Impact of Peripheral Angioplasty on Wound Oxygenation and Healing in Patients with Chronic Limb-Threatening Ischemia Measured by Near-Infrared Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Study Design
2.3. Measurements
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Response to Treatment
3.2.1. Wound Area
3.2.2. WIfI Score
3.3. Prediction of Wound Healing
3.3.1. NIRS Measurements
3.3.2. ABI Measurements
4. Discussion
4.1. Management of CLTI Patients
4.2. Improvement in Wound Tissue Oxygenation Correlates with Wound Healing
4.3. NIRS Monitoring of Complex Arterial Wounds
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Appendix A
Medication | EVT (n = 27) | Control (n = 16) | p-Value |
---|---|---|---|
ASS | 13 (48) | 9 (56) | 0.61 |
P2Y12 inhibitor | 12 (44) | 6 (38) | 0.66 |
NOACs | 11 (41) | 5 (31) | 0.54 |
Cumarine | 9 (33) | 3 (19) | 0.31 |
Statin | 21 (78) | 15 (94) | 0.18 |
Metformin | 8 (30) | 4 (25) | 0.75 |
Insulin | 16 (63) | 10 (63) | 0.98 |
Betablocker | 23 (85) | 11 (69) | 0.35 |
ACE inhibitor/AT1 antagonist | 16 (59) | 11 (69) | 0.55 |
Calciumantagonist | 10 (37) | 9 (56) | 0.23 |
Diuretics | 23 (85) | 12 (75) | 0.31 |
Localization of Stenosis | EVT | Control |
---|---|---|
Iliacal | 4 | 3 |
Femoropopliteal | 13 | 12 |
Below the knee (BTK) | 26 | 17 |
Bypass | 1 | 1 |
References
- Fowkes, F.G.R.; Rudan, D.; Rudan, I.; Aboyans, V.; Denenberg, J.O.; McDermott, M.M.; Norman, P.E.; Sampson, U.K.; Williams, L.J.; Mensah, G.A. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: A systematic review and analysis. Lancet 2013, 382, 1329–1340. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Hwang, J.; Yon, D.K.; Lee, S.W.; Jung, S.Y.; Park, S.; Johnson, C.O.; Stark, B.A.; Razo, C.; Abbasian, M.; et al. Global burden of peripheral artery disease and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Glob. Health 2023, 11, e1553–e1565. [Google Scholar] [CrossRef] [PubMed]
- Conte, M.S.; Bradbury, A.W.; Kolh, P.; White, J.V.; Dick, F.; Fitridge, R.; Mills, J.L.; Ricco, J.B.; Suresh, K.R.; Murad, M.H.; et al. Global Vascular Guidelines on the Management of Chronic Limb-Threatening Ischemia. Eur. J. Vasc. Endovasc. Surg. 2019, 58, S1–S109.e133. [Google Scholar] [CrossRef] [PubMed]
- Stoffers, H.E.; Kester, A.D.; Kaiser, V.; Rinkens, P.E.; Kitslaar, P.J.; Knottnerus, J.A. The diagnostic value of the measurement of the ankle-brachial systolic pressure index in primary health care. J. Clin. Epidemiol. 1996, 49, 1401–1405. [Google Scholar] [CrossRef] [PubMed]
- Aboyans, V.; Ho, E.; Denenberg, J.O.; Ho, L.A.; Natarajan, L.; Criqui, M.H. The association between elevated ankle systolic pressures and peripheral occlusive arterial disease in diabetic and nondiabetic subjects. J. Vasc. Surg. 2008, 48, 1197–1203. [Google Scholar] [CrossRef] [PubMed]
- London, G.M.; Guérin, A.P.; Marchais, S.J.; Métivier, F.; Pannier, B.; Adda, H. Arterial media calcification in end-stage renal disease: Impact on all-cause and cardiovascular mortality. Nephrol. Dial. Transplant. 2003, 18, 1731–1740. [Google Scholar] [CrossRef] [PubMed]
- Goss, D.E.; de Trafford, J.; Roberts, V.C.; Flynn, M.D.; Edmonds, M.E.; Watkins, P.J. Raised ankle/brachial pressure index in insulin-treated diabetic patients. Diabet. Med. 1989, 6, 576–578. [Google Scholar] [CrossRef] [PubMed]
- Giachelli, C.M. Vascular calcification mechanisms. J. Am. Soc. Nephrol. 2004, 15, 2959–2964. [Google Scholar] [CrossRef] [PubMed]
- Reed Grant, W.; Young, L.; Bagh, I.; Maier, M.; Shishehbor Mehdi, H. Hemodynamic Assessment Before and After Endovascular Therapy for Critical Limb Ischemia and Association With Clinical Outcomes. JACC Cardiovasc. Interv. 2017, 10, 2451–2457. [Google Scholar] [CrossRef]
- Wang, Z.; Hasan, R.; Firwana, B.; Elraiyah, T.; Tsapas, A.; Prokop, L.; Mills, J.L.; Murad, M.H. A systematic review and meta-analysis of tests to predict wound healing in diabetic foot. J. Vasc. Surg. 2016, 63 (Suppl. S2), S29–S36.e22. [Google Scholar] [CrossRef]
- Tarvainen, S.; Wirth, G.; Juusola, G.; Hautero, O.; Kalliokoski, K.; Sjöros, T.; Nikulainen, V.; Taavitsainen, J.; Hytönen, J.; Frimodig, C.; et al. Critical limb-threatening ischaemia and microvascular transformation: Clinical implications. Eur. Heart J. 2024, 45, 255–264. [Google Scholar] [CrossRef]
- Feuer, D.S.; Handberg, E.M.; Mehrad, B.; Wei, J.; Bairey Merz, C.N.; Pepine, C.J.; Keeley, E.C. Microvascular Dysfunction as a Systemic Disease: A Review of the Evidence. Am. J. Med. 2022, 135, 1059–1068. [Google Scholar] [CrossRef] [PubMed]
- Woo, Y.; Suh, Y.J.; Lee, H.; Jeong, E.; Park, S.C.; Yun, S.S.; Kim, J.Y. TcPO2 Value Can Predict Wound Healing Time in Clinical Practice of CLTI Patients. Ann. Vasc. Surg. 2023, 91, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulos, C.N.; Lazaris, A.; Venermo, M.; Geroulakos, G. Predictors of Wound Healing Following Revascularization for Chronic Limb-Threatening Ischemia. Vasc. Endovasc. Surg. 2019, 53, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Aboyans, V.; Ricco, J.B.; Bartelink, M.E.L.; Bjorck, M.; Brodmann, M.; Cohnert, T.; Collet, J.P.; Czerny, M.; De Carlo, M.; Debus, S.; et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteriesEndorsed by: The European Stroke Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur. Heart J. 2018, 39, 763–816. [Google Scholar] [CrossRef] [PubMed]
- Bowen, R.; Treadwell, G.; Goodwin, M. Correlation of near infrared spectroscopy measurements of tissue oxygen saturation with transcutaneous pO2 in patients with chronic wounds. SM Vasc. Med. 2016, 1, 1006. [Google Scholar]
- Serena, T.E.; Yaakov, R.; Serena, L.; Mayhugh, T.; Harrell, K. Comparing near infrared spectroscopy and transcutaneous oxygen measurement in hard-to-heal wounds: A pilot study. J. Wound Care 2020, 29 (Suppl. S6), S4–S9. [Google Scholar] [CrossRef]
- Monteiro-Soares, M.; Hamilton, E.J.; Russell, D.A.; Srisawasdi, G.; Boyko, E.J.; Mills, J.L.; Jeffcoate, W.; Game, F. Guidelines on the classification of foot ulcers in people with diabetes (IWGDF 2023 update). Diabetes Metab. Res. Rev. 2024, 40, e3648. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Z.; Raza, M.Z.; Worrall, A.P.; Kheirelseid, E.; Naughton, P.; Moneley, D.; McHugh, S. SVS WIfI score as a predictor of amputation after onset of CLI: Validation in an Irish tertiary vascular unit. Surgeon 2023, 21, 48–53. [Google Scholar] [CrossRef]
- Kayama, T.; Sano, M.; Inuzuka, K.; Katahashi, K.; Yata, T.; Yamanaka, Y.; Naruse, E.; Yamamoto, N.; Takeuchi, H.; Unno, N. A Pilot Study Investigating the Use of Regional Oxygen Saturation as a Predictor of Ischemic Wound Healing Outcome after Endovascular Treatment in Patients with Chronic Limb-Threatening Ischemia. Ann. Vasc. Dis. 2021, 14, 23–30. [Google Scholar] [CrossRef]
- Maheshwari, N.; Marone, A.; Altoé, M.; Kim, S.H.K.; Bajakian, D.R.; Hielscher, A.H. Postintervention monitoring of peripheral arterial disease wound healing using dynamic vascular optical spectroscopy. J. Biomed. Opt. 2022, 27, 125002. [Google Scholar] [CrossRef]
- Geskin, G.; Mulock, M.D.; Tomko, N.L.; Dasta, A.; Gopalakrishnan, S. Effects of Lower Limb Revascularization on the Microcirculation of the Foot: A Retrospective Cohort Study. Diagnostics 2022, 12, 1320. [Google Scholar] [CrossRef] [PubMed]
- Boezeman, R.P.; Becx, B.P.; van den Heuvel, D.A.; Ünlü, Ç.; Vos, J.A.; de Vries, J.P. Monitoring of Foot Oxygenation with Near-infrared Spectroscopy in Patients with Critical Limb Ischemia Undergoing Percutaneous Transluminal Angioplasty: A Pilot Study. Eur. J. Vasc. Endovasc. Surg. 2016, 52, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Grambow, E.; Dau, M.; Sandkühler, N.A.; Leuchter, M.; Holmer, A.; Klar, E.; Weinrich, M. Evaluation of peripheral artery disease with the TIVITA® Tissue hyperspectral imaging camera system. Clin. Hemorheol. Microcirc. 2019, 73, 3–17. [Google Scholar] [CrossRef] [PubMed]
EVT (n = 27) | Control (n = 16) | p-Value | |
---|---|---|---|
Patient characteristics | |||
Male sex | 24 (88.9) | 16 (100) | 0.21 |
Age—year(s) | 77 ± 8 | 75 ± 12 | 0.55 |
Mean follow-up time—day(s) | 129 ± 32 | 129 ± 47 | 0.40 |
Body mass index—kg/m2 | 28 ± 6 | 28 ± 5 | 0.88 |
Hypercholesterolemia | 14 (52) | 9 (56) | 0.78 |
Hypertension | 26 (96) | 15 (94) | 0.71 |
Coronary artery disease | 21 (78) | 13 (81) | 0.79 |
Peripheral artery disease IV | 27 (100) | 16 (100) | 1.0 |
Diabetes mellitus | 22 (81) | 13 (81) | 0.99 |
Chronic kidney failure | 23 (85) | 12 (75) | 0.62 |
Dialysis | 2 (7) | 1 (6) | 0.89 |
Smoker | 23 (85) | 15 (94) | 0.40 |
Laboratory | |||
Hemoglobin—g/dL | 11.8 ± 2 | 11.9 ± 2 | 0.87 |
Creatinine—mg/dL | 1.9 ± 1.5 | 1.7 ± 1.1 | 0.51 |
LDL cholesterol—mg/dL | 87 ± 23 | 91 ± 21 | 0.64 |
HbA1c—% | 7.3 ± 1.7 | 7 ± 2 | 0.59 |
Peripheral hemodynamics | |||
Systolic blood pressure—mmHg | 142 | 143 | 0.97 |
Diastolic blood pressure—mmHg | 76 | 71 | 0.71 |
ABI | 0.72 ± 0.21 | 0.82 ± 0.22 | 0.34 |
Wound characteristics baseline | |||
Mean foot—% StO2 | 66.7 (11) | 80.5 (5.5) | 0.49 |
Wound area—% StO2 | 66.1 (28.4) | 70.9 (21.6) | 0.45 |
Wound—% StO2 | 38 (49.3) | 63.1 (31.4) | 0.12 |
Wound area—mm2 | 343.1 ± 267.4 | 272.3 ± 274.1 | 0.44 |
Wound closed by follow-up | 9 (33) | 2 (13) | 0.66 |
WIfI score | 3.5 ± 1.4 | 2.5 ± 1.3 | 0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schremmer, J.; Stern, M.; Baasen, S.; Wischmann, P.; Foerster, R.; Schillings, M.; Bódis, K.; Sansone, R.; Heiss, C.; Kelm, M.; et al. Impact of Peripheral Angioplasty on Wound Oxygenation and Healing in Patients with Chronic Limb-Threatening Ischemia Measured by Near-Infrared Spectroscopy. Biomedicines 2024, 12, 1805. https://doi.org/10.3390/biomedicines12081805
Schremmer J, Stern M, Baasen S, Wischmann P, Foerster R, Schillings M, Bódis K, Sansone R, Heiss C, Kelm M, et al. Impact of Peripheral Angioplasty on Wound Oxygenation and Healing in Patients with Chronic Limb-Threatening Ischemia Measured by Near-Infrared Spectroscopy. Biomedicines. 2024; 12(8):1805. https://doi.org/10.3390/biomedicines12081805
Chicago/Turabian StyleSchremmer, Johanna, Manuel Stern, Sven Baasen, Patricia Wischmann, Ramy Foerster, Miriam Schillings, Kálmán Bódis, Roberto Sansone, Christian Heiss, Malte Kelm, and et al. 2024. "Impact of Peripheral Angioplasty on Wound Oxygenation and Healing in Patients with Chronic Limb-Threatening Ischemia Measured by Near-Infrared Spectroscopy" Biomedicines 12, no. 8: 1805. https://doi.org/10.3390/biomedicines12081805
APA StyleSchremmer, J., Stern, M., Baasen, S., Wischmann, P., Foerster, R., Schillings, M., Bódis, K., Sansone, R., Heiss, C., Kelm, M., & Busch, L. (2024). Impact of Peripheral Angioplasty on Wound Oxygenation and Healing in Patients with Chronic Limb-Threatening Ischemia Measured by Near-Infrared Spectroscopy. Biomedicines, 12(8), 1805. https://doi.org/10.3390/biomedicines12081805