Does SEO Matter for Startups? Identifying Insights from UGC Twitter Communities
Abstract
:1. Introduction
2. Literature Review
3. Methodology Development
3.1. Social Network Modeling Algorithms
3.2. Sentiment Analysis
3.3. Textual Analysis
3.4. Modularity Report
4. Results
4.1. UGC Communities’ Results
4.2. Groups of UGC Communities
4.3. LDA Results
5. Discussion
6. Conclusions
6.1. Implications for Practitioners
6.2. Theoretical Implications
6.3. Limitations and Future Research Directions
Author Contributions
Funding
Conflicts of Interest
References
- Yoo, C.; Yang, D.; Kim, H.; Heo, E. Key Value Drivers of Startup Companies in the New Media Industry-The Case of Online Games in Korea. J. Media Econ. 2012, 25, 244–260. [Google Scholar] [CrossRef]
- Regmi, K.; Ahmed, S.A.; Quinn, M. Data Driven Analysis of Startup Accelerators. Univers. J. Ind. Bus. Manag. 2015, 3, 54–57. [Google Scholar] [CrossRef]
- Rathore, A.K.; Ilavarasan, P.V.; Dwivedi, Y.K. Social Media Content and Product Co-Creation: An Emerging Paradigm. J. Enterp. Inf. Manag. 2016, 29, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Paik, Y.; Woo, H. Economic Downturn and Financing Innovative Startup Companies. Manag. Decis. Econ. 2014, 35, 114–128. [Google Scholar] [CrossRef]
- Thiel, P.A.; Masters, B.G. Zero to One: Notes on Startups, or How to Build the Future.; Virgin Books: London, UK, 2015. [Google Scholar]
- Fishkin, R. SEO: The Beginner’s Guide to Search Engine Optimization from Moz. Moz 2015. Available online: https://bit.ly/2UKj7U5 (accessed on 10 February 2019).
- Reyes-Menendez, A.; Saura, J.R.; Filipe, F. The importance of behavioral data to identify online fake reviews for tourism businesses: A systematic review. Peerj Comput. Sci. 2019, 5, e219. [Google Scholar] [CrossRef] [Green Version]
- Saura, J.R.; Reyes-Menendez, A.; Thomas, S. Gaining a deeper understanding of nutrition using social networks and user-generated content. Internet Interv. 2020, 100312. [Google Scholar] [CrossRef]
- Aswani, R.; Kar, A.K.; Ilavarasan, P.V.; Dwivedi, Y.K. Search engine marketing is not all gold: Insights from Twitter and SEOC. In Software Development in Startup Companies: The Greenfield Startup Model. IEEE Transactions on Software Engineering; Giardino, C., Paternoster, N., Unterkalmsteiner, M., Gorschek, T., Abrahamsson, P., Eds.; IEEE: Piscataway, NJ, USA, 2016; Volume 42, pp. 585–604. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Menendez, A.; Saura, J.R.; Stephen, B.T. Exploring Key Indicators of Social Identity in the #MeToo Era: Using Discourse Analysis in UGC. Int. J. Inf. Manag. 2020, 54, 102129. [Google Scholar] [CrossRef]
- Saura, J.R. Using Data Sciences in Digital Marketing: Framework, Methods, and Performance Metrics. J. Innov. Knowl. 2020, 1. [Google Scholar] [CrossRef]
- Kropp, F.; Lindsay, N.J.; Shoham, A. Entrepreneurial Orientation and International Entrepreneurial Business Venture Startup. Int. J. Entrep. Behav. Res. 2008, 14, 102–117. [Google Scholar] [CrossRef]
- Davila, A.; Foster, G.; Li, M. Reasons for Management Control Systems Adoption: Insights from Product Development Systems Choice by Early-Stage Entrepreneurial Companies. Acc. Organ. Soc. 2009, 34, 322–347. [Google Scholar] [CrossRef]
- Aswani, R.; Kar, A.K.; Ilavarasan, P.V.; Dwivedi, Y.K. Search engine marketing is not all gold: Insights from Twitter and SEOClerks. Int. J. Inf. Manag. 2018, 38, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Dellermann, D.; Ebel, P.; Lipusch, N.; Popp, K.M.; Leimeister, J.M. Finding the Unicorn: Predicting Early Stage Startup Success through a Hybrid Intelligence Method. In ICIS 2017: Transforming Society with Digital Innovation; Association for Information Systems: Atlanta, GA, USA, 2018. [Google Scholar] [CrossRef] [Green Version]
- Giardino, C.; Wang, X.; Abrahamsson, P. Why Early-Stage Software Startups Fail: A Behavioral Framework; Springer: Cham, Switzerland, 2014; pp. 27–41. [Google Scholar] [CrossRef] [Green Version]
- Giardino, C.; Bajwa, S.S.; Wang, X.; Abrahamsson, P. Key Challenges in Early-Stage Software Startups. In Lecture Notes in Business Information Processing; Springer: Berlin/Heidelberg, Germany, 2015; Volume 212, pp. 52–63. [Google Scholar] [CrossRef]
- Davila, A.; Foster, G. Management Control Systems in Early-Stage Startup Companies. Acc. Rev. 2007, 82, 907–937. [Google Scholar] [CrossRef]
- Garcia-Perez, A.; Romero-Troncoso, R.J.; Cabal-Yepez, E.; Osornio-Rios, R.A.; Rangel-Magdaleno, J.D.J.; Miranda, H. Startup Current Analysis of Incipient Broken Rotor Bar in Induction Motors Using High-Resolution Spectral Analysis. In Proceedings of the SDEMPED 2011—8th IEEE Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, Bologna, Italy, 5–8 September 2011; pp. 657–663. [Google Scholar] [CrossRef]
- Nanda, R.; Rhodes-Kropf, M. Investment Cycles and Startup Innovation. J. Financ. Econ. 2013, 110, 403–418. [Google Scholar] [CrossRef] [Green Version]
- Hettiarachchi, S.; Spears, W.M.; Varghese, B.; Mckee, G.; Evans, M.P.; Tokhi, O.; Bouloubasis, A.; Tolson, P. Analysing Google Rankings through Search Engine Optimization Data. Int. J. Intell. Comput. Cybern. 2007, 17, 116–121. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Cabage, N. Search Engine Optimization: Comparison of Link Building and Social Sharing. J. Comput. Inf. Syst. 2017, 57, 148–159. [Google Scholar] [CrossRef]
- Krrabaj, S.; Baxhaku, F.; Sadrijaj, D. Investigating Search Engine Optimization Techniques for Effective Ranking: A Case Study of an Educational Site. In Proceedings of the 2017 6th Mediterranean Conference on Embedded Computing, MECO 2017—Including ECYPS 2017, Bar, Montenegro, 11–15 June 2017; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Lui, R.; Au, C.H.I.S. Educational Game: Adoption in Teaching Search Engine Optimization (SEO). J. Comput. Inf. Syst. 2020, 60, 233–243. [Google Scholar] [CrossRef]
- Lui, R.W.C.; Au, C.H. Establishing an Educational Game Development Model: From the Experience of Teaching Search Engine Optimization. Int. J. Game-Based Learn. 2018, 8, 52–73. [Google Scholar] [CrossRef]
- Pidpruzhnikov, V.; Ilchenko, M. Search Optimization and Localization of the Website of Department of Applied Linguistics. In Proceedings of the Computational linguistics andintelligent systems (COLINS 2017), Lviv, Ukraine, 21 April 2017. [Google Scholar]
- Malaga, R.A. Search Engine Optimization—Black and White Hat Approaches; Elsevier: Amsterdam, The Netherlands, 2010; Volume 78, pp. 1–39. [Google Scholar] [CrossRef]
- Cahill, K.; Chalut, R. Optimal Results: What Libraries Need to Know about Google and Search Engine Optimization. Ref. Libr. 2009, 50, 234–247. [Google Scholar] [CrossRef]
- Giomelakis, D.; Veglis, A. Investigating Search Engine Optimization Factors in Media Websites: The Case of Greece. Digit. Journal. 2016, 4, 379–400. [Google Scholar] [CrossRef]
- Aswani, R.; Kar, A.K.; Aggarwal, S.; Vigneswara Ilavarsan, P. Exploring Content Virality in Facebook: A Semantic Based Approach. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 10595 LNCSM; Springer: Berlin/Heidelberg, Germany, 2017; pp. 209–220. [Google Scholar] [CrossRef] [Green Version]
- Baye, M.R.; de los Santos, B.; Wildenbeest, M.R. Search Engine Optimization: What Drives Organic Traffic to Retail Sites? J. Econ. Manag. Strategy 2016, 25, 6–31. [Google Scholar] [CrossRef] [Green Version]
- Farooqi, S.; Jourjon, G.; Ikram, M.; Kaafar, M.A.; de Cristofaro, E.; Shafiq, Z.; Friedman, A.; Zaffar, F. Characterizing Key Stakeholders in an Online Black-Hat Marketplace. In Proceedings of the 2017 APWG Symposium on Electronic Crime Research (eCrime), Phoenix, AZ, USA, 25–27 April 2017; pp. 17–27. [Google Scholar] [CrossRef] [Green Version]
- Saura, J.R.; Bennett, D.R. A Three-Stage Method for Data Text Mining: Using UGC in Business Intelligence Analysis. Symmetry 2019, 11, 519. [Google Scholar] [CrossRef] [Green Version]
- Palos-Sanchez, P.; Saura, J.R.; Martin-Velicia, F. A study of the effects of Programmatic Advertising on users’ Concerns about Privacy overtime. J. Bus. Res. 2019, 96, 61–72. [Google Scholar] [CrossRef]
- Singh, O.; Singh, K.A. Formulation of Value Proposition for Digital Marketing Strategy in Startups. Natl. J. Multidiscip. Res. Dev. 2017, 2, 45–52. [Google Scholar]
- Lee, S.H.; Noh, S.H. A Study on the Success Factors of ICT Convergence Type-Specific Start-up Enterprise—Mainly the Case Study. J. Digit. Converg. 2014, 12, 203–215. [Google Scholar] [CrossRef]
- Lagerstedt, M.; Mademlis, A. Branding for Startup Companies in Sweden a Study on Startups Brand Building. Master’s Thesis, University of Amsterdam, Amsterdam, The Netherlands, 2016. [Google Scholar]
- Neill, S.; Metcalf, L.; York, J.L. Seeing What Others Miss: A Study of Women Entrepreneurs in High-Growth Startups. Entrep. Res. J. 2015, 5, 293–322. [Google Scholar] [CrossRef] [Green Version]
- Lee Hughes, A.; Palen, L. Twitter Adoption and Use in Mass Convergence and Emergency Events. Int. J. Emerg. Manag. 2009, 6, 248–260. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Shi, Y.; Wang, B. Search Engine Marketing, Financing Ability and Firm Performance in E-Commerce. Procedia Comput. Sci. 2015, 55, 1106–1112. [Google Scholar] [CrossRef] [Green Version]
- Bosch, J.; Olsson, H.H.; Björk, J.; Ljungblad, J. The Early Stage Software Startup Development Model: A Framework for Operationalizing Lean Principles in Software Startups. In Lecture Notes in Business Information Processing; Springer: Berlin/Heidelberg, Germany, 2013; Volume 167, pp. 1–15. [Google Scholar] [CrossRef]
- Corbin, J.; Strauss, A. Basics of Qualitative Research: Techniques and Procedures for Developing Grounded Theory; Sage: Los Angeles, CA, USA, 2015. [Google Scholar]
- Reyes-Menendez, A.; Saura, J.R.; Martinez-Navalon, J.G. The impact of e-WOM on Hotels Management Reputation: Exploring TripAdvisor Review Credibility with the ELM model. IEEE Access 2019, 8. [Google Scholar] [CrossRef]
- Saura, J.R.; Herraez, B.R.; Reyes-Menendez, A. Comparing a Traditional Approach for Financial Brand Communication Analysis with a Big Data Analytics Technique. IEEE Access 2019, 7, 37100–37108. [Google Scholar] [CrossRef]
- Arias, M.; Arratia, A.; Xuriguera, R. Forecasting with Twitter Data. ACM Trans. Intell. Syst. Technol. 2013, 5, 1–24. [Google Scholar] [CrossRef]
- Chae, B. Insights from Hashtag #supplychain and Twitter Analytics: Considering Twitter and Twitter Data for Supply Chain Practice and Research. Int. J. Prod. Econ. 2015, 165, 247–259. [Google Scholar] [CrossRef]
- Inauen, S.; Schoeneborn, D. Twitter and Its Usage for Dialogic Stakeholder Communication by MNCs and NGOs. Critical Studies on Corporate Responsibility. Gov. Sustain. 2014, 6, 283–310. [Google Scholar] [CrossRef]
- Joseph, N.; Kar, A.K.; Ilavarasan, P.V.; Ganesh, S. Review of Discussions on Internet of Things (IoT): Insights from Twitter Analytics. J. Glob. Inf. Manag. 2017, 25, 38–51. [Google Scholar] [CrossRef] [Green Version]
- Landau, E. “Zur relativen Wertbemessung der Turnierresultate”. Dtsch. Wochenschach 1985, 11, 366–369. [Google Scholar] [CrossRef]
- Williams, S.A.; Terras, M.M.; Warwick, C. What Do People Study When They Study Twitter? Classifying Twitter Related Academic Papers. J. Doc. 2013, 69, 384–410. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Shen, H. Analyzing and Predicting News Popularity on Twitter. Int. J. Inf. Manag. 2015, 35, 702–711. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I.; Lafferty, J. Latent Dirichlet Allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Krippendorff, K. Agreement and Information in the Reliability of Coding. Commun. Methods Meas. 2011, 5, 93–112. [Google Scholar] [CrossRef] [Green Version]
- Krippendorff, K. Bivariate Agreement Coefficients for Reliability of Data. Sociol. Methodol. 1970, 2, 139. [Google Scholar] [CrossRef]
- Blondel, V.D.; Guillaume, J.-L.; Lambiotte, R.; Lefebvre, E. Fast Unfolding of Communities in Large Networks. J. Stat. Mech. Theory Exp. 2008, 10, P10008. [Google Scholar] [CrossRef] [Green Version]
- Lambiotte, R.; Delvenne, J.-C.; Barahona, M. Laplacian Dynamics and Multiscale Modular Structure in Networks. IEEE Trans. Netw. Sci. Eng. 2008, 1, 76–90. [Google Scholar] [CrossRef] [Green Version]
- Page, L.; Brin, S.; Motwani, R.; Winograd, T. The PageRank Citation Ranking: Bringing Order to the Web; Stanford InfoLab: Stanford, CA, USA, 1999. [Google Scholar]
- Kleinberg, J.M. Authoritative Sources in a Hyperlinked Environment. J. ACM 1999, 46, 604–632. [Google Scholar] [CrossRef]
- Giomelakis, D.; Karypidou, C.; Veglis, A. SEO inside Newsrooms: Reports from the Field. Future Internet 2019, 11, 261. [Google Scholar] [CrossRef] [Green Version]
- Ventocilla, E.; Riveiro, M. A comparative user study of visualization techniques for cluster analysis of multidimensional data sets. Inf. Vis. 2020, 19, 318–338. [Google Scholar] [CrossRef]
- Kotras, B. Opinions that matter: The hybridization of opinion and reputation measurement in social media listening software. Media Cult. Soc. 2020, 42, 1495–1511. [Google Scholar] [CrossRef]
- Ward, A.A. The Seo Battlefield: Winning Strategies for Search Marketing Programs; OReilly: Beijing, China, 2017. [Google Scholar]
- Nguyen-Duc, A.; Shah, S.M.A.; Ambrahamsson, P. Towards an Early Stage Software Startups Evolution Model. In Proceedings of the 42nd Euromicro Conference on Software Engineering and Advanced Applications (SEAA 2016), Limassol, Cyprus, 1 August–2 September 2016; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2016; pp. 120–127. [Google Scholar] [CrossRef]
- Karyotakis, M.-A.; Lamprou, E.; Kiourexidou, M.; Antonopoulos, N. SEO Practices: A Study about the Way News Websites Allow the Users to Comment on Their News Articles. Future Internet 2019, 11, 188. [Google Scholar] [CrossRef] [Green Version]
- Ziakis, C.; Vlachopoulou, M.; Kyrkoudis, T.; Karagkiozidou, M. Important Factors for Improving Google Search Rank. Future Internet 2019, 11, 32. [Google Scholar] [CrossRef] [Green Version]
Topic | Brief Description | Count |
---|---|---|
Robots.txt and Tag | Robots.txt and tag should be implemented on the web indicating the URL to the sitemap.xml; in its tag, it should appear as “index, follow”. | 161 |
URL | URLs should contain the keyword that positions the website; no noise or special characters are allowed. | 157 |
Title Tag | Title tag should not exceed 69 characters and must contain the keyword. | 139 |
Social Tags | Social tags should independently appear on all pages of the website. | 123 |
Open Graph Data | Open Graph Data are used to mark Facebook data for social tags. It is important to optimize the “og: image”. | 110 |
JavaScript (JS) | There are problems in the implementation of JS for SEO | 104 |
Backlinks | Backlinks are necessary to increase the PA and DA of the website, but there are penalties for their purchase. | 104 |
Twitter Card Data | Twitter Card Data serve to optimize social SEO for Twitter that increases the impact of content in this social network. | 98 |
Sitemap.xml | Sitemap.xml structures the content of the website and offers search engines the information architecture of the site. | 92 |
Meta Description | Meta description should contain the keyword to be positioned and should not exceed 156 characters for the results in desktop SERPs and 333 for mobile. | 83 |
Traffic | Traffic of a website relevant to SEO should be high. | 79 |
Accelerated Mobile Pages (AMP) | Accelerated Mobile Pages (AMP) is a technology that increases the loading time of a website optimized to SEO. | 79 |
Long-tail Keywords | Long-tail keywords are the most successful keywords in SEO | 71 |
SEM | SEM is a digital marketing strategy that should accompany SEO tactics. | 67 |
Directory | A website structure should be divided into directories and not in URLs by subject or sub-domain. | 63 |
Link Building | Link building is a strategy that penalizes SEO. | 57 |
CTR | CTR is the indicator that measures the effectiveness of clicks on SERPs. | 35 |
Headers (H1-H6) | Headers show the search engines the structure of the content. | 15 |
HTML | The goals tags in HTML and social tags are important for optimization | 14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saura, J.R.; Reyes-Menendez, A.; Van Nostrand, C. Does SEO Matter for Startups? Identifying Insights from UGC Twitter Communities. Informatics 2020, 7, 47. https://doi.org/10.3390/informatics7040047
Saura JR, Reyes-Menendez A, Van Nostrand C. Does SEO Matter for Startups? Identifying Insights from UGC Twitter Communities. Informatics. 2020; 7(4):47. https://doi.org/10.3390/informatics7040047
Chicago/Turabian StyleSaura, José Ramón, Ana Reyes-Menendez, and Chris Van Nostrand. 2020. "Does SEO Matter for Startups? Identifying Insights from UGC Twitter Communities" Informatics 7, no. 4: 47. https://doi.org/10.3390/informatics7040047
APA StyleSaura, J. R., Reyes-Menendez, A., & Van Nostrand, C. (2020). Does SEO Matter for Startups? Identifying Insights from UGC Twitter Communities. Informatics, 7(4), 47. https://doi.org/10.3390/informatics7040047