Kinetics of Ion-Exchange Extraction of Lithium from Aqueous Solutions by Protonated Potassium Polytitanates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Samples Characterization
2.3. Kinetics of Ion Exchange
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schlesinger, W.H.; Klein, E.M.; Wang, Z.; Vengosh, A. Global biogeochemical cycle of lithium. Glob. Biogeochem. Cycles 2021, 35, e06999. [Google Scholar] [CrossRef]
- Choi, H.-B.; Ryu, J.-S.; Shin, W.-J.; Vigier, N. The impact of anthropogenic inputs on lithium content in river and tap water. Nat. Commun. 2019, 10, 5371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindsey, B.D.; Belitz, K.; Cravotta, C.A.; Toccalino, P.L.; Dubrovsky, N.M. Lithium in groundwater used for drinking-water supply in the United States. Sci. Total Environ. 2021, 767, 144691. [Google Scholar] [CrossRef] [PubMed]
- Thibon, F.; Metian, M.; Oberhänsli, F.O.; Montanes, M.; Vassileva, E.; Orani, A.M.; Telouk, P.; Swarzenski, P.; Vigier, N. Bioaccumulation of lithium isotopes in mussel soft tissues and implications for coastal environments. ACS Earth Space Chem. 2021, 5, 1407–1417. [Google Scholar] [CrossRef]
- Aral, H.; Vecchio-Sadus, A. Toxicity of lithium to humans and the environment—A literature review. Ecotoxicol. Environ. Saf. 2008, 70, 349–356. [Google Scholar] [CrossRef]
- Bolan, N.; Hoang, S.A.; Tanveer, M.; Wang, L.; Bolan, S.; Sooriyakumar, P.; Robinson, B.; Wijesekara, H.; Wijesooriya, M.; Keerthanan, S.; et al. From mine to mind and mobiles: Lithium contamination and its risk management. Environ. Pollut. 2021, 290, 118067. [Google Scholar] [CrossRef]
- Melchor-Martínez, E.M.; Macias-Garbett, R.; Malacara-Becerra, A.; Iqbal, H.M.N.; Sosa-Hernández, J.E.; Parra-Saldívar, R. Environmental impact of emerging contaminants from battery waste: A mini review. Case Stud. Chem. Environ. Eng. 2021, 3, 100104. [Google Scholar] [CrossRef]
- Mrozik, W.; Rajaeifar, M.A.; Heidrich, O.; Christensen, P. Environmental impacts, pollution sources and pathways of spent lithium-ion batteries. Energy Environ. Sci. 2021, 14, 6099–6121. [Google Scholar] [CrossRef]
- Tanveer, M.; Hasanuzzaman, M.; Wang, L. Lithium in environment and potential targets to reduce lithium toxicity in plants. J. Plant Growth Regul. 2019, 38, 1574–1586. [Google Scholar] [CrossRef]
- Ammari, T.G.; Al-Zu’bi, Y.; Abu-Baker, S.; Dababneh, B.; Gnemat, W.; Tahboub, A. The occurrence of lithium in the environment of the Jordan Valley and its transfer into the food chain. Environ. Geochem. Health 2011, 33, 427–437. [Google Scholar] [CrossRef]
- Franzaring, J.; Schlosser, S.; Damsohn, W.; Fangmeier, A. Regional differences in plant levels and investigations on the phytotoxicity of lithium. Environ. Pollut. 2016, 216, 858–865. [Google Scholar] [CrossRef] [PubMed]
- Kalinowska, M.; Hawrylak-Nowak, B.; Szymanska, M. The influence of two lithium forms on the growth, L-asorbic acid content and lithium accumulation in lettuce plants. Biol. Trace Elem. Res. 2013, 152, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Lemaire, J.; Svecova, L.; Lagallarde, F.; Laucournet, R.; Thivel, P.X. Lithium recovery from aqueous solution by sorption/desorption. Hydrometallurgy 2014, 143, 1–11. [Google Scholar] [CrossRef]
- Swain, B. Recovery and recycling of lithium: A review. Sep. Purif. Technol. 2017, 172, 388–403. [Google Scholar] [CrossRef]
- Li, X.; Mo, Y.; Qing, W.; Shao, S.; Tang, C.Y.; Li, J. Membrane-based technologies for lithium recovery from water lithium resources: A review. J. Membr. Sci. 2019, 591, 117317. [Google Scholar] [CrossRef]
- Meshram, P.; Pandey, B.D.; Mankhand, T.R. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review. Hydrometallurgy 2014, 150, 192–208. [Google Scholar] [CrossRef]
- Orooji, Y.; Nezafat, Z.; Nasrollahzadeh, M.; Shafiei, N.; Afsari, M.; Pakzad, K.; Razmjou, A. Recent advances in nanomaterial development for lithium ion-sieving technologies. Desalination 2022, 529, 115624. [Google Scholar] [CrossRef]
- Chitrakar, R.; Makita, Y.; Ooi, K.; Sonoda, A. Selective uptake of lithium ion from brine by H1.33Mn1.67O4 and H1.6Mn1.6O4. Chem. Lett. 2012, 41, 1647–1649. [Google Scholar] [CrossRef]
- Xiao, J.; Nie, X.; Sun, S.; Song, X.; Li, P.; Yu, J. Lithium ion adsorption–desorption properties on spinel Li4Mn5O12 and pH-dependent ion-exchange model. Adv. Powder Technol. 2015, 26, 589–594. [Google Scholar] [CrossRef]
- Sun, S.Y.; Song, X.; Zhang, Q.H.; Wang, J.; Yu, J.G. Lithium extraction/insertion process on cubic Li-Mn-O precursors with different Li/Mn ratio and morphology. Adsorption 2011, 17, 881–887. [Google Scholar] [CrossRef]
- Xiao, G.; Tong, K.; Zhou, L.; Xiao, J.; Sun, S.; Li, P.; Yu, J. Adsorption and desorption behavior of lithium ion in spherical PVC–MnO2 ion sieve. Ind. Eng. Chem. Res. 2012, 51, 10921–10929. [Google Scholar] [CrossRef]
- Bajestani, M.B.; Moheb, A.; Dinari, M. Preparation of lithium ion-selective cation exchange membrane for lithium recovery from sodium contaminated lithium bromide solution by electrodialysis process. Desalination 2020, 486, 114476. [Google Scholar] [CrossRef]
- Zhan, H.; Qiao, Y.; Qian, Z.; Li, J.; Wu, Z.; Hao, X.; Liu, Z. Manganese-based spinel adsorbents for lithium recovery from aqueous solutions by electrochemical technique. J. Ind. Eng. Chem. 2022, 114, 142–150. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Li, S.P.; Sun, S.Y.; Yin, X.S.; Yu, J.G. LiMn2O4 spinel direct synthesis and lithium ion selective adsorption. Chem. Eng. Sci. 2010, 65, 169–173. [Google Scholar] [CrossRef]
- Ma, L.W.; Chen, B.Z.; Chen, Y.; Shi, X.C. Preparation, characterization and adsorptive properties of foam-type lithium adsorbent. Microporous Mesoporous Mater. 2011, 142, 147–153. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, H.; Zhang, Y.; Cao, D.; Zhao, X. Lithium extraction from seawater by manganese oxide ion sieve MnO2·0.5H2O. Colloids Surf. A Physicochem. Eng. Asp. 2015, 468, 280–284. [Google Scholar] [CrossRef]
- Shi, X.; Zhou, D.; Zhang, Z.; Yu, L.; Xu, H.; Chen, B.; Yang, X. Synthesis and properties of Li1.6Mn1.6O4 and its adsorption application. Hydrometallurgy 2011, 110, 99–106. [Google Scholar] [CrossRef]
- Xiao, J.L.; Sun, S.Y.; Wang, J.; Li, P.; Yu, J.G. Synthesis and adsorption properties of Li1.6Mn1.6O4 spinel. Ind. Eng. Chem. Res. 2013, 52, 11967–11973. [Google Scholar] [CrossRef]
- Sun, S.Y.; Xiao, J.L.; Wang, J.; Song, X.; Yu, J.G. Synthesis and adsorption properties of Li1.6Mn1.6O4 by a combination of redox precipitation and solid-phase reaction. Ind. Eng. Chem. Res. 2014, 53, 15517–15521. [Google Scholar] [CrossRef]
- Chitrakar, R.; Kanoh, H.; Makita, Y.; Miyai, Y.; Ooi, K. Synthesis of spinel-type lithium antimony manganese oxides and their Li+ extraction/ion insertion reactions. J. Mater. Chem. 2000, 10, 2325–2329. [Google Scholar] [CrossRef]
- Shi, X.C.; Zhang, Z.B.; Zhou, D.F.; Zhang, L.F.; Chen, B.Z.; Yu, L.L. Synthesis of Li+ adsorbent (H2TiO3) and its adsorption properties. Trans. Nonferrous Met. Soc. China 2013, 23, 253–259. [Google Scholar] [CrossRef]
- Chitrakar, R.; Makita, Y.; Ooi, K.; Sonoda, A. Lithium recovery from salt lake brine by H2TiO3. Dalton Trans. 2014, 43, 8933–8939. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhou, D.; He, G.; Wang, F.; Zhou, J. Effect of crystal phases of titanium dioxide on adsorption performance of H2TiO3-lithium adsorbent. Mater. Lett. 2014, 135, 206–209. [Google Scholar] [CrossRef]
- He, G.; Zhang, L.; Zhou, D.; Zou, Y.; Wang, F. The optimal condition for H2TiO3–lithium adsorbent preparation and Li+ adsorption confirmed by an orthogonal test design. Ionics 2015, 21, 2219–2226. [Google Scholar] [CrossRef]
- Tang, D.; Zhou, D.; Zhou, J.; Zhang, P.; Zhang, L.; Xia, Y. Preparation of H2TiO3–lithium adsorbent using low-grade titanium slag. Hydrometallurgy 2015, 157, 90–96. [Google Scholar] [CrossRef]
- Lawagon, C.P.; Nisola, G.M.; Mun, J.; Tron, A.; Torrejos, R.E.C.; Seo, J.G.; Chung, W.J. Adsorptive Li+ mining from liquid resources by H2TiO3: Equilibrium, kinetics, thermodynamics, and mechanisms. J. Ind. Eng. Chem. 2016, 35, 347–356. [Google Scholar] [CrossRef]
- Limjuco, L.A.; Nisola, G.M.; Lawagon, C.P.; Lee, S.P.; Seo, J.G.; Kim, H.; Chung, W.J. H2TiO3 composite adsorbent foam for efficient and continuous recovery of Li+ from liquid resources. Colloids Surf. A Physicochem. Eng. Asp. 2016, 504, 267–279. [Google Scholar] [CrossRef]
- Wang, S.; Li, P.; Cui, W.; Zhang, H.; Wang, H.; Zheng, S.; Zhang, Y. Hydrothermal synthesis of lithium-enriched β-Li2TiO3 with an ion-sieve application: Excellent lithium adsorption. RSC Adv. 2016, 6, 102608–102616. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, D.; Yao, Q.; Zhou, J. Preparation of H2TiO3-lithium adsorbent by the sol–gel process and its adsorption performance. Appl. Surf. Sci. 2016, 368, 82–87. [Google Scholar] [CrossRef]
- Machida, M.; Ma, X.W.; Taniguchi, H.; Yabunaka, J.I.; Kijima, T. Pillaring and photocatalytic property of partially substituted layered titanates, Na2Ti3−xMxO7 and K2Ti4−xMxO9 (M = Mn, Fe, Co, Ni, Cu). J. Mol. Catal. A Chem. 2000, 155, 131–142. [Google Scholar] [CrossRef]
- Yang, J.; Li, D.; Wang, X.; Yang, X.; Lu, L. Study on the synthesis and ion-exchange properties of layered titanate Na2Ti3O7 powders with different sizes. J. Mater. Sci. 2003, 38, 2907–2911. [Google Scholar] [CrossRef]
- Yuan, X.; Li, W.; Liu, X. Comparative Study of Proton Exchange in Tri-and Hexatitanates: Correlations between Stability and Electronic Properties. Inorg. Chem. 2022, 61, 3918–3930. [Google Scholar] [CrossRef] [PubMed]
- Mori, M.; Kumagai, Y.; Matsunaga, K.; Tanaka, I. First-principles investigation of atomic structures and stability of proton-exchanged layered sodium titanate. Phys. Rev. B 2009, 79, 144117. [Google Scholar] [CrossRef] [Green Version]
- Gorokhovsky, A.V.; Escalante-Garcıa, J.I.; Sanchez-Monjaras, T.; Gutiérrez-Chavarría, C.A. Synthesis of potassium polytitanate precursors by treatment of TiO2 with molten mixtures of KNO3 and KOH. J. Eur. Ceram. Soc. 2004, 24, 3541–3546. [Google Scholar] [CrossRef]
- Marković, M.; Daković, A.; Rottinghaus, G.E.; Petković, A.; Kragović, M.; Krajišnik, D.; Milić, J. Ochratoxin A and zearalenone adsorption by the natural zeolite treated with benzalkonium chloride. Colloids Surf. A Physicochem. Eng. Asp. 2017, 529, 7–17. [Google Scholar] [CrossRef]
- Kragović, M.; Daković, A.; Sekulić, Ž.; Trgo, M.; Ugrina, M.; Perić, J.; Gatta, G.D. Removal of lead from aqueous solutions by using the natural and Fe (III)-modified zeolite. Appl. Surf. Sci. 2012, 258, 3667–3673. [Google Scholar] [CrossRef]
- Ming, D.W.; Dixon, J.B. Quantitative determination of clinoptilolite in soils by a cation-exchange capacity method. Clays Clay Miner. 1987, 35, 463–468. [Google Scholar] [CrossRef]
- Al-Gebory, L.; Mengüç, M.P. The effect of pH on particle agglomeration and optical properties of nanoparticle suspensions. J. Quant. Spectrosc. Radiat. Transf. 2018, 219, 46–60. [Google Scholar] [CrossRef]
- Marthi, R.; Asgar, H.; Gadikota, G.; Smith, Y.R. On the structure and lithium adsorption mechanism of layered H2TiO3. ACS Appl. Mater. Interfaces 2021, 13, 8361–8369. [Google Scholar] [CrossRef]
Sample Name | Oxide Content (wt.%) | Empirical Formula | The Degree of Crystallinity (%) | |
---|---|---|---|---|
K2O | TiO2 | |||
PPTP2 | 10.4 | 89.6 | K0.8H1.2Ti4.3O8.5 | 25.4 |
PPTP3 | 13.1 | 87.0 | K1.0H1.0Ti4.3O8.5 | 21.9 |
PPTP4 | 14.2 | 85.8 | K1.1H0.9Ti4.3O8.5 | 17.5 |
PPTP5 | 14.8 | 85.2 | K1.2H0.8Ti4.3O8.5 | 16.9 |
PPTP6 | 15.0 | 85.0 | K1.3H0.7Ti4.3O8.5 | 15.9 |
PPTP7 | 18.0 | 82.0 | K1.5H0.5Ti4.3O8.5 | 10.3 |
Ion Exchanger | Pseudo-First Order Model | Pseudo-Second Order Model | ||||
---|---|---|---|---|---|---|
R2 | qe, mmol/g | k1, min−1 | R2 | qe, mmol/g | k2, g/(mmol·min) | |
PPTP2 | 0.89 | 0.13 | 0.013 | 0.99 | 0.52 | 0.43 |
PPTP3 | 0.85 | 0.22 | 0.018 | 0.99 | 0.47 | 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vikulova, M.; Maximova, L.; Rudyh, V.; Gorshkov, N.; Gorokhovsky, A. Kinetics of Ion-Exchange Extraction of Lithium from Aqueous Solutions by Protonated Potassium Polytitanates. Processes 2022, 10, 2258. https://doi.org/10.3390/pr10112258
Vikulova M, Maximova L, Rudyh V, Gorshkov N, Gorokhovsky A. Kinetics of Ion-Exchange Extraction of Lithium from Aqueous Solutions by Protonated Potassium Polytitanates. Processes. 2022; 10(11):2258. https://doi.org/10.3390/pr10112258
Chicago/Turabian StyleVikulova, Maria, Lilia Maximova, Valeria Rudyh, Nikolay Gorshkov, and Alexander Gorokhovsky. 2022. "Kinetics of Ion-Exchange Extraction of Lithium from Aqueous Solutions by Protonated Potassium Polytitanates" Processes 10, no. 11: 2258. https://doi.org/10.3390/pr10112258
APA StyleVikulova, M., Maximova, L., Rudyh, V., Gorshkov, N., & Gorokhovsky, A. (2022). Kinetics of Ion-Exchange Extraction of Lithium from Aqueous Solutions by Protonated Potassium Polytitanates. Processes, 10(11), 2258. https://doi.org/10.3390/pr10112258