Thermal Swing Reduction-Oxidation of Me(Ba, Ca, or Mg)SrCoCu Perovskites for Oxygen Separation from Air
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; Available online: https://www.ipcc.ch/report/ar6/wg1/#FullReport (accessed on 1 June 2022).
- Bp Statistical Review of World Energy, 70th ed.; British Petroleum Co.: London, England, 2021; Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf (accessed on 30 June 2022).
- IEA Greenhouse Gas R&D Programme, Storing CO2 Underground. 2007. Available online: https://ieaghg.org/docs/general_publications/storingCO.pdf (accessed on 30 June 2022).
- Smart, S.; Lin, C.X.C.; Ding, L.; Thambimuthu, K.; da Costa, J.C.D. Ceramic membranes for gas processing in coal gasification. Energy Environ. Sci. 2010, 3, 268–278. [Google Scholar] [CrossRef]
- Paltsev, S.; Morris, J.; Kheshgi, H.; Herzog, H. Hard-to-Abate sectors: The role of industrial carbon capture and storage (CCS) in emission mitigation. Appl. Energy 2021, 300, 117322. [Google Scholar] [CrossRef]
- Castillo, R. Thermodynamic analysis of a hard coal oxyfuel power plant with high temperature three-end membrane for air separation. Appl. Energy 2011, 88, 1480–1493. [Google Scholar] [CrossRef]
- Wall, T.; Liu, Y.; Spero, C.; Elliott, L.; Khare, S.; Rathnam, R.; Zeenathal, F.; Moghtaderi, B.; Buhre, B.; Sheng, C.; et al. An overview on oxyfuel coal combustion—State of the art research and technology development. Chem. Eng. Res. Des. 2009, 87, 1003–1016. [Google Scholar] [CrossRef]
- Stanger, R.; Wall, T.; Spörl, R.; Paneru, M.; Grathwohl, S.; Weidmann, M.; Scheffknecht, G.; McDonald, D.; Myöhänen, K.; Ritvanen, J.; et al. Stanley Santos, Oxyfuel combustion for CO2 capture in power plants. Int. J. Greenh. Gas Control 2015, 40, 55–125. [Google Scholar] [CrossRef]
- Siriwardane, R.; Riley, J.; Benincosa, W.; Bayham, S.; Bobek, M.; Straub, D.; Weber, J. Development of CuFeMnAlO4+δ oxygen carrier with high attrition resistance and 50-kWth methane/air chemical looping combustion tests. Appl. Energy 2021, 286, 116507. [Google Scholar] [CrossRef]
- Jia, T.; Popczun, E.J.; Lekse, J.W.; Duan, Y. Effective Ca2+-doping in Sr1-xCaxFeO3−δ oxygen carriers for chemical looping air separation: A theoretical and experimental investigation. Appl. Energy 2021, 281, 116040. [Google Scholar] [CrossRef]
- Abuelgasim, S.; Wang, W.; Li, T.; Abdalazeez, A.; Xia, Z. The effect of alkali and alkaline earth metals oxides addition on oxygen uncoupling rate of copper-based oxygen carrier: A kinetic and experimental investigations. Sep. Purif. Technol. 2021, 275, 119176. [Google Scholar] [CrossRef]
- Görke, R.H.; Marek, E.J.; Donat, F.; Scott, S.A. Reduction and oxidation behavior of strontium perovskites for chemical looping air separation. Int. J. Greenh. Gas Control 2020, 94, 102891. [Google Scholar] [CrossRef]
- Ikeda, H.; Tsuchida, A.; Morita, J.; Miura, N. SrCoxFe1–xO3−δ oxygen sorbent usable for high-temperature pressure-swing adsorption process operating at approximately 300 °C. Ind. Eng. Chem. Res. 2016, 55, 6501–6505. [Google Scholar] [CrossRef]
- Bulfin, B.; Lapp, J.; Richter, S.; Gubàn, D.; Vieten, J.; Brendelberger, S.; Roeb, M.; Sattler, C. Air separation and selective oxygen pumping via temperature and pressure swing oxygen adsorption using a redox cycle of SrFeO3 perovskite. Chem. Eng. Sci. 2019, 203, 68–75. [Google Scholar] [CrossRef]
- Leo, A.; Liu, S.; da Costa, J.C.D. Development of mixed conducting membranes for clean coal energy delivery. Int. J. Greenh. Gas Control 2009, 3, 357–367. [Google Scholar] [CrossRef]
- Chen, W.; Chen, C.-S.; Bouwmeester, H.J.M.; Nijmeijer, A.; Winnubst, L. Oxygen-selective membranes integrated with oxy-fuel combustion. J. Membr. Sci. 2014, 463, 166–172. [Google Scholar] [CrossRef]
- Rachadel, P.L.; Motuzas, J.; Machado, R.A.F.; Hotza, D.; da Costa, J.C.D. Influence of porous structures on O2 flux of BSCF asymmetric membranes. Sep. Purif. Technol. 2017, 175, 164–169. [Google Scholar] [CrossRef] [Green Version]
- Serra, J.M.; Garcia-Fayos, J.; Baumann, S.; Schulze-Küppers, F.; Meulenberg, W.A. Oxygen permeation through tape-cast asymmetric all-La0.6Sr0.4Co0.2Fe0.8O3−δ membranes. J. Memb. Sci. 2013, 447, 297–305. [Google Scholar] [CrossRef]
- Zhang, X.; Motuzas, J.; Liu, S.; da Costa, J.C.D. Zinc-doped BSCF perovskite membranes for oxygen separation. Sep. Purif. Technol. 2017, 189, 399–404. [Google Scholar] [CrossRef]
- Hallberg, P.; Hanning, M.; Rydén, M.; Mattisson, T.; Lyngfelt, A. Investigation of a calcium manganite as oxygen carrier during 99h of operation of chemical-looping combustion in a 10kWth reactor unit. Int. J. Greenh. Gas Control 2016, 53, 222–229. [Google Scholar] [CrossRef]
- Cabello, A.; Abad, A.; Gayán, P.; García-Labiano, F.; de Diego, L.F.; Adánez, J. Increasing energy efficiency in chemical looping combustion of methane by in-situ activation of perovskite-based oxygen carriers. Appl. Energy 2021, 287, 116557. [Google Scholar] [CrossRef]
- Schiestel, T.; Kilgus, M.; Peter, S.; Caspary, K.J.; Wang, H.; Caro, J. Hollow fibre perovskite membranes for oxygen separation. J. Membr. Sci. 2005, 258, 1–4. [Google Scholar] [CrossRef]
- Unger, L.-S.; Ruhl, R.; Meffert, M.; Niedrig, C.; Menesklou, W.; Wagner, S.F.; Gerthsen, D.; Bouwmeester, H.J.M.; Ivers-Tiffée, E. Yttrium doping of Ba0.5Sr0.5Co0.8Fe0.2O3−δ part II: Influence on oxygen transport and phase stability. J. Europ. Ceram. Soc. 2018, 38, 2388–2395. [Google Scholar] [CrossRef]
- Song, J.; Feng, B.; Chu, Y.; Tan, X.; Gao, J.; Han, N.; Liu, S. One-step thermal processing to prepare BaCo0.95-xBi0.05ZrxO3−δ membranes for oxygen separation. Ceramics Int. 2019, 45, 12579–12585. [Google Scholar] [CrossRef]
- Wang, X.; Huang, Y.; Li, D.; Zeng, L.; He, Y.; Boubeche, M.; Luo, H. High oxygen permeation flux of cobalt-free Cu-based ceramic dual-phase membranes. J. Membr. Sci. 2021, 633, 119403. [Google Scholar] [CrossRef]
- He, G.; Baumann, S.; Liang, F.; Hartmann, H.; Jiang, H.; Meulenberg, W.A. Phase stability and oxygen permeability of Fe-based BaFe0.9Mg0.05X0.05O3 (X = Zr, Ce, Ca) membranes for air separation. Sep. Purif. Technol. 2019, 220, 176–182. [Google Scholar] [CrossRef]
- Haworth, P.; Smart, S.; Glasscock, J.; da Costa, J.C.D. High performance yttrium-doped BSCF hollow fibre membranes. Sep. Purif. Technol. 2012, 94, 16–22. [Google Scholar] [CrossRef]
- Tan, X.; Wang, Z.; Meng, B.; Meng, X.; Li, K. Pilot-scale production of oxygen from air using perovskite hollow fibre membranes. J. Membr. Sci. 2010, 352, 189–196. [Google Scholar] [CrossRef]
- Athayde, D.D.; Souza, D.F.; Silva, A.M.A.; Vasconcelos, D.; Nunes, E.H.M.; da Costa, J.C.D.; Vasconcelos, W.L. Review of perovskite ceramic synthesis and membrane preparation methods. Ceram. Int. 2016, 42, 6555–6571. [Google Scholar] [CrossRef] [Green Version]
- Ishii, K.; Matsunaga, C.; Kobayashi, K.; Stevenson, A.J.; Tardivat, C.; Uchikoshi, T. Fabrication of BSCF-based mixed oxide ionic-electronic conducting multi-layered membrane by sequential electrophoretic deposition process. J. Europ. Ceram. Soc. 2021, 41, 2709–2715. [Google Scholar] [CrossRef]
- Baumann, S.; Serra, J.M.; Lobera, M.P.; Escolástico, S.; Schulze-Küppers, F.; Meulenberg, W.A. Ultrahigh oxygen permeation flux through supported Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. J. Memb. Sci. 2011, 377, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Rachadel, P.L.; Souza, D.F.; Nunes, E.H.M.; da Costa, J.C.D.; Vasconcelos, W.L.; Hotza, D. A novel route for manufacturing asymmetric BSCF-based perovskite structures by a combined tape and freeze casting method. J. Eur. Ceram. Soc. 2017, 37, 5249–5257. [Google Scholar] [CrossRef]
- Ding, H.; Luo, C.; Li, X.; Cao, D.; Shen, Q.; Zhang, L. Development of BaSrCo-based perovskite for chemical-looping steam methane reforming: A study on synergistic effects of A-site elements and CeO2 support. Fuel 2019, 253, 311–319. [Google Scholar] [CrossRef]
- Ramos, A.E.; Maiti, D.; Daza, Y.A.; Kuhn, J.N.; Bhethanabotla, V.R. Co, Fe, and Mn in La-perovskite oxides for low temperature thermochemical CO2 conversion. Catal. Today 2019, 338, 52–59. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, K.; He, F.; Li, H. The structure-reactivity relationships of using three-dimensionally ordered macroporous LaFe1−xNixO3 perovskites for chemical-looping steam methane reforming. J. Energy Inst. 2019, 92, 239–246. [Google Scholar] [CrossRef]
- Voorhoeve, R.J.H.; Johnson, D.W.; Remeika, J.P.; Gallagher, P.K. Perovskite Oxides—Materials Science in Catalysis. Science 1977, 195, 827. [Google Scholar] [CrossRef]
- Bhalla, A.S.; Guo, R.; Roy, R. The perovskite structure—A review of its role in ceramic science and technology. Mater. Res. Innov. 2000, 4, 3–26. [Google Scholar] [CrossRef]
- Teraoka, Y.; Zhang, H.M.; Furukawa, S.; Yamazoe, N. Oxygen permeation through perovskite-type oxides. Chem. Lett. 1985, 14, 1743–1746. [Google Scholar] [CrossRef]
- Goldschmidt, V.M. Die gesetze der krystallochemie. Naturwissenschaften 1926, 14, 477–485. [Google Scholar] [CrossRef]
- Yin, Q.; Kniep, J.; Lin, Y.S. Oxygen sorption and desorption properties of Sr-Co-Fe oxide. Chem. Eng. Sci. 2008, 63, 2211–2218. [Google Scholar] [CrossRef]
- Rui, Z.; Ding, J.; Li, Y.; Lin, Y.S. SrCo0.8Fe0.2O3−δ sorbent for high-temperature production of oxygen-enriched carbon dioxide stream. Fuel 2010, 89, 1429–1434. [Google Scholar] [CrossRef]
- Rui, Z.; Ding, J.; Fang, L.; Lin, Y.S.; Li, Y. YBaCo4O7+δ sorbent for oxygen-enriched carbon dioxide stream production at a low-temperature. Fuel 2012, 94, 191–196. [Google Scholar] [CrossRef]
- Schulz, M.; Pippardt, U.; Kiesel, L.; Ritter, K.; Kriegel, R. Oxygen permeation of various archetypes of oxygen membranes based on BSCF. AIChE J. 2012, 58, 3195–3202. [Google Scholar] [CrossRef]
- Leo, A.; Motuzas, J.; Yacou, C.; Liu, S.; Serra, J.M.; Navarrete, L.; Drennan, J.; Julbe, A.; da Costa, J.C.D. Copper oxide—Perovskite mixed matrix membranes delivering very high oxygen fluxes. J. Membr. Sci. 2017, 526, 323–333. [Google Scholar] [CrossRef]
- Motuzas, J.; da Costa, J.C.D. Copper aided exchange in high performance oxygen production by CuCo binary oxides for clean energy delivery. J. Mater. Chem. A 2015, 3, 17344–17350. [Google Scholar] [CrossRef]
- Vieten, J.; Bulfin, B.; Call, F.; Lange, M.; Schmücker, M.; Francke, A.; Roeb, M.; Sattler, C. Perovskite oxides for application in thermochemical air separation and oxygen storage. J. Mater. Chem. A 2016, 4, 13652–13659. [Google Scholar] [CrossRef]
- Zeng, P.; Shao, Z.; Liu, S.; Xu, Z. Influence of M cations on structural, thermal and electrical properties of new oxygen selective membranes based on SrCo0.95M0.05O3−δ perovskite. Sep. Purif Technol. 2009, 67, 304–311. [Google Scholar] [CrossRef]
- Troncoso, L.; Gardey, M.C.; Fernández-Díaz, M.T.; Alonso, J.A. New rhenium-doped SrCo1-xRexO3−δ perovskites performing as cathodes in solid oxide fuel cells. Materials 2016, 9, 717. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Kerstiens, T.; Markus, T. Oxygen permeability and phase stability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite at intermediate temperatures. J. Membr. Sci. 2013, 438, 83–89. [Google Scholar] [CrossRef]
- Zeng, P.; Chen, Z.; Zhou, W.; Gu, H.; Shao, Z.; Liu, S. Re-evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite as oxygen semi-permeable membrane. J. Membr. Sci. 2007, 291, 148–156. [Google Scholar] [CrossRef]
- Carreon, M.A. Porous crystals as membranes. Science 2020, 367, 624–625. [Google Scholar] [CrossRef]
- Ballinger, B.; Motuzas, J.; Smart, S.; da Costa, J.C.D. Palladium cobalt binary doping of molecular sieving silica membranes. J. Membr. Sci. 2014, 453, 185–191. [Google Scholar] [CrossRef]
- Jayaraman, A.; Yang, R.T. Stable oxygen-selective sorbents for air separation. Chem. Eng. Sci. 2005, 60, 625–634. [Google Scholar] [CrossRef]
- Wang, W.; Motuzas, J.; Zhao, X.S.; da Costa, J.C.D. 2D/3D Assemblies of Amine-Functionalized Graphene Silica (Templated) Aerogel for Enhanced CO2 Sorption. ACS Appl. Mater. Interfaces 2019, 11, 30391–30400. [Google Scholar] [CrossRef] [PubMed]
- Nomura, K.; Ujihira, Y.; Hayakawa, T.; Takehira, K. CO2 absorption properties and characterization of perovskite oxides, (Ba,Ca) (Co,Fe) O3−δ. Appl. Catal. A Gen. 1996, 137, 25–36. [Google Scholar] [CrossRef]
- Leo, A.; Liu, S.; da Costa, J.C.D. Production of pure oxygen from BSCF hollow fiber membranes using steam sweep. Sep. Purif. Technol. 2011, 78, 220–227. [Google Scholar] [CrossRef]
- Dou, J.; Krzystowczyk, E.; Wang, X.; Richard, A.R.; Robbins, T.; Li, F. Sr1-xCaxFe1-yCoyO3−δ as facile and tunable oxygen sorbents for chemical looping air separation. J. Phys. Energy 2020, 2, 025007. [Google Scholar] [CrossRef]
- Gokon, N.; Yawata, T.; Bellan, S.; Kodama, T.; Cho, H.-S. Thermochemical behavior of perovskite oxides based on LaxSr1-x(Mn, Fe, Co)O3−δ and BaySr1-yCoO3−δ redox system for thermochemical energy storage at high temperatures. Energy 2019, 171, 971–980. [Google Scholar] [CrossRef]
- Fujishiro, F.; Oshima, N.; Sakuragi, T.; Oishi, M. Oxygen desorption properties of perovskite-type SrFe1−xCoxO3−δ: B-site mixing effect on the reduction properties of Fe and Co ions. J. Solid State Chem. 2022, 312, 123254. [Google Scholar] [CrossRef]
- Zheng, Q.; Lail, M.; Zhou, S.; Chung, C.-C. Novel CaCoxZr1-xO3−δ perovskites as oxygen-selective sorbents for air separation. ChemSusChem 2019, 12, 2598–2604. [Google Scholar] [CrossRef]
Compound | Calculated from Measurements | |||||
---|---|---|---|---|---|---|
t | a (Å) | b (Å) | c (Å) | V (Å3) | Crystal Structure | |
MgSCC | 0.89 | 9.497 | 9.497 | 12.402 | 968.85 | Hexagonal |
CaSCC | 0.95 | 9.08 | 9.08 | 10.32 | 736.9 | Hexagonal |
SrSCC | 0.98 | 9.5 | 9.5 | 12.427 | 971.4 | Hexagonal |
BaSCC | 1.04 | 5.591 | 5.591 | 4.28 | 115.9 | Hexagonal |
Standard Full Cycle | Optimised Short Cycle | |||
---|---|---|---|---|
MeSCC | m (wt%) | ΔT (°C) | m (wt%) | ΔT (°C) |
Ba | 1.72 | 478 | 0.98 | 134 |
Sr | 1.69 | 548 | 0.76 | 235 |
Mg | 1.41 | 600 | 0.67 | 187 |
Ca | 0.87 | 331 | 0.47 | 237 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motuzas, J.; Liu, S.; da Costa, J.C.D. Thermal Swing Reduction-Oxidation of Me(Ba, Ca, or Mg)SrCoCu Perovskites for Oxygen Separation from Air. Processes 2022, 10, 2239. https://doi.org/10.3390/pr10112239
Motuzas J, Liu S, da Costa JCD. Thermal Swing Reduction-Oxidation of Me(Ba, Ca, or Mg)SrCoCu Perovskites for Oxygen Separation from Air. Processes. 2022; 10(11):2239. https://doi.org/10.3390/pr10112239
Chicago/Turabian StyleMotuzas, Julius, Shaomin Liu, and João C. Diniz da Costa. 2022. "Thermal Swing Reduction-Oxidation of Me(Ba, Ca, or Mg)SrCoCu Perovskites for Oxygen Separation from Air" Processes 10, no. 11: 2239. https://doi.org/10.3390/pr10112239
APA StyleMotuzas, J., Liu, S., & da Costa, J. C. D. (2022). Thermal Swing Reduction-Oxidation of Me(Ba, Ca, or Mg)SrCoCu Perovskites for Oxygen Separation from Air. Processes, 10(11), 2239. https://doi.org/10.3390/pr10112239