Classification of Benign and Malignant Renal Tumors Based on CT Scans and Clinical Data Using Machine Learning Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Study Population
2.2. Data Processing
2.2.1. Clinical Attributes
2.2.2. CT Scans
2.3. Machine Learning Algorithms
2.4. Experiments and Evaluation
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kidney Cancer. Available online: https://my.clevelandclinic.org/health/diseases/9409-kidney-cancer-overview (accessed on 25 March 2023).
- Kidney Cancer. Available online: https://www.urologyhealth.org/urology-a-z/k/kidney-cancer (accessed on 25 March 2023).
- Surgery for Kidney Cancer. Available online: https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/surgery-for-kidney-cancer (accessed on 25 March 2023).
- Veccia, A.; Derweesh, I.H.; Antonelli, A.; Autorino, R. Re: The Temporal Association of Robotic Surgical Diffusion with Overtreatment of the Small Renal Mass. Eur. Urol. 2019, 75, 877–878. [Google Scholar] [CrossRef] [PubMed]
- Kurban, L.A.; Vosough, A.; Jacob, P.; Prasad, D.; Lam, T.; Scott, N.; Somani, B. Pathological Nature of Renal Tumors—Does Size Matter? Urol. Ann. 2017, 9, 330. [Google Scholar] [CrossRef]
- Expert Panel on Urologic Imaging; Wang, Z.J.; Nikolaidis, P.; Khatri, G.; Dogra, V.S.; Ganeshan, D.; Goldfarb, S.; Gore, J.L.; Gupta, R.T.; Hartman, R.P.; et al. ACR Appropriateness Criteria® Indeterminate Renal Mass. J. Am. Coll. Radiol. 2020, 17, S415–S428. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.D.; Tanaka, H.; Campbell, S.C.; Remer, E.M. 2017 AUA Renal Mass and Localized Renal Cancer Guidelines: Imaging Implications. Radiographics 2018, 38, 2021–2033. [Google Scholar] [CrossRef] [Green Version]
- Warren, A.Y.; Harrison, D. WHO/ISUP Classification, Grading and Pathological Staging of Renal Cell Carcinoma: Standards and Controversies. World J. Urol. 2018, 36, 1913–1926. [Google Scholar] [CrossRef] [Green Version]
- Abou Elkassem, A.M.; Lo, S.S.; Gunn, A.J.; Shuch, B.M.; Dewitt-Foy, M.E.; Abouassaly, R.; Vaidya, S.S.; Clark, J.I.; Louie, A.V.; Siva, S.; et al. Role of Imaging in Renal Cell Carcinoma: A Multidisciplinary Perspective. Radiographics 2021, 41, 1387–1407. [Google Scholar] [CrossRef]
- Deng, Y.; Soule, E.; Cui, E.; Samuel, A.; Shah, S.; Lall, C.; Sundaram, C.; Sandrasegaran, K. Usefulness of CT Texture Analysis in Differentiating Benign and Malignant Renal Tumours. Clin. Radiol. 2020, 75, 108–115. [Google Scholar] [CrossRef]
- Uhlig, J.; Biggemann, L.; Nietert, M.M.; Beißbarth, T.; Lotz, J.; Kim, H.S.; Trojan, L.; Uhlig, A. Discriminating Malignant and Benign Clinical T1 Renal Masses on Computed Tomography: A Pragmatic Radiomics and Machine Learning Approach. Medicine 2020, 99, e19725. [Google Scholar] [CrossRef]
- Wang, P.; Pei, X.; Yin, X.-P.; Ren, J.-L.; Wang, Y.; Ma, L.-Y.; Du, X.-G.; Gao, B.-L. Radiomics Models Based on Enhanced Computed Tomography to Distinguish Clear Cell from Non-Clear Cell Renal Cell Carcinomas. Sci. Rep. 2021, 11, 13729. [Google Scholar] [CrossRef]
- Varghese, B.A.; Chen, F.; Hwang, D.H.; Cen, S.Y.; Desai, B.; Gill, I.S.; Duddalwar, V.A. Differentiation of Predominantly Solid Enhancing Lipid-Poor Renal Cell Masses by Use of Contrast-Enhanced CT: Evaluating the Role of Texture in Tumor Subtyping. Am. J. Roentgenol. 2018, 211, W288–W296. [Google Scholar] [CrossRef] [PubMed]
- Oberai, A.; Varghese, B.; Cen, S.; Angelini, T.; Hwang, D.; Gill, I.; Aron, M.; Lau, C.; Duddalwar, V. Deep Learning Based Classification of Solid Lipid-Poor Contrast Enhancing Renal Masses Using Contrast Enhanced CT. Br. J. Radiol. 2020, 93, 20200002. [Google Scholar] [CrossRef]
- Zabihollahy, F.; Schieda, N.; Krishna, S.; Ukwatta, E. Automated Classification of Solid Renal Masses on Contrast-Enhanced Computed Tomography Images Using Convolutional Neural Network with Decision Fusion. Eur. Radiol. 2020, 30, 5183–5190. [Google Scholar] [CrossRef]
- Tanaka, T.; Huang, Y.; Marukawa, Y.; Tsuboi, Y.; Masaoka, Y.; Kojima, K.; Iguchi, T.; Hiraki, T.; Gobara, H.; Yanai, H.; et al. Differentiation of Small (≤ 4 Cm) Renal Masses on Multiphase Contrast-Enhanced CT by Deep Learning. AJR Am. J. Roentgenol. 2020, 214, 605–612. [Google Scholar] [CrossRef]
- Uhm, K.-H.; Jung, S.-W.; Choi, M.H.; Shin, H.-K.; Yoo, J.-I.; Oh, S.W.; Kim, J.Y.; Kim, H.G.; Lee, Y.J.; Youn, S.Y.; et al. Deep Learning for End-to-End Kidney Cancer Diagnosis on Multi-Phase Abdominal Computed Tomography. NPJ Precis. Oncol. 2021, 5, 54. [Google Scholar] [CrossRef]
- Han, S.; Hwang, S.I.; Lee, H.J. The Classification of Renal Cancer in 3-Phase CT Images Using a Deep Learning Method. J. Digit. Imaging 2019, 32, 638–643. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Zhang, Z.; Chen, Y.-C.; Zhao, Z.-Y.; Yin, X.-D.; Jiang, H.-B. A Deep Learning-Based Radiomics Model for Differentiating Benign and Malignant Renal Tumors. Transl. Oncol. 2019, 12, 292–300. [Google Scholar] [CrossRef]
- Coy, H.; Hsieh, K.; Wu, W.; Nagarajan, M.B.; Young, J.R.; Douek, M.L.; Brown, M.S.; Scalzo, F.; Raman, S.S. Deep Learning and Radiomics: The Utility of Google TensorFlowTM Inception in Classifying Clear Cell Renal Cell Carcinoma and Oncocytoma on Multiphasic CT. Abdom. Radiol. 2019, 44, 2009–2020. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-Y.; Chen, Y.-F.; Lee, C.-W.; Huang, A.; Shen, Y.; Wei, C.; Liu, H.-M. Multiphase CT Angiography versus Single-Phase CT Angiography: Comparison of Image Quality and Radiation Dose. AJNR Am. J. Neuroradiol. 2008, 29, 1288–1295. [Google Scholar] [CrossRef] [Green Version]
- Roussel, E.; Capitanio, U.; Kutikov, A.; Oosterwijk, E.; Pedrosa, I.; Rowe, S.P.; Gorin, M.A. Novel Imaging Methods for Renal Mass Characterization: A Collaborative Review. Eur. Urol. 2022, 81, 476–488. [Google Scholar] [CrossRef] [PubMed]
- Heller, N.; Sathianathen, N.; Kalapara, A.; Walczak, E.; Moore, K.; Kaluzniak, H.; Rosenberg, J.; Blake, P.; Rengel, Z.; Oestreich, M.; et al. The KiTS19 Challenge Data: 300 Kidney Tumor Cases with Clinical Context, CT Semantic Segmentations, and Surgical Outcomes. arXiv 2019, arXiv:1904.00445. [Google Scholar]
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.-C.; Pieper, S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogunleye, A.; Wang, Q.-G. XGBoost Model for Chronic Kidney Disease Diagnosis. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 17, 2131–2140. [Google Scholar] [CrossRef] [PubMed]
- Hauschild, A.-C.; Lemanczyk, M.; Matschinske, J.; Frisch, T.; Zolotareva, O.; Holzinger, A.; Baumbach, J.; Heider, D. Federated Random Forests Can Improve Local Performance of Predictive Models for Various Healthcare Applications. Bioinformatics 2022, 38, 2278–2286. [Google Scholar] [CrossRef]
- Tang, J.; Deng, C.; Huang, G.-B. Extreme Learning Machine for Multilayer Perceptron. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 809–821. [Google Scholar] [CrossRef]
- Wikipedia Contributors Precision and Recall. Available online: https://en.wikipedia.org/w/index.php?title=Precision_and_recall&oldid=1146375274 (accessed on 1 December 2022).
- Efron, B.; Tibshirani, R. The Bootstrap Method for Assessing Statistical Accuracy. Behaviormetrika 1985, 12, 1–35. [Google Scholar] [CrossRef]
- McKight, P.E.; Najab, J. Kruskal-Wallis Test. Corsini Encycl. Psychol. 2010, 1. [Google Scholar] [CrossRef]
- Campbell, S.C.; Clark, P.E.; Chang, S.S.; Karam, J.A.; Souter, L.; Uzzo, R.G. Renal Mass and Localized Renal Cancer: Evaluation, Management, and Follow-up: AUA Guideline: Part I. J. Urol. 2021, 206, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Beynon, R.; Leeflang, M.M.G.; McDonald, S.; Eisinga, A.; Mitchell, R.L.; Whiting, P.; Glanville, J.M. Search Strategies to Identify Diagnostic Accuracy Studies in MEDLINE and EMBASE. Cochrane Database Syst. Rev. 2013, 2013, MR000022. [Google Scholar] [CrossRef]
- Abimanyi-Ochom, J.; Bohingamu Mudiyanselage, S.; Catchpool, M.; Firipis, M.; Wanni Arachchige Dona, S.; Watts, J.J. Strategies to Reduce Diagnostic Errors: A Systematic Review. BMC Med. Inform. Decis. Mak. 2019, 19, 174. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Total (N = 300) | Benign (N = 25) | Malignant (N = 275) | * p-Value |
---|---|---|---|---|
Demographics | ||||
* Age, mean (std) | 58.9 (13.8) | 60.8 (15.7) | 58.7 (13.6) | 0.158 |
Female, N (%) | 120 (40.0) | 16 (64.0) | 104 (37.8) | 0.011 |
Vital Signs | ||||
Body Mass Index, mean (std) | 30.9 (6.7) | 31.1 (6.6) | 30.8 (6.7) | 0.717 |
Smoking History, N (%) | ||||
Current Smoker | 43 (14.3) | 2 (8.0) | 41 (14.9) | 0.345 |
Never Smoked | 137 (45.7) | 15 (60.0) | 122 (44.4) | 0.133 |
Tobacco Use, N (%) | ||||
Never or not in last 3 months | 295 (98.3) | 25 (100.0) | 270 (98.2) | |
Alcohol Use, N (%) | ||||
More Than Two Daily | 17 (5.7) | 0 (0.0) | 17 (6.2) | |
Never or not in Last 3 moths | 131 (43.7) | 14 (56.0) | 117 (42.5) | 0.194 |
Quit in Last 3 months | 1 (0.3) | 0 (0.0) | 1 (0.4) | |
Tumor Histologic Subtype, N (%) | ||||
Angiomyolipoma | 5 (1.7) | 5 (20.0) | 0 | |
Chromophobe | 27 (9.0) | 0 | 27 (9.8) | |
Clear cell papillary RCC | 7 (2.3) | 0 | 7 (2.5) | |
Clear cell RCC | 204 (68.0) | 0 | 204 (74.2) | |
Collecting duct undefined | 1 (0.3) | 0 | 1 (0.4) | |
* MEST | 3 (1.0) | 3 (12.0) | 0 | |
Multilocular cystic RCC | 1 (0.3) | 0 | 1 (0.4) | |
Oncocytoma | 16 (5.3) | 16 (64.0) | 0 | |
Papillary | 28 (9.3) | 0 | 28 (10.2) | |
RCC unclassified | 2 (0.7) | 0 | 2 (0.7) | |
Spindle cell neoplasm | 1 (0.3) | 1 (4.0) | 0 | |
Urothelial carcinoma | 3 (1.0) | 0 | 3 (1.1) | |
Wilms tumor | 1 (0.3) | 0 | 1 (0.4) | |
Other | 1 (0.3) | 0 | 1 (0.4) |
Input | Methods | Metrics | AUC | Precision | Recall | Specificity | * p-Value |
---|---|---|---|---|---|---|---|
Clinical | * MLP | mean (std) | 0.705 (0.117) | 0.973 (0.028) | 0.654 (0.160) | 0.816 (0.178) | |
95% CI | (0.698, 0.712) | (0.972, 0.975) | (0.645, 0.664) | (0.805, 0.827) | <0.001 | ||
XGBoost | mean (std) | 0.639 (0.108) | 0.972 (0.032) | 0.561 (0.140) | 0.837 (0.170) | ||
95% CI | (0.632, 0.646) | (0.970, 0.974) | (0.553, 0.57) | (0.827, 0.848) | |||
* RF | mean (std) | 0.651 (0.114) | 0.971 (0.029) | 0.606 (0.126) | 0.816 (0.169) | ||
95% CI | (0.644, 0.658) | (0.969, 0.972) | (0.598, 0.614) | (0.805, 0.826) | |||
CT Scans | 3DCNN | mean (std) | 0.601 (0.141) | 0.958 (0.037) | 0.582 (0.176) | 0.736 (0.208) | |
95% CI | (0.592, 0.610) | (0.956, 0.960) | (0.571, 0.593) | (0.723, 0.749) | |||
Radiomic | MLP | mean (std) | 0.581 (0.135) | 0.948 (0.05) | 0.575 (0.217) | 0.676 (0.220) | |
95% CI | (0.572, 0.589) | (0.945, 0.951) | (0.561, 0.588) | (0.662, 0.690) | <0.001 | ||
XGBoost | mean (std) | 0.670 (0.133) | 0.970 (0.026) | 0.666 (0.158) | 0.772 (0.183) | ||
95% CI | (0.662, 0.678) | (0.968, 0.971) | (0.656, 0.676) | (0.761, 0.784) | |||
RF | mean (std) | 0.700 (0.116) | 0.955 (0.039) | 0.665 (0.132) | 0.805 (0.164) | ||
95% CI | (0.893, 0.707) | (0.953, 0.957) | (0.657, 0.673) | (0.794, 0.815) | |||
* Both | MLP | mean (std) | 0.584 (0.137) | 0.951 (0.037) | 0.586 (0.208) | 0.686 (0.209) | <0.001 |
95% CI | (0.575, 0.592) | (0.949, 0.953) | (0.573, 0.599) | (0.673, 0.699) | |||
XGBoost | mean (std) | 0.718 (0.111) | 0.972 (0.025) | 0.673 (0.149) | 0.800 (0.159) | ||
95% CI | (0.711, 0.725) | (0.970, 0.974) | (0.663, 0.682) | (0.790, 0.810) | |||
RF | mean (std) | 0.719 (0.116) | 0.976 (0.024) | 0.683 (0.132) | 0.827 (0.163) | ||
95% CI | (0.712, 0.726) | (0.975, 0.978) | (0.675, 0.691) | (0.817, 0.837) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; He, X.; Shao, W.; Bian, J.; Terry, R. Classification of Benign and Malignant Renal Tumors Based on CT Scans and Clinical Data Using Machine Learning Methods. Informatics 2023, 10, 55. https://doi.org/10.3390/informatics10030055
Xu J, He X, Shao W, Bian J, Terry R. Classification of Benign and Malignant Renal Tumors Based on CT Scans and Clinical Data Using Machine Learning Methods. Informatics. 2023; 10(3):55. https://doi.org/10.3390/informatics10030055
Chicago/Turabian StyleXu, Jie, Xing He, Wei Shao, Jiang Bian, and Russell Terry. 2023. "Classification of Benign and Malignant Renal Tumors Based on CT Scans and Clinical Data Using Machine Learning Methods" Informatics 10, no. 3: 55. https://doi.org/10.3390/informatics10030055
APA StyleXu, J., He, X., Shao, W., Bian, J., & Terry, R. (2023). Classification of Benign and Malignant Renal Tumors Based on CT Scans and Clinical Data Using Machine Learning Methods. Informatics, 10(3), 55. https://doi.org/10.3390/informatics10030055