Effect of Pre-Injection on Combustion and Emission Characteristics of a Diesel Engine Fueled with Diesel/Methanol/n-Butanol Blended Fuel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Turbulence Model
2.2. Combustion Model
2.3. Spray Model
2.4. Emission Model
2.5. Boundary Condition
2.6. Computational Mesh
2.7. Engine Bench Test
2.8. Uncertainty Analysis
Square root of [(uncertainty of pressure sensor)2 + (uncertainty of HC emission)2
+ (uncertainty of NOx emission)2 + (uncertainty of CO emission)2
+ (uncertainty of Soot emission)2]
= Square root of [(0.5%)2 + (0.11%)2 + (0.53%)2 + (0.32%)2 + (2.8%)2] = 2.913%
2.9. Model Validation
3. Results and Discussions
3.1. Combustion Analysis
3.1.1. Cylinder Pressure
3.1.2. Heat Release Rate (HRR)
3.1.3. Cylinder Temperature
3.2. Emissions Analysis
3.2.1. Soot Emission
3.2.2. NOx Emission
3.2.3. HC Emission
3.2.4. CO Emission
4. Conclusions
- (1)
- When the pre-injection timing changes from −15 °CA to −45 °CA, the engine cylinder pressure increases, and the cylinder temperature increases. The increase in SOPI leads to an earlier start of combustion, which increases the evaporation rate of the fuel and improves in-cylinder combustion.
- (2)
- When the pre-injection fuel mass ratio changes from 0.1 to 0.9, the engine cylinder pressure increases and the cylinder temperature increases. This is because with the increase of Mpre, more fuel enters the cylinder in advance to participate in combustion, and more fuel is compressed in the compression stroke, resulting in more heat release, thus increasing cylinder pressure and cylinder temperature.
- (3)
- With the increase of SOPI, soot, CO and HC emissions are decreased. This is because with the increase of SOPI, more combustible blended fuels can be obtained, and the time for fuel evaporation and fuel blending is enough to make it burn completely.
- (4)
- With the increase of Mpre, soot, CO and HC emissions are reduced. With the increase of Mpre, more fuel is used to participate in combustion, making the combustion more complete.
- (5)
- NOx emission increases with SOPI and Mpre. NOx is produced under high-temperature oxygen-rich environments and high-temperature duration conditions. Therefore, the temperature in the cylinder increases, which will increase NOx emission.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Viswanathan, K.; Subramanian, T.; Ashok, B.; Varuvel, E.; Azad, K. Experimental investigation of pomegranate oil methyl ester in ceramic coated engine at different operating condition in direct injection diesel engine with energy and exergy analysis. Energy Convers. Manag. 2020, 205, 112334. [Google Scholar]
- Tan, D.; Chen, Z.; Li, J.; Luo, J.; Yang, D.; Cui, S.; Zhang, Z. Effects of Swirl and Boiling Heat Transfer on the Performance Enhancement and Emission Reduction for a Medium Diesel Engine Fueled with Biodiesel. Processes 2021, 9, 568. [Google Scholar] [CrossRef]
- Zhang, Z.; Ye, J.; Tan, D.; Feng, Z.; Luo, J.; Tan, Y.; Huang, Y. The effects of Fe2O3 based DOC and SCR catalyst on the combustion and emission characteristics of a diesel engine fueled with biodiesel. Fuel 2021, 290, 120039. [Google Scholar] [CrossRef]
- Nanthagopal, K.; Ashok, B.; Tamilarasu, A.; Johny, A.; Mohan, A. Influence on the effect of zinc oxide and titanium dioxide nanoparticles as an additive with Calophyllum inophyllum methyl ester in a CI engine. Energy Convers. Manag. 2017, 146, 8–19. [Google Scholar] [CrossRef]
- E, J.; Zhang, Z.; Chen, J.; Pham, M.; Zhao, X.; Peng, Q.; Zhang, B.; Yin, Z. Performance and emission evaluation of a marine diesel engine fueled by water biodiesel-diesel emulsion blends with a fuel additive of a cerium oxide nanoparticle. Energy Convers. Manag. 2018, 169, 194–205. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, J.; Zhu, H.; Zhao, X.; Han, D.; Zuo, W.; Peng, Q.; Gong, J.; Yin, Z. Effects of low-level water addition on spray, combustion and emission characteristics of a medium speed diesel engine fueled with biodiesel fuel. Fuel 2019, 239, 245–262. [Google Scholar] [CrossRef]
- E, J.; Zhao, X.; Qiu, L.; Wei, K.; Zhang, Z.; Deng, Y.; Han, D.; Liu, G. Experimental investigation on performance and economy characteristics of a diesel engine with variable nozzle turbocharger and its application in urban bus. Energy Convers. Manag. 2019, 193, 149–161. [Google Scholar] [CrossRef]
- Zhang, Z.; E, J.; Chen, J.; Zhao, X.; Zhang, B.; Deng, Y.; Peng, Q.; Yin, Z. Effects of boiling heat transfer on the performance enhancement of a medium speed diesel engine fueled with diesel and rapeseed methyl ester. Appl. Therm. Eng. 2020, 169, 114984. [Google Scholar] [CrossRef]
- Saiteja, P.; Ashok, B. A critical insight review on homogeneous charge compression ignition engine characteristics powered by biofuels. Fuel 2021, 285, 119202. [Google Scholar] [CrossRef]
- Viswanathan, K.; Ashok, B.; Nanthagopal, K.; Subramanian, T.; Varuvel, E. Investigation of Novel Pistacia khinjuk Biodiesel in DI Diesel Engine with Post Combustion Capture System. Appl. Therm. Eng. 2019, 159, 113969. [Google Scholar]
- Viswanathan, K.; Subramanian, T.; Varuvel, E.; Ashok, B.; Nanthagopal, K.; Ong, H.C.; Rajasekar, V. Simultaneous reduction of NOx and smoke emissions with low viscous biofuel in low heat rejection engine using selective catalytic reduction technique. Fuel 2019, 255, 115854. [Google Scholar]
- Chen, Z.; He, J.; Chen, H.; Geng, L.; Zhang, P. Comparative study on the combustion and emissions of dual-fuel common rail engines fueled with diesel/methanol, diesel/ethanol, and diesel/n-butanol. Fuel 2021, 304, 121360. [Google Scholar] [CrossRef]
- Hasan, A.O.; Osman, A.I.; Al-Muhtaseb, A.H.; Al-Rawashdeh, H.; Abu-jrai, A.; Ahmad, R.; Gomaa, M.R.; Deka, T.J.; Rooney, D.W. An experimental study of engine characteristics and tailpipe emissions from modern DI diesel engine fuelled with methanol/diesel blends. Fuel Process. Technol. 2021, 220, 106901. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Yin, Z.; Gao, Z.; Wang, Y.; Zhen, X. Parametric study of a single-channel diesel/methanol dual-fuel injector on a diesel engine fueled with directly injected methanol and pilot diesel. Fuel 2021, 302, 121156. [Google Scholar] [CrossRef]
- Park, S.; Jungkeun, C.; Park, J.; Song, S. Numerical study of the performance and NOx emission of a diesel-methanol dual-fuel engine using multi-objective Pareto optimization. Energy 2017, 124, 272–283. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, J.; Li, J.; Ji, H.; Tan, D.; Luo, J.; Jiang, Y.; Yang, D.; Cui, S. Effects of Different Mixture Ratios of Methanol-Diesel on the Performance Enhancement and Emission Reduction for a Diesel Engine. Processes 2021, 9, 1366. [Google Scholar] [CrossRef]
- Ning, L.; Duan, Q.; Kou, H.; Zeng, K. Parametric study on effects of methanol injection timing and methanol substitution percentage on combustion and emissions of methanol/diesel dual-fuel direct injection engine at full load. Fuel 2020, 279, 118424. [Google Scholar] [CrossRef]
- Yilmaz, N.; Sanchez, T. Analysis of operating a diesel engine on biodiesel-ethanol and biodiesel-methanol blends. Energy 2012, 46, 126–129. [Google Scholar] [CrossRef]
- Ning, L.; Duan, Q.; Zhanming, C.; Kou, H.; Liu, B.; Yang, B.; Zeng, K. A comparative study on the combustion and emissions of a non-road common rail diesel engine fueled with primary alcohol fuels (methanol, ethanol, and n-butanol)/diesel dual fuel. Fuel 2020, 266, 117034. [Google Scholar] [CrossRef]
- Jin, C.; Yao, M.; Liu, H.; Lee, C.-f.; Ji, J. Progress in the production and application of n-Butanol as a biofuel. Renew. Sustain. Energy Rev. 2011, 15, 4080–4106. [Google Scholar] [CrossRef]
- Nanthagopal, K.; Kishna, R.; Atabani, A.; Al-Muhtaseb, A.H.; Kumar, G.; Ashok, B. A compressive review on the effects of alcohols and nanoparticles as an oxygenated enhancer in compression ignition engine. Energy Convers. Manag. 2019, 203, 112244. [Google Scholar] [CrossRef]
- Szabados, G.; Lukács, K.; Bereczky, A. Investigating Combustion Process of N-Butanol-Diesel Blends in a Diesel Engine with Variable Compression Ratio. Clean Technol. 2021, 3, 618–628. [Google Scholar] [CrossRef]
- Satsangi, D.; Tiwari, N. Experimental investigation on combustion, noise, vibrations, performance and emissions characteristics of diesel/n-butanol blends driven genset engine. Fuel 2018, 221, 44–60. [Google Scholar] [CrossRef]
- Rakopoulos, D.; Rakopoulos, C.; Giakoumis, E.; Dimaratos, A.; Kyritsis, D. Effects of butanol–diesel fuel blends on the performance and emissions of a high-speed DI diesel engine. Energy Convers. Manag. 2010, 51, 1989–1997. [Google Scholar] [CrossRef]
- Ashok, B.; Ashok, S.; Kumar, C. LPG diesel dual fuel engine—A critical review. Alex. Eng. J. 2015, 36, 105–126. [Google Scholar] [CrossRef] [Green Version]
- Mobasheri, R.; Peng, Z.; Mirsalim, S. Analysis the effect of advanced injection strategies on engine performance and pollutant emissions in a heavy duty DI-diesel engine by CFD modeling. Int. J. Heat Fluid Flow 2011, 33, 59–69. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, Y. Effects of multiple injections on combustion and emissions in a heavy-duty diesel engine at high load and low speed. Adv. Mech. Eng. 2020, 12, 1–15. [Google Scholar] [CrossRef]
- Wang, H.; Gan, H.; Theotokatos, G. Parametric investigation of pre-injection on the combustion, knocking and emissions behaviour of a large marine four-stroke dual-fuel engine. Fuel 2020, 281, 118744. [Google Scholar] [CrossRef]
- Liu, J.; Yao, A.; Yao, C. Effects of injection timing on performance and emissions of a HD diesel engine with DMCC. Fuel 2014, 134, 107–113. [Google Scholar] [CrossRef]
- Liu, B.; Cheng, X.; Liu, J.; Pu, H. Investigation into particle emission characteristics of partially premixed combustion fueled with high n-butanol-diesel ratio blends. Fuel 2018, 223, 1–11. [Google Scholar] [CrossRef]
- Bhowmick, P.; Jeevanantham, A.K.; Ashok, B.; Nanthagopal, K.; Perumal, D.D.A.; Viswanathan, K.; Vora, K.C.; Jain, A. Effect of Fuel Injection Strategies and EGR on Biodiesel Blend in a CRDI engine. Energy 2019, 181, 1094–1113. [Google Scholar] [CrossRef]
- Paykani, A.; Kakaee, A.; Rahnama, P.; Reitz, R. Effects of diesel injection strategy on natural gas/diesel reactivity controlled compression ignition combustion. Energy 2015, 90, 814–826. [Google Scholar] [CrossRef]
- Jiang, X.; Wei, H.; Zhou, L.; Chen, R. Numerical Study on the Effects of Multiple-Injection Coupled with EGR on Combustion and NOx Emissions in a Marine Diesel Engine. Energy Procedia 2019, 158, 4429–4434. [Google Scholar] [CrossRef]
- Liu, T.; E, J.; Yang, W.M.; Deng, Y.; An, H.; Zhang, Z.; Pham, M. Investigation on the applicability for adjusting reaction rates of the optimized biodiesel skeletal mechanism. Energy 2018, 150, 1031–1038. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Tian, J.; Xie, G.; Tan, D.; Qin, B.; Huang, Y.; Cui, S. Effects of Different Diesel-Ethanol Dual Fuel Ratio on Performance and Emission Characteristics of Diesel Engine. Processes 2021, 9, 1135. [Google Scholar] [CrossRef]
- Gong, C.; Liu, J.; Peng, L.; Liu, F. Numerical study of effect of injection and ignition timings on combustion and unregulated emissions of DISI methanol engine during cold start. Renew. Energy 2017, 112, 457–465. [Google Scholar] [CrossRef]
- Zang, R.; Yao, C. Numerical Study of Combustion and Emission Characteristics of a Diesel/Methanol Dual Fuel (DMDF) Engine. Energy Fuel 2015, 29, 3963–3971. [Google Scholar] [CrossRef]
- Wang, C.H.; Zhao, D.; Schluter, J.; Holzäpfel, F.; Stephan, A. LES study on the shape effect of ground obstacles on wake vortex dissipation. Aerosp. Sci. Technol. 2017, 63, 245–258. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Reitz, R. Turbulence Modeling of Internal Combustion Engines Using RNG κ-ϵ Models. Combust. Sci. Technol. 1995, 106, 267–295. [Google Scholar] [CrossRef]
- Yakhot, V.; Orszag, S.A.; Thangam, S.; Gatski, T.; Speziale, C. Development of Turbulence Models for Shear Flows by a Double Expansion technique. Phys. Fluids A. 1992, 4, 1510–1520. [Google Scholar] [CrossRef] [Green Version]
- Turns, S.R. An Introduction to Combustion; McGraw-Hill, Inc.: New York, NY, USA, 1996. [Google Scholar]
- Beale, J.; Reitz, R. Modeling spray atomization with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model. At. Spray 1999, 9, 623–650. [Google Scholar]
- Gonzalez, D.M.; Lian, Z.; Reitz, R. Modeling Diesel Engine Spray Vaporization and Combustion. SAE Trans. 1992, 101, 1064–1076. [Google Scholar]
- Naber, J.; Reitz, R. Modeling Engine Spray/Wall Impingement. SAE Trans. 1988, 97, 118–140. [Google Scholar]
- Amsden, A.; Orourke, P.; Butler, T. KIVA-2: A Computer Program for Chemically Reactive Flows with Sprays; NASA STI/Recon Technical Report N; Report of Los Alamos National Laboratory: Los Alamos, NM, USA, 1989; Volume 89, p. 27975.
- Fan, L.; Cheng, F.; Zhang, T.; Liu, G.; Yuan, J.; Mao, P. Visible-light photoredox-promoted desilylative allylation of a-silylamines: An efficient route to synthesis of homoallylic amines. Tetrahedron Lett. 2021, 81, 153357. [Google Scholar] [CrossRef]
- Hiroyasu, H.; Kadota, T. Models for Combustion and Formation of Nitric Oxide and Soot in Direct Injection Diesel Engines. SAE Trans. 1976, 85, 513–526. [Google Scholar] [CrossRef]
- Yousefi, A.; Guo, H.; Birouk, M. Effect of swirl ratio on NG/diesel dual-fuel combustion at low to high engine load conditions. Appl. Energy 2018, 229, 375–388. [Google Scholar] [CrossRef]
- Liu, H.; Li, J.; Wang, J.; Wu, C.; Liu, B.; Dong, J.; Liu, T.; Ye, Y.; Wang, H.; Yao, M. Effects of injection strategies on low-speed marine engines using the dual fuel of high-pressure direct-injection natural gas and diesel. Energy Sci. Eng. 2019, 7, 375–388. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Li, C.; Liu, H.; Zhang, Y.; Zhong, X.; Yao, M. Experimental study on diesel conventional and low temperature combustion by fueling four isomers of butanol. Fuel 2015, 141, 109–119. [Google Scholar] [CrossRef]
- Pan, M.; Huang, R.; Liao, J.; Jia, C.; Zhou, X.; Huang, H.; Huang, X. Experimental study of the spray, combustion, and emission performance of a diesel engine with high n-pentanol blending ratios. Energy Convers. Manag. 2019, 194, 1–10. [Google Scholar] [CrossRef]
- Jin, C.; Zhang, X.; Geng, Z.; Pang, X.; Wang, X.; Ji, J.; Wang, G.; Liu, H. Effects of various co-solvents on the solubility between blends of soybean oil with either methanol or ethanol. Fuel 2019, 244, 461–471. [Google Scholar] [CrossRef]
- Nayak, S.; Mishra, P.; Noor, M.M. Simultaneous reduction of nitric oxide and smoke opacity in TDI dual fuel engine fuelled with calophyllum-diesel blends and waste wood chip gas for modified inlet valve and injector nozzle geometry. Energy 2019, 189, 116238. [Google Scholar] [CrossRef]
- Huang, H.; Zhu, Z.; Zhu, J.; Lv, D.; Pan, Y.; Wei, H.; Teng, W. Experimental and numerical study of pre-injection effects on diesel-n-butanol blends combustion. Appl. Energy 2019, 249, 377–391. [Google Scholar] [CrossRef]
- Li, W.; Ji, J.; Huang, L.; Guo, Z. Global dynamics of a controlled discontinuous diffusive SIR epidemic system. Appl. Math. Lett. 2021, 121, 107420. [Google Scholar] [CrossRef]
- Zuo, H.; Tan, J.; Wei, K.; Huang, Z.; Zhong, D.; Xie, F. Effects of different poses and wind speeds on wind-induced vibration characteristics of a dish solar concentrator system. Renew. Energy 2021, 168, 1308–1326. [Google Scholar] [CrossRef]
- Zuo, H.; Liu, G.; E, J.; Zuo, W.; Wei, K.; Hu, W.; Tan, J.; Zhong, D. Catastrophic analysis on the stability of a large dish solar thermal power generation system with wind-induced vibration. Sol. Energy 2019, 183, 40–49. [Google Scholar] [CrossRef]
- Zuo, H.; Zhang, B.; Huang, Z.; Wei, K.; Tan, J. Effect analysis on SOC values of the power lithium manganate battery during discharging process and its intelligent estimation. Energy 2022, 238, 121854. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, C.; E, J.; Mao, X.; Yu, Z. Research on modeling and parameter sensitivity of flow and heat transfer process in typical rectangular microchannels: From a data-driven perspective. Int. J. Therm. Sci. 2022, 172, 107356. [Google Scholar] [CrossRef]
- E, J.; Cai, L.; Li, J.; Ding, J.; Chen, J.; Luo, B. Effects analysis on the catalytic combustion and heat transfer performance enhancement of a non-premixed hydrogen/air micro combustor. Fuel 2022, 309, 122125. [Google Scholar] [CrossRef]
- Zhang, B.; Zuo, H.; Huang, Z.; Tan, J.; Zuo, Q. Endpoint forecast of different diesel-biodiesel soot filtration process in diesel particulate filters considering ash deposition. Fuel 2020, 272, 117678. [Google Scholar] [CrossRef]
- E, J.; Zhao, M.; Zuo, Q.; Zhang, B.; Zhang, Z.; Peng, Q.; Han, D.; Zhao, X.; Deng, Y. Effects analysis on diesel soot continuous regeneration performance of a rotary microwave-assisted regeneration diesel particulate filter. Fuel 2020, 260, 116353. [Google Scholar] [CrossRef]
- Feng, C.; Deng, Y.; Chen, L.; Han, W.; E, J.; Wei, K.; Han, D.; Zhang, B. Hydrocarbon emission control of a hydrocarbon adsorber and converter under cold start of the gasoline engine. Energy 2022, 239, 122138. [Google Scholar] [CrossRef]
- Chen, L.; Deng, Y.; Feng, C.; Han, W.; E, J.; Wang, C.; Han, D.; Zhang, B. Effects of zeolite molecular sieve on the hydrocarbon adsorbent performance of gasoline engine of during cold start. Fuel 2022, 310, 122427. [Google Scholar] [CrossRef]
- E, J.; Luo, J.; Han, D.; Tan, Y.; Feng, C.; Deng, Y. Effects of different catalysts on light-off temperature of volatile organic components in the rotary diesel particulate filter during the regeneration. Fuel 2022, 310, 122451. [Google Scholar] [CrossRef]
- Zhang, Z.; Ye, J.; Lv, J.; Xu, W.; Tan, D.; Jiang, F.; Huang, H. Investigation on the effects of non-uniform porosity catalyst on SCR characteristic based on the field synergy analysis. J. Environ. Chem. Eng. 2022, 10(2), 107056. [Google Scholar] [CrossRef]
- E, J.; Liu, G.; Zhang, Z.; Han, D.; Chen, J.; Wei, K.; Gong, J.; Yin, Z. Effect analysis on cold starting performance enhancement of a diesel engine fueled with biodiesel fuel based on an improved thermodynamic model. Appl. Energy 2019, 243, 321–335. [Google Scholar] [CrossRef]
- Zhang, Z.; E, J.; Deng, Y.; Pham, M.; Zuo, W.; Peng, Q.; Yin, Z. Effects of fatty acid methyl esters proportion on combustion and emission characteristics of a biodiesel fueled marine diesel engine. Energy Convers. Manag. 2018, 159, 244–253. [Google Scholar] [CrossRef]
Type | Value | Type | Value |
---|---|---|---|
Bore × stroke (mm) | 190 × 210 | Compression ratio | 14 |
Number of cylinders | 4 | Head temperature (K) | 553 |
Engine speed (rpm) | 2000 | Piston temperature (K) | 423 |
Effective power (kW) | 220 | Wall temperature (K) | 433 |
Nozzle radius (mm) | 0.26 | Temperature at IVC (K) | 341 |
Fuel injection holes | 8 | Pressure at IVC (bar) | 1.97 |
Cylinder diameter (mm) | 190 | Turbulent kinetic energy (m2/s2) | 62.0271 |
Connecting rod (mm) | 410 | Turbulent dissipation (m2/s3) | 17183.4 |
Performance Index | Diesel | Methanol | n-Butanol |
---|---|---|---|
Latent heat of gasification (kJ/kg) | 260 | 1162.2 | 919.6 |
Density (kg/m3) at 20 °C | 835 | 792 | 810 |
Auto-ignition temperature (°C) | 250 | 463 | 343 |
Low calorific value (MJ/kg) | 42.5 | 20.1 | 30.63 |
Cetane number | 51 | 3.8 | 17 |
Oxygen content (%) by weight | 0 | 50 | 21.62 |
Stoichiometric air/fuel ratio | 14.3 | 6.5 | 11.21 |
Kinematic viscosity (40 °C) (mm2/s) | 2.72 | 0.58 | 2.22 |
Item | Content | Accuracy | Uncertainty (%) |
---|---|---|---|
Electric dynamometer | NIDY S22-2/0525-1BV-1 | Torque: ±0.5% F.S; Speed: ±1 r/min | ±0.2 |
Dynamometer control system | PUMA OPEN1.4.1 | ±0.5% F.S | ±0.2 |
Air flowmeter | TOCEIL 20N125 | ±1% | ±0.1 |
Diesel flowmeter | TOCEIL CMFG010 | 0.12% | ±0.2 |
Temperature sensor | Thermojunction type | ±0.5 °C | ±0.1 |
Pressure sensor | Piezoresistance type | ±0.5% F.S | ±0.5 |
Emissions analyzer | AVL AMAi60 | ±1.0% F.S | ±0.2 |
Combustion analyzer | DEWE-2010CA | / | ±0.2 |
Injection measuring instrument | EFS-IFR600 | ±0.5% | ±0.5 |
Measurements | Measuring Range | Accuracy | Uncertainty (%) |
---|---|---|---|
Engine speed | 1–2000 rpm | ±0.2% | ±0.24 |
Pressure sensor | 0–25 MPa | ±10 kPa | ±0.5 |
Exhaust gas temperature | 0–1000 °C | ±1 °C | ±0.25 |
HC emission | 0–20,000 ppm | ±10 ppm | ±0.11 |
NOx emission | 0–5000 ppm | ±10 ppm | ±0.53 |
CO emission | 0–10% vol | ±0.03% | ±0.32 |
Soot emission | 0–9 FSN | ±0.1 FSN | ±2.8 |
Air flow rate | 0–33.3 kg/min | ±1% | ±0.5 |
Fuel flow rate | 0.5–100 L/h | ±0.04 L/h | ±0.5 |
Case | Load (%) | SOPI (deg ATDC) | Mpre | SOMI (deg ATDC) | Mmain |
---|---|---|---|---|---|
1 | 50 | - | - | −9 | 1.0 |
2 | 50 | −15~−45 | 0.5 | −9 | 0.5 |
3 | 50 | −45 | 0.1~0.9 | −9 | 0.9~0.1 |
4 | 100 | - | - | −9 | 1.0 |
5 | 100 | −15~−45 | 0.5 | −9 | 0.5 |
6 | 100 | −45 | 0.1~0.9 | −9 | 0.9~0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Li, L. Effect of Pre-Injection on Combustion and Emission Characteristics of a Diesel Engine Fueled with Diesel/Methanol/n-Butanol Blended Fuel. Processes 2022, 10, 60. https://doi.org/10.3390/pr10010060
Wang Z, Li L. Effect of Pre-Injection on Combustion and Emission Characteristics of a Diesel Engine Fueled with Diesel/Methanol/n-Butanol Blended Fuel. Processes. 2022; 10(1):60. https://doi.org/10.3390/pr10010060
Chicago/Turabian StyleWang, Zhiqiang, and Lijun Li. 2022. "Effect of Pre-Injection on Combustion and Emission Characteristics of a Diesel Engine Fueled with Diesel/Methanol/n-Butanol Blended Fuel" Processes 10, no. 1: 60. https://doi.org/10.3390/pr10010060
APA StyleWang, Z., & Li, L. (2022). Effect of Pre-Injection on Combustion and Emission Characteristics of a Diesel Engine Fueled with Diesel/Methanol/n-Butanol Blended Fuel. Processes, 10(1), 60. https://doi.org/10.3390/pr10010060