Enhanced Saccharification of Purple Alfalfa via Sequential Pretreatment with Acidified Ethylene Glycol and Urea/NaOH
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pretreatment of PAF
2.3. Saccharification of PAF
2.4. Analytical Method
3. Results and Discussion
3.1. Pretreatment with Organic Acid–EG–H2O
3.2. Pretreatment with UN
3.3. Combination Pretreatment with UN and EG
3.4. Characteristics of Untreated and Pretreated PAFs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, J.-Y.; Lee, H.W.; Lee, S.M.; Jae, J.; Park, Y.-K. Overview of the recent advances in lignocellulose liquefaction for producing biofuels, bio-based materials and chemicals. Bioresour. Technol. 2019, 279, 373–384. [Google Scholar] [CrossRef]
- Zhao, J.; Griffin, J.; Roozeboom, K.; Lee, J.; Wang, D. Lignin, sugar, and furan production of industrial hemp biomass via an integrated process. Ind. Crops Prod. 2021, 172, 114049. [Google Scholar] [CrossRef]
- Liu, C.-G.; Xiao, Y.; Xia, X.-X.; Zhao, X.-Q.; Peng, L.; Srinophakun, P.; Bai, F.-W. Cellulosic ethanol production: Progress, challenges and strategies for solutions. Biotechnol. Adv. 2019, 37, 491–504. [Google Scholar] [CrossRef]
- Samac, D.A.; Jung, H.-J.G.; Lamb, J.F. Development of alfalfa (Medicago sativa L.) as a feedstock for production of ethanol and other bioproducts. In Alcoholic Fuels; CRC Press: Boca Raton, FL, USA, 2016; pp. 79–98. [Google Scholar]
- Raud, M.; Kikas, T.; Sippula, O.; Shurpali, N.J. Potentials and challenges in lignocellulosic biofuel production technology. Renew. Sust. Energ. Rev. 2019, 111, 44–56. [Google Scholar] [CrossRef]
- Izydorczyk, G.; Skrzypczak, D.; Kocek, D.; Mironiuk, M.; Witek-Krowiak, A.; Moustakas, K.; Chojnacka, K. Valorization of bio-based post-extraction residues of goldenrod and alfalfa as energy pellets. Energy 2020, 194, 116898. [Google Scholar] [CrossRef]
- Woiciechowski, A.L.; Neto, C.J.D.; de Souza Vandenberghe, L.P.; de Carvalho Neto, D.P.; Sydney, A.C.N.; Letti, L.A.J.; Karp, S.G.; Torres, L.A.Z.; Soccol, C.R. Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance–Conventional processing and recent advances. Bioresour. Technol. 2020, 304, 122848. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, Q.; You, T.; Zhang, X.; Xu, F.; Wu, Y. Short-time deep eutectic solvent pretreatment for enhanced enzymatic saccharification and lignin valorization. Green Chem. 2019, 21, 3099–3108. [Google Scholar] [CrossRef]
- Sun, Q.; Chen, W.-J.; Pang, B.; Sun, Z.; Lam, S.S.; Sonne, C.; Yuan, T.-Q. Ultrastructural change in lignocellulosic biomass during hydrothermal pretreatment. Bioresour. Technol. 2021, 341, 125807. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Li, S.; Wu, R.; Liu, D. Organosolv fractionating pre-treatment of lignocellulosic biomass for efficient enzymatic saccharification: Chemistry, kinetics, and substrate structures. Biofuels Bioprod. Biorefining-Biofpr 2017, 11, 567–590. [Google Scholar] [CrossRef]
- Sheng, Y.; Lam, S.S.; Wu, Y.; Ge, S.; Wu, J.; Cai, L.; Huang, Z.; Van Le, Q.; Sonne, C.; Xia, C. Enzymatic conversion of pretreated lignocellulosic biomass: A review on influence of structural changes of lignin. Bioresour. Technol. 2021, 324, 124631. [Google Scholar] [CrossRef]
- Houfani, A.A.; Anders, N.; Spiess, A.C.; Baldrian, P.; Benallaoua, S. Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars–a review. Biomass Bioenerg. 2020, 134, 105481. [Google Scholar] [CrossRef]
- Sun, C.; Ren, H.; Sun, F.; Hu, Y.; Liu, Q.; Song, G.; Abdulkhani, A.; Loke Show, P. Glycerol organosolv pretreatment can unlock lignocellulosic biomass for production of fermentable sugars: Present situation and challenges. Bioresour. Technol. 2022, 344, 126264. [Google Scholar] [CrossRef]
- Malgas, S.; Rose, S.H.; van Zyl, W.H.; Pletschke, B.I. Enzymatic hydrolysis of softwood derived paper sludge by an in vitro recombinant cellulase cocktail for the production of fermentable sugars. Catalysts 2020, 10, 775. [Google Scholar] [CrossRef]
- Zheng, T.; Jiang, J.; Yao, J. Surfactant-promoted hydrolysis of lignocellulose for ethanol production. Fuel Process. Technol. 2021, 213, 106660. [Google Scholar] [CrossRef]
- Padilla-Rascón, C.; Ruiz, E.; Romero, I.; Castro, E.; Oliva, J.; Ballesteros, I.; Manzanares, P. Valorisation of olive stone by-product for sugar production using a sequential acid/steam explosion pretreatment. Ind. Crops Prod. 2020, 148, 112279. [Google Scholar] [CrossRef]
- Yang, G.; Wang, J. Ultrasound combined with dilute acid pretreatment of grass for improvement of fermentative hydrogen production. Bioresour. Technol. 2019, 275, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Shi, Z.; Xu, G.; Qin, Y.; Deng, J.; Yang, J. Bioethanol production from bamboo with alkali-catalyzed liquid hot water pretreatment. Bioresour. Technol. 2019, 274, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Sakuragi, K.; Igarashi, K.; Samejima, M. Application of ammonia pretreatment to enable enzymatic hydrolysis of hardwood biomass. Polym. Degrad. Stab. 2018, 148, 19–25. [Google Scholar] [CrossRef]
- Satari, B.; Karimi, K.; Kumar, R. Cellulose solvent-based pretreatment for enhanced second-generation biofuel production: A review. Sustain. Energy Fuels 2019, 3, 11–62. [Google Scholar] [CrossRef]
- Wang, Z.; Hou, X.; Sun, J.; Li, M.; Chen, Z.; Gao, Z. Comparison of ultrasound-assisted ionic liquid and alkaline pretreatment of Eucalyptus for enhancing enzymatic saccharification. Bioresour. Technol. 2018, 254, 145–150. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, L. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol. Biosci. 2005, 5, 539–548. [Google Scholar] [CrossRef]
- Zhang, L.; Ruan, D.; Gao, S. Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J. Polym. Sci. Part B Polym. Phys. 2002, 40, 1521–1529. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, L.; Cai, J. Behavior of cellulose in NaOH/urea aqueous solution characterized by light scattering and viscometry. J. Polym. Sci. Part B Polym. Phys. 2004, 42, 347–353. [Google Scholar] [CrossRef]
- Gupta, P.; Uniyal, V.; Naithani, S. Polymorphic transformation of cellulose I to cellulose II by alkali pretreatment and urea as an additive. Carbohydr. Polym. 2013, 94, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Lou, H.; Hu, Q.; Qiu, X.; Li, X.; Lin, X. Pretreatment of miscanthus by NaOH/urea solution at room temperature for enhancing enzymatic hydrolysis. BioEnerg. Rese. 2016, 9, 335–343. [Google Scholar] [CrossRef]
- Dai, Y.; Si, M.; Chen, Y.; Zhang, N.; Zhou, M.; Liao, Q.; Shi, D.; Liu, Y. Combination of biological pretreatment with NaOH/Urea pretreatment at cold temperature to enhance enzymatic hydrolysis of rice straw. Bioresour. Technol. 2015, 198, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.A.; Taherzadeh, M.J. Improving the economy of lignocellulose-based biorefineries with organosolv pretreatment. Bioresour. Technol. 2020, 299, 122695. [Google Scholar] [CrossRef]
- Meng, X.; Bhagia, S.; Wang, Y.; Zhou, Y.; Pu, Y.; Dunlap, J.R.; Shuai, L.; Ragauskas, A.J.; Yoo, C.G. Effects of the advanced organosolv pretreatment strategies on structural properties of woody biomass. Ind. Crops Prod. 2020, 146, 112144. [Google Scholar] [CrossRef]
- Smit, A.; Huijgen, W. Effective fractionation of lignocellulose in herbaceous biomass and hardwood using a mild acetone organosolv process. Green Chem. 2017, 19, 5505–5514. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-J.; Hong, S.-B.; Eom, T.-J. Preparation of Eucalyptus pulp by mild condition of low-temperature, atmospheric pressure, and short-reaction-time with high-boiling-point solvent and pulp properties. Cellulose 2018, 25, 753–761. [Google Scholar] [CrossRef]
- Liu, J.; Li, R.; Shuai, L.; You, J.; Zhao, Y.; Chen, L.; Li, M.; Chen, L.; Huang, L.; Luo, X. Comparison of liquid hot water (LHW) and high boiling alcohol/water (HBAW) pretreatments for improving enzymatic saccharification of cellulose in bamboo. Ind. Crops Prod. 2017, 107, 139–148. [Google Scholar] [CrossRef]
- Cheng, F.; Sun, J.; Wang, Z.; Zhao, X.; Hu, Y. Organosolv fractionation and simultaneous conversion of lignocellulosic biomass in aqueous 1, 4-butanediol/acidic ionic-liquids solution. Ind. Crops Prod. 2019, 138, 111573. [Google Scholar] [CrossRef]
- Qin, L.; Qian, H.; He, Y. Microbial lipid production from enzymatic hydrolysate of pecan nutshell pretreated by combined pretreatment. Appl. Biochem. Biotechnol. 2017, 183, 1336–1350. [Google Scholar] [CrossRef] [PubMed]
- Amran, U.A.; Zakaria, S.; Chia, C.H.; Fang, Z.; Masli, M.Z. Production of liquefied oil palm empty fruit bunch based polyols via microwave heating. Energ. Fuel. 2017, 31, 10975–10982. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, Y.; Liu, D.; Petrus, L. Qualitative analysis of products formed during the acid catalyzed liquefaction of bagasse in ethylene glycol. Bioresour. Technol. 2007, 98, 1454–1459. [Google Scholar] [CrossRef] [PubMed]
- He, Y.-C.; Liu, F.; Gong, L.; Lu, T.; Ding, Y.; Zhang, D.-P.; Qing, Q.; Zhang, Y. Improving enzymatic hydrolysis of corn stover pretreated by ethylene glycol-perchloric acid-water mixture. Appl. Biochem. Biotechnol. 2015, 175, 1306–1317. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.E.; Jeong, J.-S.; Kim, Y.; Min, J.; Moon, S.-K. Development and economic analysis of bioethanol production facilities using lignocellulosic biomass. J. Biosci. Bioeng. 2019, 128, 475–479. [Google Scholar] [CrossRef]
- He, Y.-C.; Liu, F.; Gong, L.; Di, J.-H.; Ding, Y.; Ma, C.-L.; Zhang, D.-P.; Tao, Z.-C.; Wang, C.; Yang, B. Enzymatic in situ saccharification of chestnut shell with high ionic liquid-tolerant cellulases from Galactomyces sp. CCZU11-1 in a biocompatible ionic liquid-cellulase media. Bioresour. Technol. 2016, 201, 133–139. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, A.; Zhao, Z.; Xia, S.; Fan, Y.; Zhou, C.; Cao, F.; Jiang, L.; Wei, G.; Huang, Z. Overcoming biomass recalcitrance to enhance platform chemical production from soft wood by organosolvolysis coupled with fast pyrolysis. Cellulose 2019, 26, 9687–9708. [Google Scholar] [CrossRef]
- Yang, M.; Rehman, M.S.U.; Yan, T.; Khan, A.U.; Oleskowicz-Popiel, P.; Xu, X.; Cui, P.; Xu, J. Treatment of different parts of corn stover for high yield and lower polydispersity lignin extraction with high-boiling alkaline solvent. Bioresour. Technol. 2018, 249, 737–743. [Google Scholar] [CrossRef]
- Singhal, A.; Kumar, M.; Bhattacharya, M.; Kumari, N.; Jha, P.K.; Chauhan, D.K.; Thakur, I.S. Pretreatment of Leucaena leucocephala wood by acidified glycerol: Optimization, severity index and correlation analysis. Bioresour. Technol. 2018, 265, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Cao, G.; Wu, J.; Liu, B.; Xing, D.; Zhao, L.; Zhou, C.; Feng, L.; Ren, N. High-solid pretreatment of rice straw at cold temperature using NaOH/Urea for enhanced enzymatic conversion and hydrogen production. Bioresour. Technol. 2019, 287, 121399. [Google Scholar] [CrossRef]
- Wang, W.; Tan, X.; Imtiaz, M.; Wang, Q.; Miao, C.; Yuan, Z.; Zhuang, X. Rice straw pretreatment with KOH/urea for enhancing sugar yield and ethanol production at low temperature. Ind. Crops Prod. 2021, 170, 113776. [Google Scholar]
- Yang, D.; Zhao, N.; Tang, S.; Zhu, X.; Ma, C.; Fan, B.; Liang, J.; Yu, B.; Yang, L.; He, Y.-C. A hybrid strategy for efficient valorization of bulrush into furoic acid in water–ChCl-based deep eutectic solvent. Ind. Crop. Prod. 2022, 177, 114434. [Google Scholar] [CrossRef]
- Jiang, C.-X.; He, Y.-C.; Chong, G.-G.; Di, J.-H.; Tang, Y.-J.; Ma, C.-L. Enzymatic in situ saccharification of sugarcane bagasse pretreated with low loading of alkalic salts Na2SO3/Na3PO4 by autoclaving. J. Biotechnol. 2017, 259, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Strassberger, Z.; Prinsen, P.; van der Klis, F.; van Es, D.S.; Tanase, S.; Rothenberg, G. Lignin solubilisation and gentle fractionation in liquid ammonia. Green Chem. 2015, 17, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Di, J.; Liao, X.; Ni, J.; Li, Q.; He, Y.-C.; Ma, C. Exploration of benign deep eutectic solvent–water systems for the highly efficient production of furfurylamine from sugarcane bagasse via chemoenzymatic cascade catalysis. Green Chem. 2021, 23, 8154–8168. [Google Scholar] [CrossRef]
- Wu, M.; Gong, L.; Ma, C.; He, Y.-C. Enhanced enzymatic saccharification of sorghum straw by effective delignification via combined pretreatment with alkali extraction and deep eutectic solvent soaking. Bioresour. Technol. 2021, 340, 125695. [Google Scholar] [CrossRef]
- Horikawa, Y.; Hirano, S.; Mihashi, A.; Kobayashi, Y.; Zhai, S.; Sugiyama, J. Prediction of lignin contents from infrared spectroscopy: Chemical digestion and lignin/biomass ratios of Cryptomeria japonica. Appl. Biochem. Biotechnol. 2019, 188, 1066–1076. [Google Scholar] [CrossRef]
- Wei, J.; Deng, X.; Song, Y.; Xiao, S.; Xu, D. Pretreatment of dry-spun acrylic fiber manufacturing wastewater by electro-Fenton process. Chin. J. Environ. Eng. 2013, 7, 2529–2535. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, B.; Zhang, L.; Tang, Z.; Chen, L.; He, Y.-C. Enhanced Saccharification of Purple Alfalfa via Sequential Pretreatment with Acidified Ethylene Glycol and Urea/NaOH. Processes 2022, 10, 61. https://doi.org/10.3390/pr10010061
Fan B, Zhang L, Tang Z, Chen L, He Y-C. Enhanced Saccharification of Purple Alfalfa via Sequential Pretreatment with Acidified Ethylene Glycol and Urea/NaOH. Processes. 2022; 10(1):61. https://doi.org/10.3390/pr10010061
Chicago/Turabian StyleFan, Bo, Lin Zhang, Zhengyu Tang, Liang Chen, and Yu-Cai He. 2022. "Enhanced Saccharification of Purple Alfalfa via Sequential Pretreatment with Acidified Ethylene Glycol and Urea/NaOH" Processes 10, no. 1: 61. https://doi.org/10.3390/pr10010061
APA StyleFan, B., Zhang, L., Tang, Z., Chen, L., & He, Y. -C. (2022). Enhanced Saccharification of Purple Alfalfa via Sequential Pretreatment with Acidified Ethylene Glycol and Urea/NaOH. Processes, 10(1), 61. https://doi.org/10.3390/pr10010061