ± SD, Mean Rank) | H | p * |
---|---|---|---|---|
Child./Adolesc. | 10.77 ± 3.69, 31.32 | 3.48 ± 2.11, 12.24 | 26.00 | <0.001 * |
Verb. comm. | 10.27 ± 5.08, 31.61 | 1.57 ± 1.69, 11.93 | 19.50 | <0.001 * |
Non-verb. comm. | 12.73 ± 4.50, 32.05 | 3.33 ± 2.22, 11.48 | 10.00 | <0.001 * |
Empathy | 5.36 ± 2.87,31.20 | 0.86 ± 1.06, 12.36 | 28.50 | <0.001 * |
Inflex. and routine | 21.73 ± 6.70, 32.18 | 5.33 ± 3.40, 11.33 | 7.00 | <0.001 * |
Restrict. Interest and rum. | 13.27 ± 3.90, 32.39 | 3.05 ± 1.93, 11.12 | 2.50 | <0.001 * |
Hyper-hyporeact. | 6.64 ± 3.37, 31.70 | 0.81 ± 1.17, 11.83 | 17.50 | <0.001 * |
AdAS Spectr. total score | 80.77 ± 21.37, 33.07 | 20.91 ± 14.00, 11.93 | 9.50 | <0.001 * |
WSAS | ASD (n = 22) (Mean ± SD, Mean Rank) | HC (n = 22) (Mean ± SD, Mean Rank) | H | p * |
---|---|---|---|---|
Work | 5.39 ± 2.90, 28.69 | 0.45 ± 0.76, 11.23 | 14.50 | <0.001 * |
Home management | 5.11 ± 2.56, 28.06 | 0.35 ± 0.67, 11.80 | 26.00 | <0.001 * |
Social leisure activities | 5.17 ± 2.41, 28.67 | 0.25 ± 0.55, 11.25 | 15.00 | <0.001 * |
Private leisure activities | 5.50 ± 2.75, 28.78 | 0.15 ± 0.37, 11.15 | 13.00 | <0.001 * |
Close relationships | 4.06 ± 2.92, 27.56 | 0.10 ± 3.08, 12.25 | 35.00 | <0.001 * |
WSAS total score | 25.22 ± 9.14, 28.78 | 1.30 ± 2.27, 11.15 | 13.00 | <0.001 * |
SHY-SR | ASD (n = 22) (Mean ± SD, Mean Rank) | HC (n = 22) (Mean ± SD, Mean Rank) | H | p * |
---|---|---|---|---|
Childhood | 6.50 ± 3.46, 28.40 | 2.77 ± 2.11, 15.23 | 82.00 | <0.001 * |
Interpersonal sensitivity | 18.42 ± 5.27, 31.16 | 4.50 ± 4.80, 12.23 | 16.00 | <0.001 * |
Behavioral inhibition | 10.68 ± 4.92, 31.18 | 1.45 ± 1.74, 12.20 | 15.50 | <0.001 * |
Substance abuse | 1.65 ± 1.75, 26.23 | 0.54 ± 1.01, 17.20 | 125.50 | 0.010 * |
Social situations | 53.58 ± 20.33, 31.16 | 10.41 ± 11.39, 12.23 | 16.00 | <0.001 * |
SHY-SR total score | 88.78 ± 29.64, 30.61 | 19.68 ± 18.02, 12.23 | 16.00 | <0.001 * |
TALS-SR | ASD (n = 22) (Mean ± SD, Mean Rank) | HC (n = 22) (Mean ± SD, Mean Rank) | H | p * |
---|---|---|---|---|
Loss | 4.20 ± 1.88, 26.05 | 3.00 ± 1.45, 17.36 | 129.00 | 0.020 * |
Grief Reactions | 13.10 ± 6.56, 27.80 | 6.50 ± 4.69, 15.77 | 94.00 | 0.001 * |
Potential Traumatic Events | 7.40 ± 3.42, 31.48 | 1.50 ± 1.40, 12.43 | 20.50 | <0.001 * |
Reac. to Losses/Upset. Events | 9.48 ± 3.34, 28.45 | 4.23 ± 4.65, 14.57 | 67.50 | <0.001 * |
Re-experiencing | 6.20 ± 2.09, 30.20 | 1.95 ± 2.46, 13.59 | 46.00 | <0.001 * |
Avoidance/Numbing | 6.80 ± 3.14, 28.45 | 1.20 ± 2.89, 12.55 | 41.00 | <0.001 * |
Maladaptive Coping | 3.35 ± 2.25, 28.55 | 0.57 ± 1.83, 13.81 | 59.00 | <0.001 * |
Arousal | 2.85 ± 1.42, 30.45 | 0.45 ± 1.14, 13.36 | 41.00 | <0.001 * |
Pers. charact.s/Risk Factors | 2.75 ± 1.65, 29.68 | 0.54 ± 0.96, 14.07 | 56.50 | <0.001 * |
TALS-SR total score | 57.05 ± 17.85, 28.55 | 19.40 ± 16.01,11.88 | 27.50 | <0.001 * |
ASD (n = 22) (Mean ± SD, Mean Rank) | HC (n = 22) (Mean ± SD, Mean Rank) | H | p * | |
---|---|---|---|---|
Suicidality | 2.85 ± 2.16, 30.38 | 0.14 ± 0.64, 13.43 | 42.50 | <0.001 * |
Linear Regression 1 | ||||
---|---|---|---|---|
b (SE) | BETA | t | p | |
Constant | 4.77 (0.53) | 9.059 | <0.001 * | |
AdAS Spectr. tot. score | −0.018 (0.01) | −0.306 | −2.083 | 0.043 * |
R square = 0.094; Adjusted R square = 0.072 | ||||
Linear Regression 2 | ||||
Constant | 4.37 (0.41) | 10.716 | <0.001 * | |
WSAS tot. score | −0.05 (0.02) | −0.336 | −2.142 | 0.039 * |
R square = 0.113; Adjusted R square = 0.088 |
b (SE) | BETA | t | p | |
---|---|---|---|---|
Constant | 4.88 (0.51) | 9519 | 0.001 * | |
AdAS Spectrum—Restrict. int. and rum. | −0.12 (0.50) | −0.354 | −2428 | 0.020 * |
b (SE) | BETA | t | p | |
---|---|---|---|---|
Constant | 3.11 (0.88) | 3.525 | 0.001 * | |
TALS-SR Arousal | −1.04 (0.49) | −0.888 | −2.126 | 0.042 * |
Constant | 4.74 (0.53) | 9.000 | <0.001 * | |
SHY-SR Childhood | −0.19 (0.09) | −0.316 | −2.053 | 0.047 * |
Constant | 4.47 (0.41) | 11.006 | <0.001 * | |
WSAS Private leisure activities | −0.23 (0.10) | −0.364 | −2.347 | 0.025 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carpita, B.; Nardi, B.; Bonelli, C.; Pascariello, L.; Massimetti, G.; Cremone, I.M.; Pini, S.; Palego, L.; Betti, L.; Giannaccini, G.; et al. Platelet Levels of Brain-Derived Neurotrophic Factor in Adults with Autism Spectrum Disorder: Is There a Specific Association with Autism Spectrum Psychopathology? Biomedicines 2024, 12, 1529. https://doi.org/10.3390/biomedicines12071529
Carpita B, Nardi B, Bonelli C, Pascariello L, Massimetti G, Cremone IM, Pini S, Palego L, Betti L, Giannaccini G, et al. Platelet Levels of Brain-Derived Neurotrophic Factor in Adults with Autism Spectrum Disorder: Is There a Specific Association with Autism Spectrum Psychopathology? Biomedicines. 2024; 12(7):1529. https://doi.org/10.3390/biomedicines12071529
Chicago/Turabian StyleCarpita, Barbara, Benedetta Nardi, Chiara Bonelli, Lavinia Pascariello, Gabriele Massimetti, Ivan Mirko Cremone, Stefano Pini, Lionella Palego, Laura Betti, Gino Giannaccini, and et al. 2024. "Platelet Levels of Brain-Derived Neurotrophic Factor in Adults with Autism Spectrum Disorder: Is There a Specific Association with Autism Spectrum Psychopathology?" Biomedicines 12, no. 7: 1529. https://doi.org/10.3390/biomedicines12071529
APA StyleCarpita, B., Nardi, B., Bonelli, C., Pascariello, L., Massimetti, G., Cremone, I. M., Pini, S., Palego, L., Betti, L., Giannaccini, G., & Dell’Osso, L. (2024). Platelet Levels of Brain-Derived Neurotrophic Factor in Adults with Autism Spectrum Disorder: Is There a Specific Association with Autism Spectrum Psychopathology? Biomedicines, 12(7), 1529. https://doi.org/10.3390/biomedicines12071529