Valorization of an Underutilized Waste from Olive Oil Production by Recovery of Hydroxytyrosol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical
2.2. Olive Oil Dregs and Extract Preparation
2.3. HT Recovery from OOD
2.3.1. Activated Charcoal
2.3.2. Amberlite Resins
2.4. Total Phenolic Content
2.5. Identification and Quantification of HT by Reverse-Phase High-Performance Liquid Chromatography (RP-HPLC)
2.6. Antioxidant Activity
2.6.1. Radical Scavenging Activity
2.6.2. Superoxide Scavenging Assay
2.6.3. Ferric Reducing Antioxidant Power
2.7. Statistical Analysis
3. Results and Discussion
3.1. Preparation of the OOD Extract and HT Recovery
3.2. Antioxidant Power of HT-Enriched Pool
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [PubMed]
- Colizzi, C. The protective effects of polyphenols on Alzheimer’s disease: A systematic review. Alzheimer’s Dement. 2019, 5, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.C.; Sheen, J.M.; Hu, W.L.; Hung, Y.C. Polyphenols and Oxidative Stress in Atherosclerosis-Related Ischemic Heart Disease and Stroke. Oxid. Med. Cell Longev. 2017, 2017, 8526438. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, J.; Li, Y.; Xu, D.P.; Li, S.; Chen, Y.M.; Li, H.B. Natural polyphenols for prevention and treatment of cancer. Nutrients 2016, 8, 515. [Google Scholar] [CrossRef] [PubMed]
- Squillaci, G.; Vitiello, F.; Mosca, L.; La Cara, F.; Cacciapuoti, G.; Porcelli, M.; Morana, A. Polyphenol Extract from “Greco” Grape Canes: Characterization, Antioxidant Capacity, and Antitumor Effects on Cal-33 and JHU-SCC-011 Head and Neck Squamous Cell Carcinoma. Molecules 2022, 27, 2576. [Google Scholar] [CrossRef] [PubMed]
- Martínez, L.; Ros, G.; Nieto, G. Hydroxytyrosol: Health Benefits and Use as Functional Ingredient in Meat. Medicines 2018, 5, 13. [Google Scholar] [CrossRef] [PubMed]
- Jemai, H.; El Feki, A.; Sayadi, S. Antidiabetic and Antioxidant Effects of Hydroxytyrosol and Oleuropein from Olive Leaves in Alloxan-Diabetic Rats. J. Agric. Food Chem. 2009, 57, 8798–8804. [Google Scholar] [CrossRef]
- Fabiani, R.; Sepporta, M.V.; Rosignoli, P.; De Bartolomeo, A.; Crescimanno, M.; Morozzi, G. Anti-proliferative and pro-apoptotic activities of hydroxytyrosol on different tumour cells: The role of extracellular production of hydrogen peroxide. Eur. J. Nutr. 2012, 51, 455–464. [Google Scholar] [CrossRef]
- Bigagli, E.; Cinci, L.; Paccosi, S.; Parenti, A.; D’Ambrosio, M.; Luceri, C. Nutritionally relevant concentrations of resveratrol and hydroxytyrosol mitigate oxidative burst of human granulocytes and monocytes and the production of pro-inflammatory mediators in LPS-stimulated RAW246.7 macrophages. Int. Immunopharmacol. 2017, 43, 147–155. [Google Scholar] [CrossRef]
- Orsini, F.; Ami, D.; Lascialfari, A.; Natalello, A. Inhibition of lysozyme fibrillogenesis by hydroxytyrosol and dopamine: An Atomic Force Microscopy study. Int. J. Biol. Macromol. 2018, 111, 1100–1105. [Google Scholar] [CrossRef]
- Peréz-Barròn, G.; Montes, S.; Aguirre-Vidal, Y.; Santiago, M.; Gallardo, E.; Espartero, J.L.; Rìos, C.; Monroy-Noyola, A. Antioxidant Effect of Hydroxytyrosol, Hydroxytyrosol acetate and Nitrohydroxytyrosol in a rat MPP+ Model of Parkinson’s Disease. Neurochem. Res. 2021, 46, 2923–2935. [Google Scholar] [CrossRef] [PubMed]
- Bisignano, G.; Tomaino, A.; Lo Cascio, R.; Crisafi, G.; Uccella, N.; Saija, A. On the in-vitro antimicrobial activity of oleuropein and hydroxytyrosol. J. Pharm. Pharmacol. 1999, 51, 971–974. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Ogawa, H.; Hara, A.; Yoshida, Y.; Yonezawa, Y.; Karibe, K.; Nghia, V.B.; Yoshimura, H.; Yamamoto, Y.; Yamada, M.; et al. Mechanism of the antiviral effect of hydroxytyrosol on influenza virus appears to involve morphological change of the virus. Antiviral Res. 2009, 83, 35–44. [Google Scholar] [CrossRef]
- Lucarini, M.; Pedulli, G.F.; Guerra, M. A critical evaluation of the factors determining the effect of intramolecular hydrogen bonding on the O–H bond dissociation enthalpy of catechol and of flavonoid antioxidants. Chem. Eur. J. 2004, 10, 933–939. [Google Scholar] [CrossRef] [PubMed]
- Moreno-González, R.; Juan, M.E.; Planas, J.M. Table olive polyphenols: A simultaneous determination by liquid chromatography–mass spectrometry. J. Chromatogr. A 2020, 1609, 460434. [Google Scholar] [CrossRef] [PubMed]
- Servili, M.; Esposto, S.; Fabiani, R.; Urbani, S.; Taticchi, A.; Mariucci, F.; Selvaggini, R.; Montedoro, G.F. Phenolic compounds in olive oil: Antioxidant, health and organoleptic activities according to their chemical structure. Inflammopharmacology 2009, 17, 76–84. [Google Scholar] [CrossRef]
- Del Monaco, G.; Officioso, A.; D’Angelo, S.; La Cara, F.; Ionata, E.; Marcolongo, L.; Squillaci, G.; Maurelli, L.; Morana, A. Characterization of extra virgin olive oils produced with typical Italian varieties by their phenolic profile. Food Chem. 2015, 184, 220–228. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, J.; Xu, Q.; Rao, C.; Qiao, C. Efficient Synthesis of Hydroxytyrosol from 3,4-Dihydroxybenzaldehyde. Synth. Commun. 2012, 42, 794–798. [Google Scholar] [CrossRef]
- Abdallah, F.B.; Hmani, E.; Bouaziz, M.; Jaziri, M.; Abdelhedi, R. Recovery of hydroxytyrosol a high added value compound through tyrosol conversion by electro-Fenton process. Sep. Purif. Technol. 2017, 188, 260–265. [Google Scholar] [CrossRef]
- Espin, J.C.; Soler-Rivas, C.; Cantos, E.; Tomas-Barberan, F.A.; Wichers, H.J. Synthesis of the antioxidant hydroxytyrosol using tyrosinase as biocatalyst. J. Agric. Food Chem. 2001, 49, 1187–1193. [Google Scholar] [CrossRef]
- Ghomari, O.; Merzouki, M.; Benlemlih, M. Optimization of bioconversion of oleuropein, of olive leaf extract, to hydroxytyrosol by Nakazawaea molendini-olei using HPLC-UV and a method of experimental design. J. Microbiol. Methods 2020, 176, 106010. [Google Scholar] [CrossRef] [PubMed]
- Azzam, M.O.J.; Hazaimeh, S.A. Olive mill wastewater treatment and valorization by extraction/concentration of hydroxytyrosol and other natural phenols. Process Saf. Environ. Prot. 2021, 148, 495–523. [Google Scholar] [CrossRef]
- Tundis, R.; Conidi, C.; Loizzo, M.R.; Sicari, V.; Cassano, A. Olive Mill Wastewater Polyphenol-Enriched Fractions by Integrated Membrane Process: A Promising Source of Antioxidant, Hypolipidemic and Hypoglycaemic Compounds. Antioxidants 2020, 9, 602. [Google Scholar] [CrossRef] [PubMed]
- Squillaci, G.; Marchetti, A.; Petillo, O.; Bosetti, M.; La Cara, F.; Peluso, G.; Morana, A. Olive Oil Dregs as a Novel Source of Natural Antioxidants: Extraction Optimization towards a Sustainable Process. Processes 2021, 9, 1064. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Gonzalez, O.; Gorka, I.; Estitxu, R.; Nerea, F.; Miren Itxaso, M.; Rosa, M.A.; Rosa, M.J. ICH Harmonized Tripartite Guideline. Validation of Analytical Procedures: Text and Methodology Q2(R1). J. Chromatogr. B 2005, 878, 2685–2692. [Google Scholar] [CrossRef]
- Li, X.A. Improved Pyrogallol Autoxidation Method: A Reliable and Cheap Superoxide-Scavenging Assay Suitable for All Antioxidants. J. Agric. Food Chem. 2012, 60, 6418–6424. [Google Scholar] [CrossRef]
- Fernández-Agulló, A.; Freire, M.S.; Antorrena, G.; Pereira, J.A.; Gonzàlez-Alvarez, J. Effect of the extraction technique and operational conditions on the recovery of bioactive compounds from chestnut (Castanea sativa) bur and shell. Separ. Sci. Technol. 2014, 49, 267–277. [Google Scholar] [CrossRef]
- Xie, B.; Qin, J.; Wang, S.; Li, X.; Sun, H.; Chen, W. Adsorption of Phenol on Commercial Activated Carbons: Modelling and Interpretation. Int. J. Environ. Res. Public Health 2020, 17, 789. [Google Scholar] [CrossRef]
- Morana, A.; Squillaci, G.; Paixão, S.M.; Alves, L.; La Cara, F.; Moura, P. Development of an Energy Biorefinery Model for Chestnut (Castanea sativa Mill.) Shells. Energies 2017, 10, 1504. [Google Scholar] [CrossRef]
- Kammerer, D.; Gajdos Kljusuric, J.; Carle, R.; Schieber, A. Recovery of anthocyanins from grape pomace extracts (Vitis vinifera L. cv. Cabernet Mitos) using a polymeric adsorber resin. Eur. Food Res. Technol. 2005, 220, 431–437. [Google Scholar] [CrossRef]
- Romeo, R.; De Bruno, A.; Imeneo, V.; Piscopo, A.; Poiana, M. Impact of Stability of Enriched Oil with Phenolic Extract from Olive Mill Wastewaters. Foods 2020, 9, 856. [Google Scholar] [CrossRef] [PubMed]
- Bertin, L.; Ferria, F.; Scoma, A.; Marchetti, L.; Fava, F. Recovery of high added value natural polyphenols from actual olive mill wastewater through solid phase extraction. Chem. Eng. J. 2011, 171, 1287–1293. [Google Scholar] [CrossRef]
- Wang, E.; Yin, Y.; Xu, C.; Liu, J. Isolation of high-purity anthocyanin mixtures and monomers from blueberries using combined chromatographic techniques. J. Chromatogr. A 2014, 1327, 39–48. [Google Scholar] [CrossRef]
- Sannino, F.; De Martino, A.; Capasso, R.; El Hadrami, I. Valorisation of organic matter in olive mill wastewaters: Recovery of highly pure hydroxytyrosol. J. Geochem. Explor. 2013, 129, 34–39. [Google Scholar] [CrossRef]
- Abu-Lafi, S.; Al-Natsheh, M.S.; Yaghmoor, R.; Al-Rimawi, F. Enrichment of Phenolic Compounds from Olive Mill Wastewater and In Vitro Evaluation of Their Antimicrobial Activities. Evid. Based Complement. Altern. Med. 2017, 2017, 3706915. [Google Scholar] [CrossRef]
- Visioli, F.; Poli, A.; Galli, C. Antioxidant and Other Biological Activities of Phenols from Olives an Olive Oil. Med. Res. Rev. 2002, 22, 65–75. [Google Scholar] [CrossRef]
- Visioli, F.; Bellomo, G.; Galli, C. Free Radical-Scavenging Properties of Olive Oil Polyphenols. Biochem. Biophys. Res. Commun. 1998, 247, 60–64. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Thorat, I. Antioxidants, Their Properties, Uses in Food Products and Their Legal Implications. Int. J. Food Stud. 2013, 2, 81–104. [Google Scholar] [CrossRef]
- Liang, T.; Yue, W.; Li, Q. Comparison of the Phenolic Content and Antioxidant Activities of Apocynum venetum L. (Luo-Bu-Ma) and Two of Its Alternative Species. Int. J. Mol. Sci. 2010, 11, 4452–4464. [Google Scholar] [CrossRef] [PubMed]
- Huyut, Z.; Beydemir, F.; Gülçin, E. Antioxidant and Antiradical Properties of Selected Flavonoids and Phenolic Compounds. Biochem. Res. Int. 2017, 2017, 7616791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Chromatographic Conditions (Elution Steps) | TPC (mg GAE) | HT (µg) | HT Yield (%) | HT/TPC (%) | |||||
---|---|---|---|---|---|---|---|---|---|
XAD7HP | XAD16N | XAD7HP | XAD16N | XAD7HP | XAD16N | XAD7HP | XAD16N | ||
Raw extract (1 mL) | None | 3.12 ± 0.14 | 266.49 ± 2.89 | 100 | 8.54 | ||||
Method 1 | 50% ethanol in acidified water | 1.38 ± 0.03 a | 1.73 ± 0.00 e | 154.30 ± 14.80 a | 219.66 ± 20.20 e | 57.90 | 82.43 | 11.15 | 12.66 |
Method 2 | |||||||||
Step 1 | 25% ethanol in acidified water | 0.53 ± 0.01 b | 0.56 ± 0.01 f | 117.17 ± 1.63 b | 141.25 ± 3.19 f | 43.97 | 53.00 | 22.11 | 25.36 |
Step 2 | 50% ethanol in acidified water | 0.63 ± 0.01 c | 0.39 ± 0.01 g | 87.11 ± 2.36 c | 54.06 ± 3.13 g | 32.69 | 20.29 | 13.75 | 13.69 |
Method 3 | 25% ethanol in acidified water | 0.76 ± 0.01 d | 1.47 ± 0.09 h | 246.51 ± 3.34 d | 202.74 ± 8.30 e | 92.50 | 76.08 | 32.44 | 13.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Squillaci, G.; Serino, I.; Errichiello, S.; La Cara, F.; Morana, A. Valorization of an Underutilized Waste from Olive Oil Production by Recovery of Hydroxytyrosol. Processes 2022, 10, 1969. https://doi.org/10.3390/pr10101969
Squillaci G, Serino I, Errichiello S, La Cara F, Morana A. Valorization of an Underutilized Waste from Olive Oil Production by Recovery of Hydroxytyrosol. Processes. 2022; 10(10):1969. https://doi.org/10.3390/pr10101969
Chicago/Turabian StyleSquillaci, Giuseppe, Ismene Serino, Sara Errichiello, Francesco La Cara, and Alessandra Morana. 2022. "Valorization of an Underutilized Waste from Olive Oil Production by Recovery of Hydroxytyrosol" Processes 10, no. 10: 1969. https://doi.org/10.3390/pr10101969
APA StyleSquillaci, G., Serino, I., Errichiello, S., La Cara, F., & Morana, A. (2022). Valorization of an Underutilized Waste from Olive Oil Production by Recovery of Hydroxytyrosol. Processes, 10(10), 1969. https://doi.org/10.3390/pr10101969