Impact of a “Brain Protection Bundle” in Reducing Severe Intraventricular Hemorrhage in Preterm Infants <30 Weeks GA: A Retrospective Single Centre Study
Abstract
:1. Introduction
2. Methods
2.1. Setting and Study Design
2.2. Inclusion and Exclusion Criteria
2.3. Brain Protection Bundle Development Process
2.4. Clinical Data and Variables
2.5. Statistical Analysis
2.6. Research Ethics Approval
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Younge, N.; Goldstein, R.F.; Bann, C.M.; Hintz, S.R.; Patel, R.M.; Smith, P.B.; Bell, E.F.; Rysavy, M.A.; Duncan, A.F.; Vohr, B.R.; et al. Survival and neurodevelopmental outcomes among periviable infants. N. Engl. J. Med. 2017, 376, 617–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, R.M. Short-and long-term outcomes for extremely preterm infants. Am. J. Perinatol. 2016, 33, 318–327. [Google Scholar] [CrossRef] [Green Version]
- Synnes, A.; Luu, T.M.; Moddermann, D.; Church, P.; Lee, D.; Vincer, M.; Ballantyne, M.; Majnemer, A.; Creighton, D.; Yang, J.; et al. Determinants of developmental outcomes in a very preterm Canadian cohort. Arch. Dis. Child. Fetal. Neonatal Ed. 2016, 102, F234–F235. [Google Scholar] [CrossRef]
- Soul, J.S. Intracranial hemorrhage and white matter injury/periventricular leukomalacia. In Cloherty and Stark’s Manual of Neonatal Care; Eichenwald, E.C., Hansen, A.R., Martin, C.R., Stark, A.R., Eds.; Wolters Kluwer: Philadelphia, CO, USA, 2017; pp. 760–789. [Google Scholar]
- Bolisetty, S.; Dhawan, A.; Abdel-Latif, M.; Bajuk, B.; Stack, J.; Lui, K. Intraventricular hemorrhage and neurodevelopmental outcomes in extreme preterm infants. Pediatrics 2014, 133, 55–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papile, L.A.; Burstein, J.; Burstein, R.; Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1500 gm. J. Pediatr. 1978, 92, 529–534. [Google Scholar] [CrossRef]
- Mukerji, A.; Shah, V.; Shah, P.S. Periventricular/Intraventricular hemorrhage and neurodevelopmental outcomes: A meta-analysis. Pediatrics 2015, 136, 1132–1143. [Google Scholar] [CrossRef] [Green Version]
- Shah, P.S.; Dunn, M.; Aziz, K.; Shah, V.; Deshpandey, A.; Mukerji, A.; Ng, E.; Mohammad, K.; Ulrich, C.; Amaral, N.; et al. Sustained quality improvement in outcomes of preterm neonates with a gestational age less than 29 weeks: Results from the Evidence-based Practice for Improving Quality Phase 3. Can. J. Physiol. Pharmacol. 2019, 97, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.; Brown, J.; Medley, N.; Dalziel, S.R. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst. Rev. 2017, 3, CD004454. [Google Scholar] [CrossRef]
- Shankaran, S.; Bauer, C.R.; Bain, R.; Wright, L.L.; Zachary, J. Relationship between antenatal steroid administration and grades III and IV intracranial hemorrhage in low birth weight infants. The NICHD Neonatal Research Network. Am. J. Obs. Gynecol. 1995, 173, 305–312. [Google Scholar] [CrossRef]
- Schmidt, B.; Davis, P.; Moddemann, D.; Ohlsson, A.; Roberts, R.S.; Saigal, S.; Solimano, A.; Vincer, M.; Wright, L.L. Long-term effects of indomethacin prophylaxis in extremely-low-birth-weight infants. N. Engl. J. Med. 2001, 344, 1966–1972. [Google Scholar] [CrossRef] [Green Version]
- Ment, L.R.; Oh, W.; Ehrenkranz, R.A.; Duncan, C.C.; Scott, D.T.; Taylor, K.J.W.; Katz, K.H.; Schneider, K.C.; Makuch, R.W.; Oh, W.; et al. Low-dose indomethacin and prevention of intraventricular hemorrhage: A multicenter randomized trial. Pediatrics 1994, 93, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Synnes, A.R.; MacNab, Y.C.; Qiu, Z.; Ohlsson, A.; Gustafson, P.; Dean, C.B.; Lee, S.K.; Canadian Neonatal Network. Neonatal intensive care unit characteristics affect the incidence of severe intraventricular hemorrhage. Med. Care 2006, 44, 754–759. [Google Scholar] [CrossRef]
- Castrodale, V.; Rinehart, S. The Golden Hour: Improving the stabilization of the very low birth-weight infant. Adv. Neonatal Care 2014, 14, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Shah, V.; Hodgson, K.; Seshia, M.; Dunn, M.; Schmölzer, G.M. Golden hour management practices for infants <32 weeks gestational age in Canada. Paediatr. Child. Health 2018, 23, e70–e76. [Google Scholar] [CrossRef]
- Malusky, S.; Donze, A. Neutral head positioning in premature infants for intraventricular hemorrhage prevention: An evidence-based review. Neonatal Netw 2011, 30, 381–396. [Google Scholar] [CrossRef] [PubMed]
- Emery, J.R.; Peabody, J.L. Head position affects intracranial pressure in newborn infants. J. Pediatr. 1983, 103, 950–953. [Google Scholar] [CrossRef]
- Romantsik, O.; Calevo, M.G.; Bruschettini, M. Head midline position for preventing the occurrence or extension of germinal matrix-intraventricular hemorrhage in preterm infants. Cochrane Database Syst. Rev. 2017, 7, CD012362. [Google Scholar] [CrossRef] [PubMed]
- Carteaux, P.; Cohen, H.; Check, J.; George, J.; McKinley, P.; Lewis, W.; Hegwood, P.; Whitfield, J.M.; McLendon, D.; Okuno-Jones, S.; et al. Evaluation and development of potentially better practices for the prevention of brain hemorrhage and ischemic brain injury in very low birth weight infants. Pediatrics 2003, 111, 489–496. [Google Scholar]
- Shankaran, S.; Bauer, C.R.; Bain, R.; Wright, L.L.; Zachary, J. Prenatal and perinatal risk and protective factors for neonatal intracranial hemorrhage. National Institute of Child Health and Human Development Neonatal Research Network. Arch. Pediatr. Adolesc. Med. 1996, 150, 491–497. [Google Scholar] [CrossRef]
- Limperopoulos, C.; Gauvreau, K.K.; O’Leary, H.; Moore, M.; Bassan, H.; Eichenwald, E.C.; Soul, J.S.; Ringer, S.A.; Di Salvo, D.N.; du Plessis, A.J. Cerebral Hemodynamic Changes During Intensive Care of Preterm Infants. Pediatrics 2008, 122, e1006–e1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmid, M.B.; Reister, F.; Mayer, B.; Hopfner, R.; Fuchs, H.; Hummler, H.D. Prospective risk factor monitoring reduces intracranial hemorrhage rates in preterm infants. Dtsch. Arztebl. Int. 2013, 110, 489–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellsbury, D.L.; Clark, R.H.; Ursprung, R.; Handler, D.L.; Dodd, E.D.; Spitzer, A.R. A multifaceted approach to improving outcomes in the NICU: The Pediatrix 100,000 babies campaign. Pediatrics 2016, 137, e20150389. [Google Scholar] [CrossRef] [Green Version]
- Lapcharoensap, W.; Bennett, M.V.; Powers, R.J.; Finer, N.N.; Halamek, L.P.; Gould, J.B.; Sharek, P.J.; Lee, H.C. Effects of delivery room quality improvement on premature infant outcomes. J. Perinatol. 2016, 37, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Chiriboga, N.; Cortez, J.; Pena-Ariet, A.; Makker, K.; Smotherman, C.; Gautam, S.; Trikardos, A.B.; Knight, H.; Yeoman, M.; Burnett, E.; et al. Successful implementation of an intracranial hemorrhage (ICH) bundle in reducing severe ICH: A quality improvement project. J. Perinatol. 2018, 39, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Richardson, D.K.; Corcoran, J.D.; Escobar, G.J.; Lee, S.K. SNAP-II and SNAPPE-II: Simplified newborn illness severity and mortality risk scores. J. Pediatr. 2001, 138, 92–100. [Google Scholar] [CrossRef]
- Beltempo, M.; Shah, P.S.; Ye, X.Y.; Afifi, J.; Lee, S.; McMillan, D.D.; on behalf of the Canadian Neonatal Network Investigators. SNAP-II for prediction of mortality and morbidity in extremely preterm infants. J. Matern. Neonatal Med. 2018, 32, 2694–2701. [Google Scholar] [CrossRef]
- Shennan, A.T.; Dunn, M.S.; Ohlsson, A.; Lennox, K.; Hoskins, E.M. Abnormal pulmonary outcomes in premature infants: Prediction from oxygen requirement in the neonatal period. Pediatrics 1988, 82, 527–532. [Google Scholar] [PubMed]
- Bell, M.J.; Ternberg, J.L.; Feigin, R.D.; Keating, J.P.; Marshall, R.; Barton, L. Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging. Ann. Surg. 1978, 187, 1–7. [Google Scholar] [CrossRef] [PubMed]
- International Committee for the Classification of Retinopathy of Prematurity. The International Classification of Retinopathy of Prematurity revisited. Arch. Ophthalmol. 2005, 123, 991–999. [CrossRef]
- Soul, J.S.; Hammer, P.E.; Tsuji, M.; Saul, J.P.; Bassan, H.; Limperopoulos, C.; Disalvo, D.N.; Moore, M.; Akins, P.; Ringer, S.; et al. Fluctuating Pressure-Passivity Is Common in the Cerebral Circulation of Sick Premature Infants. Pediatr. Res. 2007, 61, 467–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waitz, M.; Nusser, S.; Schmid, M.B.; Dreyhaupt, J.; Reister, F.; Hummler, H. Risk factors associated with intraventricular hemorrhage in preterm infants≤ 28 weeks gestational age. Klin. Padiatr. 2016, 228, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Christensen, R.D. Associations between “early” red blood cell transfusion and severe intraventricular hemorrhage, and between “late” red blood cell transfusion and necrotizing enterocolitis. Semin. Perinatol. 2012, 36, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Papile, L.A.; Burstein, J.; Burstein, R.; Koffler, H.; Koops, B. Relationship of intravenous sodium bicarbonate infusions and cerebral intraventricular hemorrhage. J. Pediatr. 1978, 93, 834–836. [Google Scholar] [CrossRef]
- Berg, C.S.; Barnette, A.R.; Myers, B.J.; Shimony, M.K.; Barton, A.W.; Inder, T.E. Sodium bicarbonate administration and outcome in preterm infants. J. Pediatr. 2010, 157, 684–687. [Google Scholar] [CrossRef]
- Kaiser, J.R.; Gauss, C.H.; Pont, M.M.; Williams, D.K. Hypercapnia during the first 3 days of life is associated with severe intraventricular hemorrhage in very low birth weight infants. J. Perinatol. 2006, 26, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Fabres, J.; Carlo, W.A.; Phillips, V.; Howard, G.; Ambalavanan, N. Both extremes of arterial carbon dioxide pressure and the magnitude of fluctuations in arterial carbon dioxide pressure are associated with severe intraventricular hemorrhage in preterm infants. Pediatrics 2007, 119, 299–305. [Google Scholar] [CrossRef]
- Aziz, A.N.A.; Thomas, S.; Murthy, P.; Rabi, Y.; Soraisham, A.; Stritzke, A.; Kamaluddeen, M.; Al-Awad, E.; Mohammad, K. Early inotropes use is associated with higher risk of death and/or severe brain injury in extremely premature infants. J. Matern. Neonatal Med. 2019, 33, 2751–2758. [Google Scholar] [CrossRef]
- Miller, S.S.; Lee, H.C.; Gould, J.B. Hypothermia in very low birth weight infants: Distribution, risk factors and outcomes. J. Perinatol. 2011, 31, S49–S56. [Google Scholar] [CrossRef] [Green Version]
- Testoni, D.; Hornik, C.P.; Guinsburg, R.; Clark, R.H.; Greenberg, R.G.; Benjamin, D.K.; Smith, P.B. Early lumbar puncture and risk of intraventricular hemorrhage in very low birth weight infants. Early Hum. Dev. 2018, 117, 1–6. [Google Scholar] [CrossRef]
- Gross, M.; Engel, C.; Trotter, A. Evaluating the effect of a neonatal care bundle for the prevention of intraventricular hemorrhage n preterm infants. Children 2021, 8, 257. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.K.; Aziz, K.; Singhal, N.; Cronin, C.M.; James, A.; Lee, D.S.C.; Matthew, D.; Ohlsson, A.; Sankaran, K.; Seshia, M. Improving the quality of care for infants: A cluster randomized controlled trial. CMAJ 2009, 181, 469–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gould, J.B. The role of regional collaboratives: The California Perinatal Quality Care Collaborative model. Clin. Perinatol. 2010, 37, 71–86. [Google Scholar] [CrossRef]
- Horbar, J.D.; Soll, R.F.; Edwards, W.H. The Vermont Oxford Network: A community of practice. Clin. Perinatol. 2010, 37, 29–47. [Google Scholar] [CrossRef] [PubMed]
- Payne, N.R.; Finkelstein, M.J.; Liu, M.; Kaempf, J.W.; Sharek, P.J.; Olsen, S. NICU Practices and Outcomes Associated with 9 Years of Quality Improvement Collaboratives. Pediatrics 2010, 125, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.; Laptook, A.; Kazzi, S.N.; Engle, W.A.; Yao, Q.; Rasmussen, M.; Buchter, S.; Heldt, G.; Rhine, W.; Higgins, R.; et al. A Cluster-Randomized Trial of Benchmarking and Multimodal Quality Improvement to Improve Rates of Survival Free of Bronchopulmonary Dysplasia for Infants with Birth Weights of Less Than 1250 Grams. Pediatrics 2007, 119, 876–890. [Google Scholar] [CrossRef] [PubMed]
- Dixon-Woods, M.; McNicol, S.; Martin, G. Ten challenges in improving quality in healthcare: Lessons from the Health Foundation’s programme evaluations and relevant literature. BMJ Qual. Saf. 2012, 21, 876–884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable 1 | Overall (N = 404) | Pre-Implementation Phase (N = 189) | Post-Implementation Phase (N = 215) | p Value 2 |
---|---|---|---|---|
Maternal characteristics | ||||
Complete course of antenatal steroids | 316 (78.4%) | 154 (81.5%) | 162 (75.7%) | 0.27 |
Rupture of membranes > 18 h | 139 (34.4%) | 70 (37.0%) | 69 (32.1%) | 0.34 |
Maternal chorioamnionitis 3 | 323 (81.0%) | 161 (85.6%) | 162 (76.8%) | 0.03 |
Maternal antibiotics prior to delivery | 346 (85.6%) | 140 (74.1%) | 206 (95.8%) | <0.001 |
Placental abruption | 32 (7.9%) | 17 (9.0%) | 15 (7.0%) | 0.47 |
Intrapartum magnesium sulphate administration | 370 (91.6%) | 172 (91.0%) | 198 (92.1%) | 0.72 |
Vaginal delivery | 185 (45.8%) | 88 (46.6%) | 97 (45.1%) | 0.84 |
Neonatal characteristics | ||||
Gestational age at birth (weeks) | 27.0 ± 1.9 | 27.3 ± 1.7 | 26.8 ± 2.1 | 0.01 |
Birth weight (grams) | 956 ± 282 | 1005 ± 285 | 914 ± 274 | 0.001 |
Small for gestational age (<10th%tile) | 35 (8.7%) | 14 (7.4%) | 21 (9.8%) | 0.48 |
Sex (% Male) | 224 (55.4%) | 114 (60.3%) | 110 (51.2%) | 0.07 |
Multiple births | 115 (28.5%) | 48 (25.6%) | 67 (31.1%) | 0.02 |
Apgar score at 1 min | 6 (2–8) | 6 (2–8) | 6 (2–8) | 0.72 |
Apgar score at 5 min | 8 (6–9) | 8 (6–9) | 8 (5–9) | 0.20 |
SNAP II score > 20 | 109 (27.0%) | 63 (33.3%) | 46 (21.4%) | 0.01 |
Umbilical artery cord pH < 7.0 4 | 18 (5.0%) | 12 (7.2%) | 6 (3.1%) | 0.09 |
Neonatal management characteristics at birth | ||||
Delayed cord clamping > 30 s | 232 (57.4%) | 99 (52.4%) | 133 (61.9%) | 0.06 |
Trial of CPAP at resuscitation * | 315 (78.0%) | 155 (82.0%) | 160 (74.4%) | 0.07 |
Intubation within first hour of life | 169 (41.8%) | 75 (39.7%) | 94 (43.7%) | 0.42 |
Premedication used for first intubation attempt 5 | 1 (0.2%) | 0 (0.0%) | 1 (0.5%) | 1.00 |
CPR given at delivery * | 12 (3.0%) | 9 (4.8%) | 3 (1.4%) | 0.08 |
Epinephrine needed after delivery | 6 (1.5%) | 4 (2.1%) | 2 (0.9%) | 0.42 |
Surfactant administration within first hour of life | 138 (34.2%) | 56 (29.6%) | 82 (38.1%) | 0.08 |
Fluid bolus administration within first hour of life 6 | 12 (3.0%) | 9 (4.8%) | 3 (1.4%) | 0.08 |
Variable 1 | Overall (N = 404) | Pre-Implementation Phase (N = 189) | Post-Implementation Phase (N = 215) | p Value 2 |
---|---|---|---|---|
Endotracheal intubation | 114 (28.2%) | 51 (27.0%) | 63 (29.3%) | 0.66 |
Premedication for intubation 3 | 102 (89.4%) | 43 (84.3%) | 59 (93.6%) | 0.30 |
Surfactant administration | 148 (36.6%) | 61 (32.3%) | 87 (40.5%) | 0.10 |
Abnormal pCO2 (<35 or ≥55 mmHg) | 286 (70.8%) | 137 (72.5%) | 149 (69.3%) | 0.44 |
Abnormal pH (<7.2 or ≥7.4) | 214 (53%) | 96 (50.8%) | 118 (54.9%) | 0.36 |
Need for inotropes | 21 (5.2%) | 10 (5.3%) | 11 (5.1%) | 1.00 |
Need for cardiopulmonary resuscitation | 3 (0.7%) | 2 (1.1%) | 1 (0.5%) | 0.60 |
Epinephrine administration for resuscitation | 2 (0.5%) | 2 (1.1%) | 0 (0.0%) | 0.22 |
Bicarbonate infusion administration | 36 (8.9%) | 11 (5.8%) | 25 (11.6%) | 0.053 |
Fluid bolus (normal saline ≥ 10 mL/kg) | 54 (13.4%) | 25 (13.2%) | 29 (13.5%) | 1.00 |
Packed red blood cell transfusion | 64 (15.8%) | 20 (10.6%) | 44 (20.5%) | 0.009 |
Prophylactic indomethacin | 94 (23.3%) | 30 (15.9%) | 64 (29.8%) | <0.001 |
Need for echocardiography 4 | 78 (19.4%) | 33 (17.5%) | 45 (21.0%) | 0.38 |
Hemodynamically significant patent ductus arteriosus | 28 (6.9%) | 14 (7.4%) | 14 (6.5%) | 0.84 |
Medical treatment for patent ductus arteriosus | 18 (4.5%) | 10 (5.3%) | 8 (3.7%) | 0.48 |
Blood glucose level (≤2.6 mmol/L) | 131 (32.4%) | 61 (32.3%) | 70 (32.6%) | 1.00 |
Hypothermia (<36 °C) | 47 (11.6%) | 16 (8.5%) | 31 (14.4%) | 0.086 |
Early-onset sepsis | 14 (3.5%) | 5 (2.6%) | 9 (4.2%) | 0.43 |
Lumbar puncture performed | 18 (4.5%) | 9 (4.8%) | 9 (4.2%) | 0.81 |
Platelet count < 100 × 109/L | 58 (14.4%) | 29 (15.3%) | 29 (13.5%) | 0.67 |
First cranial ultrasound (<72 h of life) | 124 (30.7%) | 93 (49.2%) | 31 (14.4%) | <0.001 |
Variable 1 | Overall (N = 404) | Pre-Implementation Phase (N = 189) | Post-Implementation Phase (N = 215) | p Value 2 |
---|---|---|---|---|
First Cranial ultrasound scan (≥72 h of life) | 0.63 | |||
No intraventricular hemorrhage (IVH) | 242 (59.9%) | 116 (61.4%) | 126 (58.6%) | |
Grade I IVH | 90 (22.3%) | 45 (23.8%) | 45 (20.9%) | |
Grade II IVH | 38 (9.4%) | 15 (7.9%) | 23 (10.7%) | |
Grade III IVH | 6 (1.5%) | 2 (1.1%) | 4 (1.9%) | |
Grade IV IVH | 27 (6.7%) | 11 (5.8%) | 16 (7.4%) | |
Periventricular leukomalacia (PVL) | 1 (0.2%) | 0 (0.0%) | 1 (0.5%) | |
≥Grade III IVH/PVL (on first scan ≥ 72 h of life) | 34 (8.4%) | 13 (6.9%) | 21 (9.8%) | 0.37 |
Worst cranial ultrasound scan result anytime during NICU hospitalization | 0.25 | |||
No IVH | 194 (48.0%) | 98 (51.9%) | 96 (44.7%) | |
Grade I IVH | 115 (28.5%) | 50 (26.5%) | 65 (30.2%) | |
Grade II IVH | 40 (9.9%) | 19 (10.1%) | 21 (9.8%) | |
Grade III IVH | 8 (2.0%) | 3 (1.6%) | 5 (2.3%) | |
Grade IV IVH | 31 (7.7%) | 14 (7.4%) | 17 (7.9%) | |
PVL | 10 (2.5%) | 2 (1.1%) | 8 (3.7%) | |
Hydrocephalus requiring intervention 3 | 6 (1.5%) | 3 (1.6%) | 3 (1.4%) | |
≥Grade III IVH/PVL/Hydrocephalus | 55 (13.6%) | 22 (11.6%) | 33 (15.3%) | 0.31 |
Major neonatal morbidities 4 | ||||
Bronchopulmonary dysplasia | 93 (23.0%) | 41 (21.7%) | 52 (24.2%) | 0.83 |
Necrotizing enterocolitis ≥ Stage 2 | 52 (12.9%) | 22 (11.6%) | 30 (14%) | 0.88 |
Late-onset sepsis | 86 (21.3%) | 30 (15.9%) | 56 (26.0%) | 0.02 |
Retinopathy of prematurity > Stage 3 | 24 (5.9%) | 10 (5.3%) | 14 (6.5%) | 0.81 |
Mortality (≤72 h of life after completion of cranial ultrasound) | 2 (0.5%) | 2 (1.1%) | 0 (0.0%) | 0.22 |
Mortality (>72 h of life) | 31 (7.7%) | 13 (6.9%) | 18 (8.4%) | 0.58 |
Variable 1 | Overall (N = 404) | Pre-Implementation Phase (N = 189) | Post-Implementation Phase (N = 215) | p Value 2 |
---|---|---|---|---|
Infants < 26 weeks gestational age | 115 | 40 | 75 | |
Gestational age (weeks) | 24.5 ± 0.9 | 24.8 ± 0.9 | 24.4 ± 0.9 | 0.07 |
Birth weight (grams) | 682 ± 127 | 696 ± 134 | 674 ± 123 | 0.40 |
Composite ≥ Grade III IVH/periventricular leukomalacia (PVL) at first scan ≥ 72 h | 17 (15%) | 5 (13%) | 12 (16%) | 0.78 |
Composite ≥ Grade III IVH/PVL/Hydrocephalus anytime during hospitalization | 31 (27%) | 8 (20%) | 23 (31%) | 0.27 |
Infants 26–30 weeks gestational age | 289 | 149 | 140 | |
Gestational age (weeks) | 28.0 ± 1.2 | 28.0 ± 1.2 | 28.1 ± 1.2 | 0.73 |
Birth weight (grams) | 1066 ± 251 | 1088 ± 256 | 1042 ± 245 | 0.12 |
Composite ≥ Grade III IVH / PVL at first scan ≥ 72 h | 17 (5.9%) | 8 (5.4%) | 9 (6.4%) | 0.80 |
Composite ≥ Grade III IVH / PVL/Hydrocephalus anytime during hospitalization | 24 (8.3%) | 14 (9.4%) | 10 (7.1%) | 0.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Persad, N.; Kelly, E.; Amaral, N.; Neish, A.; Cheng, C.; Fan, C.-P.S.; Runeckles, K.; Shah, V. Impact of a “Brain Protection Bundle” in Reducing Severe Intraventricular Hemorrhage in Preterm Infants <30 Weeks GA: A Retrospective Single Centre Study. Children 2021, 8, 983. https://doi.org/10.3390/children8110983
Persad N, Kelly E, Amaral N, Neish A, Cheng C, Fan C-PS, Runeckles K, Shah V. Impact of a “Brain Protection Bundle” in Reducing Severe Intraventricular Hemorrhage in Preterm Infants <30 Weeks GA: A Retrospective Single Centre Study. Children. 2021; 8(11):983. https://doi.org/10.3390/children8110983
Chicago/Turabian StylePersad, Nishkal, Edmond Kelly, Nely Amaral, Angela Neish, Courtney Cheng, Chun-Po Steve Fan, Kyle Runeckles, and Vibhuti Shah. 2021. "Impact of a “Brain Protection Bundle” in Reducing Severe Intraventricular Hemorrhage in Preterm Infants <30 Weeks GA: A Retrospective Single Centre Study" Children 8, no. 11: 983. https://doi.org/10.3390/children8110983
APA StylePersad, N., Kelly, E., Amaral, N., Neish, A., Cheng, C., Fan, C. -P. S., Runeckles, K., & Shah, V. (2021). Impact of a “Brain Protection Bundle” in Reducing Severe Intraventricular Hemorrhage in Preterm Infants <30 Weeks GA: A Retrospective Single Centre Study. Children, 8(11), 983. https://doi.org/10.3390/children8110983