Simultaneous Optimization of Phenolic Compounds and Antioxidant Abilities of Moroccan Pimpinella anisum Extracts Using Mixture Design Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Samples Preparation
2.3. Ultrasonic-Assisted Extraction
2.4. Total Phenolic Content Quantification
2.5. Total Flavonoid Content Quantification
2.6. Antioxidant Activity
2.7. Mixture Design
2.8. Statistical Analysis
3. Results and Discussion
3.1. Solvents Screening
3.2. Solvent Mixture
3.2.1. Statistical Validation of Postulated Models
3.2.2. Compounds’ Effects and Fitted Models
3.2.3. Solvent System Optimization
Total Polyphenolic Content
Total Flavonoid Content
Antioxidant Activity
Simultaneous Optimization of all Responses
Experimental Validation of the Optimal Conditions
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bandaranayake, W.M. Quality control, screening, toxicity and regulation of herbal drugs. In Modern Phytomedicine: Turning Medicinal Plants into Drugs; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006; pp. 25–57. [Google Scholar]
- Mbikay, M. Therapeutic potential of Moringa oleifera leaves in chronic hyperglycemia and dyslipidemia: A Review. Front. Pharmacol. 2012, 3, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirza, B.; Croley, C.R.; Ahmad, M.; Pumarol, J.; Das, N.; Sethi, G.; Bishayee, A. Mango (Mangifera indica L.): A magnificent plant with cancer preventive and anticancer therapeutic potential. Crit. Rev. Food Sci. Nutr. 2021, 61, 2125–2151. [Google Scholar] [CrossRef] [PubMed]
- Perumal, S.R.; Gopalakrishnakone, P. Therapeutic potential of plants as anti-microbials for drug discovery. Evid. Based Complement. Altern. Med. 2010, 7, 283–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Essien, S.O.; Young, B.; Baroutian, S. Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials. Trends Food Sci. Technol. 2020, 97, 156–169. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A Review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Pinelo, M.; Rubilar, M.; Jerez, M.; Sineiro, J.; Núñez, M.J. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. J. Agric. Food Chem. 2005, 53, 2111–2117. [Google Scholar] [CrossRef]
- Mokrani, A.; Madani, K. Effect of Solvent, Time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) Fruit. Sep. Purif. Technol. 2016, 162, 68–76. [Google Scholar] [CrossRef]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.-H. Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef] [Green Version]
- Candioti, L.V.; De Zan, M.M.; Cámara, M.S.; Goicoechea, H.C. Experimental design and multiple response optimization. using the desirability function in analytical methods development. Talanta 2014, 124, 123–138. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
- Khuri, A.I.; Mukhopadhyay, S. Response surface methodology. WIREs Comput. Stat. 2010, 2, 128–149. [Google Scholar] [CrossRef]
- Aboulghazi, A.; Bakour, M.; Fadil, M.; Lyoussi, B. Simultaneous optimization of extraction yield, phenolic compounds and antioxidant activity of Moroccan propolis extracts: Improvement of Ultrasound-Assisted technique using response surface methodology. Processes 2022, 10, 297. [Google Scholar] [CrossRef]
- Žitek, T.; Borjan, D.; Golle, A.; Knez, Ž.; Knez, M. Optimization of extraction of phenolic compounds with antimicrobial properties from Origanum vulgare. Processes 2021, 9, 1032. [Google Scholar] [CrossRef]
- Abd-El-Aziz, N.M.; Hifnawy, M.S.; El-Ashmawy, A.A.; Lotfy, R.A.; Younis, I.Y. Application of Box-Behnken design for optimization of phenolics extraction from Leontodon hispidulus in relation to its antioxidant, anti-inflammatory and cytotoxic activities. Sci. Rep. 2022, 12, 1–16. [Google Scholar] [CrossRef]
- Moreira, G.C.; Dias, F.D.S. Mixture design and Doehlert matrix for optimization of the ultrasonic assisted extraction of caffeic acid, rutin, catechin and trans-cinnamic acid in Physalis angulata L. and determination by HPLC DAD. Microchem. J. 2018, 141, 247–252. [Google Scholar] [CrossRef]
- Yolmeh, M.; Jafari, S.M. Applications of Response Surface Methodology in the food industry processes. Food Bioprocess. Technol. 2017, 10, 413–433. [Google Scholar] [CrossRef]
- Mohamad Said, K.A.; Mohamed Amin, M.A. Overview on the Response Surface Methodology (RSM) in extraction processes. J. Appl. Sci. Process Eng. 2016, 2, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Cavalcanti, V.P.; Aazza, S.; Bertolucci, S.K.V.; Rocha, J.P.M.; Coelho, A.D.; Oliveira, A.J.M.; Mendes, L.C.; Pereira, M.M.A.; Morais, L.C.; Forim, M.R.; et al. Solvent mixture optimization in the extraction of bioactive compounds and antioxidant activities from garlic (Allium sativum L.). Molecules 2021, 26, 6026. [Google Scholar] [CrossRef]
- Shojaii, A.; Abdollahi Fard, M. Review of pharmacological properties and chemical constituents of Pimpinella anisum. Int. Sch. Res. Not. 2012, 2012, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lavaee, F.; Moghaddas, A.; Modarresi, F.; Nowrouzi, M. The effect of Pimpinella anisum and Origanum vulgare extracts against Streptococcus sanguinis, Streptococcus mutans, and Streptococcus salivarius. J. Dent. 2022, 23, 113–120. [Google Scholar]
- Sun, W.; Shahrajabian, M.H.; Cheng, Q. Anise (Pimpinella anisum L.), a dominant spice and traditional medicinal herb for both food and medicinal purposes. Cogent Biol. 2019, 5, 1673688. [Google Scholar] [CrossRef]
- Hashem, A.S.; Awadalla, S.S.; Zayed, G.M.; Maggi, F.; Benelli, G. Pimpinella anisum essential oil nanoemulsions against Tribolium castaneum—Insecticidal activity and mode of action. Environ. Sci. Pollut. Res. 2018, 25, 18802–18812. [Google Scholar] [CrossRef] [PubMed]
- Mosavat, S.H.; Jaberi, A.R.; Sobhani, Z.; Mosaffa-Jahromi, M.; Iraji, A.; Moayedfard, A. Efficacy of anise (Pimpinella anisum L.) oil for migraine headache: A pilot randomized placebo-controlled clinical trial. J. Ethnopharmacol. 2019, 236, 155–160. [Google Scholar] [CrossRef]
- Es-safi, I.; Mechchate, H.; Amaghnouje, A.; Elbouzidi, A.; Bouhrim, M.; Bencheikh, N.; Hano, C.; Bousta, D. Assessment of antidepressant-like, anxiolytic effects and impact on memory of Pimpinella anisum L. total extract on swiss albino mice. Plants 2021, 10, 1573. [Google Scholar] [CrossRef] [PubMed]
- Bettaieb, R.I.; Bourgou, S.; Aidi Wannes, W.; Hamrouni Selami, I.; Saidani Tounsi, M.; Marzouk, B.; Fauconnier, M.-L.; Ksouri, R. Comparative assessment of phytochemical profiles and antioxidant properties of tunisian and egyptian anise (Pimpinella anisum L.) seeds. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2018, 152, 971–978. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Espinosa, M.; V González de Peredo, A.; Ferreiro-González, M.; Carrera, C.; Palma, M.; F. Barbero, G.; Espada-Bellido, E. Assessment of ultrasound assisted extraction as an alternative method for the extraction of anthocyanins and total phenolic compounds from maqui berries (Aristotelia chilensis (Mol.) Stuntz). Agronomy 2019, 9, 148. [Google Scholar] [CrossRef] [Green Version]
- Bodoira, R.; Rossi, Y.; Montenegro, M.; Maestri, D.; Velez, A. Extraction of antioxidant polyphenolic compounds from peanut skin using water-ethanol at high pressure and temperature conditions. J. Supercrit. Fluids 2017, 128, 57–65. [Google Scholar] [CrossRef]
- Bodoira, R.; Velez, A.; Rovetto, L.; Ribotta, P.; Maestri, D.; Martínez, M. Subcritical fluid extraction of antioxidant phenolic compounds from pistachio (Pistacia vera L.) nuts: Experiments, modeling, and optimization. J. Food Sci. 2019, 84, 963–970. [Google Scholar] [CrossRef]
- Aazza, S. Application of multivariate optimization for phenolic compounds and antioxidants extraction from Moroccan Cannabis sativa waste. J. Chem. 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Abozed, S.S.; El-Kalyoubi, M.; Abdelrashid, A.; Salama, M.F. Total phenolic contents and antioxidant activities of various solvent extracts from whole wheat and bran. Ann. Agric. Sci. 2014, 59, 63–67. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Ramos, T.; Benedito-Fort, J.; Watson, N.J.; Ruiz-López, I.I.; Che-Galicia, G.; Corona-Jiménez, E. Effect of solvent composition and its interaction with ultrasonic energy on the ultrasound-assisted extraction of phenolic compounds from Mango peels (Mangifera indica L.). Food Bioprod. Process. 2020, 122, 41–54. [Google Scholar] [CrossRef]
- Ousaaid, D.; Mansouri, I.; Laaroussi, H.; El Ghouizi, A.; Lyoussi, B.; ElArabi, I. Phytochemical content and antioxidant activity of flesh fruits Rosa canina extracts collected from ait ayach midelt. Indian J. Agric. Res. 2020, 54, 373–377. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Laaroussi, H.; Bouddine, T.; Bakour, M.; Ousaaid, D.; Lyoussi, B. Physicochemical properties, mineral content, antioxidant activities, and microbiological quality of Bupleurum spinosum gouan honey from the middle atlas in Morocco. J. Food Qual. 2020, 2020, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Miguel, M.; Bouchamaa, N.; Aazza, S.; Gaamoussi, F.; Lyoussi, B. Antioxidant, anti-inflammatory and anti-acetylcholinesterase activities of eleven extracts of Moroccan plants. Fresenius Environ. Bull. 2014, 23, 1–14. [Google Scholar]
- Fadil, M.; Fikri-Benbrahim, K.; Rachiq, S.; Ihssane, B.; Lebrazi, S.; Chraibi, M.; Haloui, T.; Farah, A. Combined treatment of Thymus vulgaris L., Rosmarinus officinalis L. and Myrtus communis L. essential oils against Salmonella typhimurium: Optimization of antibacterial activity by mixture design methodology. Eur. J. Pharm. Biopharm. 2018, 126, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Izadiyan, P.; Hemmateenejad, B. Multi-response optimization of factors affecting ultrasonic assisted extraction from iranian basil using central composite design. Food Chem. 2016, 190, 864–870. [Google Scholar] [CrossRef]
- Taneva, I.; Petkova, N.; Dimov, I.; Ivanov, I.; Denev, P. Characterization of rose hip (Rosa canina L.) fruits extracts and evaluation of their in vitro antioxidant activity. J. Pharmacogn. Phytochem. 2016, 5, 35–38. [Google Scholar]
- Mohsen, S.M.; Ammar, A.S. Total phenolic contents and antioxidant activity of corn tassel extracts. Food Chem. 2009, 112, 595–598. [Google Scholar] [CrossRef]
- Mohamed, S.A.; Khan, J.A. Antioxidant capacity of chewing stick miswak Salvadora persica. BMC Complement. Altern. Med. 2013, 13, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Butsat, S.; Siriamornpun, S. Effect of solvent types and extraction times on phenolic and flavonoid contents and antioxidant activity in leaf extracts of Amomum chinense C. Int. Food Res. J. 2016, 23(1), 180–187. [Google Scholar]
- Bekara, A.; Hamadouche, N.A.; Kahloula, K.; Sadi, N.; Aoues, A.-K. Etude phytochimique et activité antioxydante de l’extrait aqueux de Pimpinella anisum L. Alger. J. Nat. Prod. 2016, 4, 299–307. [Google Scholar]
- Wang, W.; Li, J.; Zhang, H.; Wang, X.; Fan, J.; Zhang, X. Phenolic compounds and bioactivity evaluation of aqueous and methanol extracts of Allium mongolicum regel. Food Sci. Nutr. 2019, 7, 779–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos Felix, A.C.; Novaes, C.G.; Pires Rocha, M.; Barreto, G.E.; do Nascimento, B.B.; Giraldez Alvarez, L.D. Mixture design and Doehlert matrix for the optimization of the extraction of phenolic compounds from Spondias mombin L apple bagasse agroindustrial residues. Front. Chem. 2018, 5, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcheafave, G.G.; Tormena, C.D.; Pauli, E.D.; Rakocevic, M.; Bruns, R.E.; Scarminio, I.S. Experimental mixture design solvent effects on pigment extraction and antioxidant activity from Coffea arabica L. leaves. Microchem. J. 2019, 146, 713–721. [Google Scholar] [CrossRef]
- Herrera-Pool, E.; Ramos-Díaz, A.L.; Lizardi-Jiménez, M.A.; Pech-Cohuo, S.; Ayora-Talavera, T.; Cuevas-Bernardino, J.C.; García-Cruz, U.; Pacheco, N. Effect of solvent polarity on the ultrasound assisted extraction and antioxidant activity of phenolic compounds from habanero pepper leaves (Capsicum chinense) and its identification by UPLC-PDA-ESI-MS/MS. Ultrason. Sonochemistry 2021, 76, 105658. [Google Scholar] [CrossRef]
- Tumbas Šaponjac, V.; Kovačević, S.; Šeregelj, V.; Šovljanski, O.; Mandić, A.; Ćetković, G.; Vulić, J.; Podunavac-Kuzmanović, S.; Čanadanović-Brunet, J. Improvement of carrot accelerated solvent extraction efficacy using experimental design and chemometric techniques. Processes 2021, 9, 1652. [Google Scholar] [CrossRef]
- Fadil, M.; Lebrazi, S.; Aboulghazi, A.; Guaouguaou, F.-E.; Rais, C.; Slimani, C.; Es-safi, N.E. Multi-response optimization of extraction yield, total phenols-flavonoids contents, and antioxidant activity of extracts from Moroccan Lavandula Stoechas leaves: Predictive modeling using simplex-centroid design. Biocatal. Agric. Biotechnol. 2022, 43, 102430. [Google Scholar] [CrossRef]
- Balanescu, F.; Busuioc, A.C.; Botezatu, A.V.D.; Gosav, S.; Avramescu, S.M.; Furdui, B.; Dinica, R.M. Comparative study of natural antioxidants from Glycine max, Anethum graveolens and Pimpinella anisum seed and sprout extracts obtained by ultrasound-assisted extraction. Separations 2022, 9, 152. [Google Scholar] [CrossRef]
- Fratoddi, I.; Rapa, M.; Testa, G.; Venditti, I.; Scaramuzzo, F.A.; Vinci, G. Response Surface Methodology for the optimization of phenolic compounds extraction from extra virgin olive oil with functionalized gold nanoparticles. Microchem. J. 2018, 138, 430–437. [Google Scholar] [CrossRef]
- Namjooyan, F.; Azemi, M.E.; Rahmanian, V.R. Investigation of antioxidant activity and total phenolic content of various fractions of aerial parts of Pimpinella barbata (dc.) Boiss. Jundishapur J. Nat. Pharm. Prod. 2010, 5, 1–5. [Google Scholar]
Components | Level − (%) | Level + (%) | Coded Variables | Level − | Level + |
---|---|---|---|---|---|
Water | 0 | 100 | X1 | 0 | 1 |
Ethanol | 0 | 100 | X2 | 0 | 1 |
Methanol | 0 | 100 | X3 | 0 | 1 |
Sum of proportions | 100 (%) | 1 |
Experiment Number a | Solvent’s Proportions | TPC (mg GAE/g) | TFC mg QE/g | DPPHIC50 (mg/mL) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Water | Ethanol | Methanol | Actual b | Predicted | Residual | Actual b | Predicted | Residual | Actual b | Predicted | Residual | |
1 | 1 | 0 | 0 | 14.14 ± 0.23 | 13.9 | 0.24 | 4.12 ± 0.72 | 4.12 | 0 | 0.69 ± 0.08 | 0.69 | 0 |
2 | 0 | 1 | 0 | 5.62 ± 0.56 | 5.66 | −0.04 | 2.05 ± 0.26 | 2.03 | 0.02 | 1.46 ± 0.06 | 1.47 | −0.01 |
3 | 0 | 0 | 1 | 11.29 ± 0.11 | 11 | 0.29 | 3.54 ± 0.41 | 3.51 | 0.03 | 0.77 ± 0.13 | 0.77 | 0 |
4 | 0.5 | 0.5 | 0 | 11.84 ± 0.62 | 11.64 | 0.2 | 3.84 ± 0.93 | 3.82 | 0.02 | 0.72 ± 0.05 | 0.74 | −0.02 |
5 | 0.5 | 0 | 0.5 | 16.52 ± 0.17 | 15.99 | 0.53 | 4.92 ± 0.12 | 4.89 | 0.03 | 0.68 ± 0.05 | 0.68 | 0 |
6 | 0 | 0.5 | 0.5 | 10.6 ± 0.35 | 10.35 | 0.25 | 2.95 ± 0. 38 | 2.9 | 0.05 | 0.97 ± 0.18 | 0.99 | −0.02 |
7 | 0.33 | 0.33 | 0.33 | 18.45 ± 0.28 | 17.99 | 0.46 | 7.15 ± 0.56 | 7.17 | −0.02 | 0.6 ± 0.06 | 0.61 | −0.01 |
8 | 0.33 | 0.33 | 0.33 | 18.15 ± 0.09 | 17.99 | 0.16 | 7.38 ± 0.67 | 7.17 | 0.21 | 0.59 ± 0.03 | 0.61 | −0.02 |
9 | 0.33 | 0.33 | 0.33 | 18.86 ± 0.85 | 17.99 | 0.87 | 7.13 ± 0.18 | 7.17 | −0.04 | 0.57 ± 0.21 | 0.61 | −0.04 |
10 | 0.66 | 0.17 | 0.17 | 15.72 ± 0.43 | 16.92 | −1.2 | 5.99 ± 0.87 | 6.04 | −0.05 | 0.6 ± 0.07 | 0.58 | 0.02 |
11 | 0.17 | 0.66 | 0.17 | 11.91 ± 0.57 | 12.29 | −0.38 | 4.56 ± 0.43 | 4.67 | −0.11 | 1 ± 0.19 | 0.94 | 0.06 |
12 | 0.17 | 0.1 | 0.6 | 14.16 ± 0.92 | 15.53 | −1.37 | 5.39 ± 0.25 | 5.53 | −0.14 | 0.71 ± 0.05 | 0.69 | 0.02 |
TPC | TFC | DPPHIC50 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | DF | SS | MS | F | p-Value | SS | MS | F | p-Value | SS | MS | F | p-Value |
R | 6 | 163.146 | 27.191 | 27.36 | 0.0011* | 33.15 | 5.525 | 326.28 | <0.0001 * | 0.711 | 0.119 | 81.23 | <0.0001 * |
r | 5 | 4.970 | 0.994 | 0.08 | 0.016 | 0.007 | 0.001 | ||||||
Lof | 3 | 4.71 | 1.57 | 12.37 | 0.0700 | 0.05 | 0.015 | 0.80 | 0.5987 | 0.0068 | 0.0023 | 9.76 | 0.09 |
Pe | 2 | 0.25 | 0.12 | 0.04 | 0.019 | 0.0005 | 0.0002 | ||||||
total | 11 | 168.11 | 33.23 | 0.72 | |||||||||
R2 | 0.97 | 0.99 | 0.98 | ||||||||||
R2adj | 0.93 | 0.99 | 0.97 | ||||||||||
R2pred | 0.89 | 0.97 | 0.81 |
Term | Coefficient | TPC | TFC | DPPHIC50 | |||
---|---|---|---|---|---|---|---|
Estimate | p-Value | Estimate | p-Value | Estimate | p-Value | ||
Water | α1 | 13.90 | <0.0001 * | 4.12 | <0.0001 * | 0.69 | <0.0001 * |
Ethanol | α2 | 5.66 | 0.0020 * | 2.03 | <0.0001 * | 1.47 | <0.0001 * |
Methanol | α3 | 11.00 | <0.0001 * | 3.51 | <0.0001 * | 0.77 | <0.0001 * |
Water*Ethanol | α12 | 7.44 | 0.19 | 2.98 | 0.0053 * | −1.39 | 0.0007 * |
Water*Methanol | α13 | 14.16 | 0.0330 * | 4.30 | 0.0010 * | −0.19 | 0.35 |
Ethanol*Methanol | α23 | 8.07 | 0.16 | 0.52 | 0.45 | −0.55 | 0.0321 * |
Water*Ethanol*Methanol | α123 | 121.82 | 0.0057 * | 83.25 | <0.0001 * | −3.73 | 0.0141 * |
TPC mg GAE/g | TFC mg QE/g | DPPHIC50 (mg/mL) | |||||
---|---|---|---|---|---|---|---|
Compounds of Mixture | Proportions of Solvents (%) | Predicted a | Experimental b | Predicted a | Experimental b | Predicted a | Experimental b |
Water | 44 | 18.55 ± 1.29 | 19.01 ± 0.23 | 7.16 ± 0.17 | 7.02 ± 0.12 | 0.56 ± 0.05 | 0.56 ± 0.01 |
Ethanol | 22 | ||||||
Methanol | 34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soussi, M.; Fadil, M.; Yaagoubi, W.A.; Benjelloun, M.; El Ghadraoui, L. Simultaneous Optimization of Phenolic Compounds and Antioxidant Abilities of Moroccan Pimpinella anisum Extracts Using Mixture Design Methodology. Processes 2022, 10, 2580. https://doi.org/10.3390/pr10122580
Soussi M, Fadil M, Yaagoubi WA, Benjelloun M, El Ghadraoui L. Simultaneous Optimization of Phenolic Compounds and Antioxidant Abilities of Moroccan Pimpinella anisum Extracts Using Mixture Design Methodology. Processes. 2022; 10(12):2580. https://doi.org/10.3390/pr10122580
Chicago/Turabian StyleSoussi, Meriem, Mouhcine Fadil, Wissal Al Yaagoubi, Meryem Benjelloun, and Lahsen El Ghadraoui. 2022. "Simultaneous Optimization of Phenolic Compounds and Antioxidant Abilities of Moroccan Pimpinella anisum Extracts Using Mixture Design Methodology" Processes 10, no. 12: 2580. https://doi.org/10.3390/pr10122580
APA StyleSoussi, M., Fadil, M., Yaagoubi, W. A., Benjelloun, M., & El Ghadraoui, L. (2022). Simultaneous Optimization of Phenolic Compounds and Antioxidant Abilities of Moroccan Pimpinella anisum Extracts Using Mixture Design Methodology. Processes, 10(12), 2580. https://doi.org/10.3390/pr10122580