Network Pharmacology and Molecular Docking Integrated Strategy to the Screening of Active Components and Mechanisms of Stephaniae Tetrandrae Radix on Breast Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Screening of Active Components and Targets of STR
2.2. Prediction of Potential Targets of STR against BC
2.3. Construction of Common Target PPI Network
2.4. Core Analysis and Construction of Components–Targets–Pathways Network
2.5. Molecular Docking
2.6. Validation of Compounds by In Vitro Assays
2.6.1. Cell and Reagents
2.6.2. Cell Viability Assessment by MTT Assay
2.6.3. Cytotoxicity Assessment by LDH Assay
2.6.4. Statistical Analysis
3. Results
3.1. Selection of Active Components and Targets of STR
3.2. Collection of Potential Targets of STR against BC
3.3. Construction of Common Targets PPI Network
3.4. Core Analysis and Construction of Components–Targets–Pathways Network
3.5. Molecular Docking
3.6. Validation of Compounds by In Vitro Assays
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Harbeck, N.; Gnant, M. Breast cancer. Lancet 2017, 389, 1134–1150. [Google Scholar] [CrossRef]
- Fan, L.; Strasser-Weippl, K.; Li, J.-J.; St Louis, J.; Finkelstein, D.M.; Yu, K.-D.; Chen, W.-Q.; Shao, Z.-M.; Goss, P.E. Breast cancer in China. Lancet Oncol. 2014, 15, e279–e289. [Google Scholar] [CrossRef]
- Cardoso, F.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P.; Rubio, I.T.; Zackrisson, S.; Senkus, E.; ESMO Guidelines Committee. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-updagger. Ann. Oncol. 2019, 30, 1194–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A.U. Awareness and current knowledge of breast cancer. Biol. Res. 2017, 50, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tosello, G.; Torloni, M.R.; Mota, B.S.; Neeman, T.; Riera, R. Breast surgery for metastatic breast cancer. Cochrane Database Syst. Rev. 2018, 3, CD011276. [Google Scholar] [CrossRef]
- Qu, J.; Ke, F.; Liu, Z.; Yang, X.; Li, X.; Xu, H.; Li, Q.; Bi, K. Uncovering the mechanisms of dandelion against triple-negative breast cancer using a combined network pharmacology, molecular pharmacology and metabolomics approach. Phytomedicine 2022, 99, 153986. [Google Scholar] [CrossRef]
- Zhou, R.; Chen, H.; Chen, J.; Chen, X.; Wen, Y.; Xu, L. Extract from Astragalus membranaceus inhibit breast cancer cells proliferation via PI3K/AKT/mTOR signaling pathway. BMC Complement. Altern. Med. 2018, 18, 83. [Google Scholar] [CrossRef] [Green Version]
- Greenlee, H.; DuPont-Reyes, M.J.; Balneaves, L.G.; Carlson, L.E.; Cohen, M.R.; Deng, G.; Johnson, J.A.; Mumber, M.; Seely, D.; Zick, S.M.; et al. Clinical practice guidelines on the evidence-based use of integrative therapies during and after breast cancer treatment. CA Cancer J. Clin. 2017, 67, 194–232. [Google Scholar] [CrossRef]
- Cohen, I.; Tagliaferri, M.; Tripathy, D. Traditional Chinese medicine in the treatment of breast cancer. Semin. Oncol. 2002, 29, 563–574. [Google Scholar] [CrossRef]
- Yu, X.C.; Wu, S.; Chen, C.F.; Pang, K.T.; Wong, T.M. Antihypertensive and anti-arrhythmic effects of an extract of Radix Stephaniae Tetrandrae in the rat. J. Pharm. Pharmacol. 2004, 56, 115–122. [Google Scholar] [CrossRef]
- Qin, Y.D.; Fang, F.M.; Wang, R.B.; Zhou, J.J.; Li, L.H. Differentiation between wild and artificial cultivated Stephaniae tetrandrae radix using chromatographic and flow-injection mass spectrometric fingerprints with the aid of principal component analysis. Food Sci. Nutr. 2020, 8, 4223–4231. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Pei, X.H.; Chu, A.J.; Guo, Y.B.; Fan, Y.Y.; Wang, C.H.; Zhang, S.J.; Sun, S.Q.; Liu, Y.F.; Wang, X. The mechanism of action of Fangji Huangqi Decoction on epithelial-mesenchymal transition in breast cancer using high-throughput next-generation sequencing and network pharmacology. J. Ethnopharmacol. 2022, 284, 114793. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qi, D.; Gao, Y.; Liang, C.; Zhang, Y.; Ma, Z.; Liu, Y.; Peng, H.; Zhang, Y.; Qin, H.; et al. History of uses, phytochemistry, pharmacological activities, quality control and toxicity of the root of Stephania tetrandra S. Moore: A review. J. Ethnopharmacol. 2020, 260, 112995. [Google Scholar] [CrossRef] [PubMed]
- Kwan, C.Y.; Achike, F.I. Tetrandrine and related bis-benzylisoquinoline alkaloids from medicinal herbs: Cardiovascular effects and mechanisms of action. Acta Pharmacol. Sin. 2002, 23, 1057–1068. [Google Scholar]
- Zhang, H.; Xie, B.; Zhang, Z.; Sheng, X.; Zhang, S. Tetrandrine suppresses cervical cancer growth by inducing apoptosis in vitro and in vivo. Drug Des. Dev. Ther. 2019, 13, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Liu, Y.; Shi, G.; Zhou, J.; Li, J.; Li, L.; Yuan, J.; Li, X.; Yu, D. Bioactive bisbenzylisoquinoline alkaloids from the roots of Stephania tetrandra. Bioorganic Chem. 2020, 98, 103697. [Google Scholar] [CrossRef]
- Hopkins, A.L. Network pharmacology. Nat. Biotechnol. 2007, 25, 1110–1111. [Google Scholar] [CrossRef]
- Zhang, R.; Zhu, X.; Bai, H.; Ning, K. Network Pharmacology Databases for Traditional Chinese Medicine: Review and Assessment. Front. Pharmacol. 2019, 10, 123. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Wang, T.; Shi, C.; Wang, Z.; Fu, X. Network pharmacology-based approach to understand the effect and mechanism of Danshen against anemia. J. Ethnopharmacol. 2022, 282, 114615. [Google Scholar] [CrossRef]
- Niu, B.; Xie, X.; Xiong, X.; Jiang, J. Network pharmacology-based analysis of the anti-hyperglycemic active ingredients of roselle and experimental validation. Comput. Biol. Med. 2022, 141, 104636. [Google Scholar] [CrossRef]
- Li, X.; Wei, S.; Niu, S.; Ma, X.; Li, H.; Jing, M.; Zhao, Y. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis. Comput. Biol. Med. 2022, 144, 105389. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Xiao, G.; He, S.; Zhu, Y. Efficacy and targets of Fangji Huangqi decoction against chronic heart failure. World Tradit. Chin. Med. 2022, 17, 1852–1859. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Q.G.; Zhu, X.C.; Xie, L.; Cai, B.C. Screening for Potential Active Components of Fangji Huangqi Tang on the Treatment of Nephrotic Syndrome by Using Integrated Metabolomics Based on “Correlations Between Chemical and Metabolic Profiles”. Front. Pharmacol. 2019, 10, 1261. [Google Scholar] [CrossRef] [Green Version]
- Gui, Y.; Dai, Y.; Wang, Y.; Li, S.; Xiang, L.; Tang, Y.; Tan, X.; Pei, T.; Bao, X.; Wang, D. Taohong Siwu Decoction exerts anticancer effects on breast cancer via regulating MYC, BIRC5, EGF and PIK3R1 revealed by HTS(2) technology. Comput. Struct. Biotechnol. J. 2022, 20, 3461–3472. [Google Scholar] [CrossRef] [PubMed]
- Nogales, C.; Mamdouh, Z.M.; List, M.; Kiel, C.; Casas, A.I.; Schmidt, H. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci. 2022, 43, 136–150. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Jin, X.; Ma, Y.; Yang, Y.; Li, J.; Liang, L.; Liu, R.; Li, Z. A comprehensive application: Molecular docking and network pharmacology for the prediction of bioactive constituents and elucidation of mechanisms of action in component-based Chinese medicine. Comput. Biol. Chem. 2021, 90, 107402. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Xie, Y.J.; Zhang, X.K.; Huang, T.J.; Xu, H.F.; Mei, Y.; Liang, H.; Hu, H.; Lin, S.T.; Luo, F.F.; et al. GTSE1 is involved in breast cancer progression in p53 mutation-dependent manner. J. Exp. Clin. Cancer Res. 2019, 38, 152. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Deng, Y.; Li, N.; Dong, A.; Li, H.; Chen, S.; Zhang, S.; Zhang, M. Network pharmacology analysis combined with experimental validation to explore the therapeutic mechanism of Schisandra Chinensis mixture on diabetic nephropathy. J. Ethnopharmacol. 2022, 302, 115768. [Google Scholar] [CrossRef]
- Luan, F.; He, X.; Zeng, N. Tetrandrine: A review of its anticancer potentials, clinical settings, pharmacokinetics and drug delivery systems. J. Pharm. Pharmacol. 2020, 72, 1491–1512. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, M.; Liu, H.; Liu, S. A critical review: Traditional uses, phytochemistry, pharmacology and toxicology of Stephania tetrandra S. Moore (Fen Fang Ji). Phytochem. Rev. 2020, 19, 449–489. [Google Scholar] [CrossRef]
- Qian, Y.-X.; Xie, H.-M.; Zuo, T.-T.; Li, X.; Hu, Y.; Wang, H.-D.; Gao, X.-M.; Yang, W.-Z. Ultra-high performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry and database-driven automatic peak annotation for the rapid profiling and characterization of the multicomponents from stephaniae tetrandrae radix (Fang-Ji). World J. Tradit. Chin. Med. 2021, 7, 120. [Google Scholar] [CrossRef]
- Guo, Y.; Pei, X. Tetrandrine-Induced Autophagy in MDA-MB-231 Triple-Negative Breast Cancer Cell through the Inhibition of PI3K/AKT/mTOR Signaling. Evid.-Based Complement. Altern. Med. 2019, 2019, 7517431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, Z.; Zhang, Y.; Zhang, X.; Yang, Y.; Ma, Y.; Pang, D. Fangchinoline induces G1 arrest in breast cancer cells through cell-cycle regulation. Phytother. Res. 2013, 27, 1790–1794. [Google Scholar] [CrossRef]
- Xing, Z.B.; Yao, L.; Zhang, G.Q.; Zhang, X.Y.; Zhang, Y.X.; Pang, D. Fangchinoline inhibits breast adenocarcinoma proliferation by inducing apoptosis. Chem. Pharm. Bull. 2011, 59, 1476–1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, W.; Su, M.; Xie, F.; Ai, J.; Ren, Y.; Zhang, J.; Guan, R.; He, W.; Gong, Y.; Guo, Y. Tetrandrine blocks autophagic flux and induces apoptosis via energetic impairment in cancer cells. Cell Death Dis. 2014, 5, e1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, L.W.C.; Cheng, K.S.; Leong, F.; Cheung, C.W.; Shiao, L.R.; Leung, Y.M.; Wong, K.L. Enhancing tetrandrine cytotoxicity in human lung carcinoma A549 cells by suppressing mitochondrial ATP production. Naunyn Schmiedebergs Arch. Pharmacol. 2019, 392, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Shishodia, G.; Koul, S.; Dong, Q.; Koul, H.K. Tetrandrine (TET) Induces Death Receptors Apo Trail R1 (DR4) and Apo Trail R2 (DR5) and Sensitizes Prostate Cancer Cells to TRAIL-Induced Apoptosis. Mol. Cancer Ther. 2018, 17, 1217–1228. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Mu, L.; Liu, X.L.; Li, Q.; Ding, L.X.; Chen, H.C.; Hu, Y.; Li, F.S.; Sun, W.J.; He, B.C.; et al. Tetrandrine inhibits proliferation of colon cancer cells by BMP9/ PTEN/ PI3K/AKT signaling. Genes Dis. 2021, 8, 373–383. [Google Scholar] [CrossRef]
- Jiang, F.; Ren, S.; Chen, Y.; Zhang, A.; Zhu, Y.; Zhang, Z.; Li, Z.; Piao, D. Fangchinoline exerts antitumour activity by suppressing the EGFRPI3K/AKT signalling pathway in colon adenocarcinoma. Oncol. Rep. 2021, 45, 139–150. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Li, J.; Guo, S.; Lin, X.; Zhang, H.; Zhan, Y.; An, H. Tetrandrine, a novel inhibitor of ether-a-go-go-1 (Eag1), targeted to cervical cancer development. J. Cell. Physiol. 2019, 234, 7161–7173. [Google Scholar] [CrossRef]
- Fan, B.; Zhang, X.; Ma, Y.; Zhang, A. Fangchinoline Induces Apoptosis, Autophagy and Energetic Impairment in Bladder Cancer. Cell. Physiol. Biochem. 2017, 43, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, W.; He, W.; Zhang, Y.; Deng, X.; Ma, Y.; Zeng, J.; Kou, B. Tetrandrine reverses epithelial-mesenchymal transition in bladder cancer by downregulating Gli-1. Int. J. Oncol. 2016, 48, 2035–2042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Wang, C.; Wang, H.; Wang, K.; Du, Y.; Zhang, J. Combination of Tetrandrine with cisplatin enhances cytotoxicity through growth suppression and apoptosis in ovarian cancer in vitro and in vivo. Cancer Lett. 2011, 304, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Qin, R.; Shen, H.; Cao, Y.; Fang, Y.; Li, H.; Chen, Q.; Xu, W. Tetrandrine induces mitochondria-mediated apoptosis in human gastric cancer BGC-823 cells. PLoS ONE 2013, 8, e76486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, F.; Ding, D.; Li, D. Fangchinoline targets PI3K and suppresses PI3K/AKT signaling pathway in SGC7901 cells. Int. J. Oncol. 2015, 46, 2355–2363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.S.; Kim, D.H.; Lee, I.S.; Park, J.H.; Martin, G.; Safe, S.; Kim, K.J.; Kim, J.H.; Jang, B.I.; Lee, S.O. Plant Alkaloid Tetrandrine Is a Nuclear Receptor 4A1 Antagonist and Inhibits Panc-1 Cell Growth In Vitro and In Vivo. Int. J. Mol. Sci. 2022, 23, 5280. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Hu, S.; Wang, C.; Song, J.; Chen, C.; Fan, Y.; Ben-David, Y.; Pan, W. Fangchinoline derivatives induce cell cycle arrest and apoptosis in human leukemia cell lines via suppression of the PI3K/AKT and MAPK signaling pathway. Eur. J. Med. Chem. 2020, 186, 111898. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Hou, R. Tetrandrine Reverses Paclitaxel Resistance in Human Ovarian Cancer via Inducing Apoptosis, Cell Cycle Arrest Through beta-Catenin Pathway. Onco Targets Ther. 2020, 13, 3631–3639. [Google Scholar] [CrossRef]
- Li, D.; Lu, Y.; Sun, P.; Feng, L.X.; Liu, M.; Hu, L.H.; Wu, W.Y.; Jiang, B.H.; Yang, M.; Qu, X.B.; et al. Inhibition on Proteasome beta1 Subunit Might Contribute to the Anti-Cancer Effects of Fangchinoline in Human Prostate Cancer Cells. PLoS ONE 2015, 10, e0141681. [Google Scholar] [CrossRef]
- Li, X.; Yang, Z.; Han, W.; Lu, X.; Jin, S.; Yang, W.; Li, J.; He, W.; Qian, Y. Fangchinoline suppresses the proliferation, invasion and tumorigenesis of human osteosarcoma cells through the inhibition of PI3K and downstream signaling pathways. Int. J. Mol. Med. 2017, 40, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Kou, B.; Ma, Z.K.; Tang, X.S.; Lv, C.; Ye, M.; Chen, J.Q.; Li, L.; Wang, X.Y.; He, D.L. Tetrandrine suppresses proliferation, induces apoptosis, and inhibits migration and invasion in human prostate cancer cells. Asian J. Androl. 2015, 17, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Castrejón-Jiménez, N.S.; Leyva-Paredes, K.; Baltierra-Uribe, S.L.; Castillo-Cruz, J.; Campillo-Navarro, M.; Hernández-Pérez, A.D.; Luna-Angulo, A.B.; Chacón-Salinas, R.; Coral-Vázquez, R.M.; Estrada-García, I.; et al. Ursolic and Oleanolic Acids Induce Mitophagy in A549 Human Lung Cancer Cells. Molecules 2019, 24, 3444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, X.Y.; Liu, Y.G.; Song, W.; Li, Y.Y.; Hou, D.S.; Luo, H.M.; Liu, P. Anticancer activity of tetrandrine by inducing pro-death apoptosis and autophagy in human gastric cancer cells. J. Pharm. Pharmacol. 2018, 70, 1048–1058. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.Y.; Chinnathambi, A.; Alahmadi, T.A.; Alharbi, S.A.; Kumar, A.P.; Sethi, G.; Ahn, K.S. Fangchinoline targets epithelial-mesenchymal transition process by modulating activation of multiple cell-signaling pathways. J. Cell. Biochem. 2022, 123, 1222–1236. [Google Scholar] [CrossRef]
- Zhao, Q.; Jia, X.; Zhang, Y.; Dong, Y.; Lei, Y.; Tan, X.; Williamson, R.A.; Wang, A.; Zhang, D.; Ma, J. Tetrandrine induces apoptosis in human neuroblastoma through regulating the Hippo/YAP signaling pathway. Biochem. Biophys. Res. Commun. 2019, 513, 846–851. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Q.; Yu, L.; Zhu, J.; Cao, Y.; Gao, X. The signaling pathways and targets of traditional Chinese medicine and natural medicine in triple-negative breast cancer. J. Ethnopharmacol. 2021, 264, 113249. [Google Scholar] [CrossRef]
- Yu, B.; Yuan, B.; Li, J.; Kiyomi, A.; Kikuchi, H.; Hayashi, H.; Hu, X.; Okazaki, M.; Sugiura, M.; Hirano, T.; et al. JNK and Autophagy Independently Contributed to Cytotoxicity of Arsenite combined With Tetrandrine via Modulating Cell Cycle Progression in Human Breast Cancer Cells. Front. Pharmacol. 2020, 11, 1087. [Google Scholar] [CrossRef]
- Zhu, K.; Wu, Y.; He, P.; Fan, Y.; Zhong, X.; Zheng, H.; Luo, T. PI3K/AKT/mTOR-Targeted Therapy for Breast Cancer. Cells 2022, 11, 2508. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, J.; Zhang, H.; Wang, J.; Hua, H.; Jiang, Y. The role of network-forming collagens in cancer progression. Int. J. Cancer 2022, 151, 833–842. [Google Scholar] [CrossRef]
- Wang, C.H.; Yang, J.M.; Guo, Y.B.; Shen, J.; Pei, X.H. Anticancer Activity of Tetrandrine by Inducing Apoptosis in Human Breast Cancer Cell Line MDA-MB-231 In Vivo. Evid.-Based Complement. Altern. Med. 2020, 2020, 6823520. [Google Scholar] [CrossRef]
- Xu, H.; Li, Y.; Han, B.; Li, Z.; Wang, B.; Jiang, P.; Zhang, J.; Ma, W.; Zhou, D.; Li, X.; et al. β-Sitosterol-D-glucoside from sweet potato exerts an anti-breast cancer activity by upregulating microRNA-10a and PI3K/Akt signaling pathway. J. Agric. Food Chem. 2018, 66, 9704–9718. [Google Scholar] [CrossRef] [PubMed]
- Awad, A.B.; Chinnam, M.; Fink, C.S.; Bradford, P.G. beta-Sitosterol activates Fas signaling in human breast cancer cells. Phytomedicine 2007, 14, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Dian, L.; Xu, Z.; Sun, Y.; Li, J.; Lu, H.; Zheng, M.; Wang, J.; Drobot, L.; Horak, I. Berberine alkaloids inhibit the proliferation and metastasis of breast carcinoma cells involving Wnt/beta-catenin signaling and EMT. Phytochemistry 2022, 200, 113217. [Google Scholar] [CrossRef]
- Yu, F.X.; Zhao, B.; Panupinthu, N.; Jewell, J.L.; Lian, I.; Wang, L.H.; Zhao, J.; Yuan, H.; Tumaneng, K.; Li, H.; et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 2012, 150, 780–791. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Xing, Z.; Wang, F.; Yuan, X.; Zhang, Y. Fangchinoline inhibits migration and causes apoptosis of human breast cancer MDA-MB-231 cells. Oncol. Lett. 2017, 14, 5307–5312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandrika, B.B.; Steephan, M.; Kumar, T.R.S.; Sabu, A.; Haridas, M. Hesperetin and Naringenin sensitize HER2 positive cancer cells to death by serving as HER2 Tyrosine Kinase inhibitors. Life Sci. 2016, 160, 47–56. [Google Scholar] [CrossRef]
- Sorrentino, G.; Ruggeri, N.; Zannini, A.; Ingallina, E.; Bertolio, R.; Marotta, C.; Neri, C.; Cappuzzello, E.; Forcato, M.; Rosato, A.; et al. Glucocorticoid receptor signalling activates YAP in breast cancer. Nat. Commun. 2017, 8, 14073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harbeck, N.; Penault-Llorca, F.; Cortes, J.; Gnant, M.; Houssami, N.; Poortmans, P.; Ruddy, K.; Tsang, J.; Cardoso, F. Breast cancer. Nat. Rev. Dis. Primers 2019, 5, 66. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.K.; Matchett, K.B.; Coulter, J.A.; Yuen, H.F.; McCrudden, C.M.; Zhang, S.D.; Irwin, G.W.; Davidson, M.A.; Rulicke, T.; Schober, S.; et al. Erythropoietin drives breast cancer progression by activation of its receptor EPOR. Oncotarget 2017, 8, 38251–38263. [Google Scholar] [CrossRef] [Green Version]
- Duffy, M.J.; Synnott, N.C.; Crown, J. Mutant p53 in breast cancer: Potential as a therapeutic target and biomarker. Breast Cancer Res. Treat. 2018, 170, 213–219. [Google Scholar] [CrossRef]
- Bertucci, F.; Ng, C.K.Y.; Patsouris, A.; Droin, N.; Piscuoglio, S.; Carbuccia, N.; Soria, J.C.; Dien, A.T.; Adnani, Y.; Kamal, M.; et al. Genomic characterization of metastatic breast cancers. Nature 2019, 569, 560–564. [Google Scholar] [CrossRef] [PubMed]
- Hoesel, B.; Schmid, J.A. The complexity of NF-kappaB signaling in inflammation and cancer. Mol. Cancer 2013, 12, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, D.; Li, Z.; Lv, F.; Yang, Y.; Yang, C.; Song, J.; Chen, Y.; Jin, Z.; Zhou, J.; Jiang, Y.; et al. Pan-Cancer Analysis of NOS3 Identifies Its Expression and Clinical Relevance in Gastric Cancer. Front. Oncol. 2021, 11, 592761. [Google Scholar] [CrossRef] [PubMed]
- Ambasta, R.K.; Gupta, R.; Kumar, D.; Bhattacharya, S.; Sarkar, A.; Kumar, P. Can luteolin be a therapeutic molecule for both colon cancer and diabetes? Brief. Funct. Genom. 2018, 18, 230–239. [Google Scholar] [CrossRef]
- Ramos, I.; Fernandez-Sesma, A. Modulating the Innate Immune Response to Influenza A Virus: Potential Therapeutic Use of Anti-Inflammatory Drugs. Front. Immunol. 2015, 6, 361. [Google Scholar] [CrossRef]
Mol ID | Molecule Name | OB (%) | DL | MW | Structure |
---|---|---|---|---|---|
MOL002331 | N-Methylflindersine | 32.36 | 0.18 | 241.31 | |
MOL002333 | Tetraneurin A | 35.4 | 0.31 | 322.39 | |
MOL002341 | Hesperetin | 70.31 | 0.27 | 302.30 | |
MOL000358 | beta-sitosterol | 36.91 | 0.75 | 414.79 | |
MOL002344 | cyclanoline | 2.64 | 0.57 | 342.45 | |
MOL002343 | tetrandrine | 26.64 | 0.10 | 622.82 | |
MOL002342 | fangchinoline | 11.73 | 0.11 | 608.79 |
No. | UniProtKB | Gene Names | Protein Names |
---|---|---|---|
1 | P07550 | ADRB2 | Beta-2 adrenergic receptor |
2 | Q07812 | BAX | Apoptosis regulator BAX |
3 | P10415 | BCL2 | Apoptosis regulator Bcl-2 |
4 | P00918 | CA2 | Carbonic anhydrase 2 |
5 | P42574 | CASP3 | Caspase-3 |
6 | Q14790 | CASP8 | Caspase-8 |
7 | P55211 | CASP9 | Caspase-9 |
8 | P24385 | CCND1 | G1/S-specific cyclin-D1 |
9 | P11802 | CDK4 | Cyclin-dependent kinase 4 |
10 | P38936 | CDKN1A | Cyclin-dependent kinase inhibitor 1 |
11 | P32297 | CHRNA3 | Neuronal acetylcholine receptor subunit alpha-3 |
12 | Q01094 | E2F1 | Transcription factor E2F1 |
13 | P01100 | FOS | Proto-oncogene c-Fos |
14 | P01579 | IFNG | Interferon gamma |
15 | P60568 | IL2 | Interleukin-2 |
16 | P01589 | IL2RA | Interleukin-2 receptor subunit alpha |
17 | P24394 | IL4 | Interleukin-4 |
18 | P05412 | JUN | Transcription factor AP-1 |
19 | Q15788 | NCOA1 | Nuclear receptor coactivator 1 |
20 | Q15596 | NCOA2 | Nuclear receptor coactivator 2 |
21 | P35228 | NOS2 | Nitric oxide synthase, inducible |
22 | P29474 | NOS3 | Nitric oxide synthase, endothelial |
23 | P06401 | PGR | Progesterone receptor |
24 | P48736 | PIK3CG | Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform |
25 | P27169 | PON1 | Serum paraoxonase/arylesterase 1 |
26 | P17252 | PRKCA | Protein kinase C alpha type |
27 | P23219 | PTGS1 | Prostaglandin G/H synthase 1 |
28 | P35354 | PTGS2 | Prostaglandin G/H synthase 2 |
29 | Q04206 | RELA | Transcription factor p65 |
30 | P19793 | RXRA | Retinoic acid receptor RXR-alpha |
31 | P84022 | SMAD3 | Mothers against decapentaplegic homolog 3 |
32 | O15105 | SMAD7 | Mothers against decapentaplegic homolog 7 |
33 | P01137 | TGFB1 | Transforming growth factor beta-1 |
34 | P04637 | TP53 | Cellular tumor antigen p53 |
Coronavirus Pathogenesis Pathway | −log(p-Value) | Molecules |
---|---|---|
Glucocorticoid Receptor Signaling | 24 | BAX, BCL2, CASP3, CASP8, CASP9, CCND1, CDK4, E2F1, FOS, IFNG, JUN, PTGS2, RELA, SMAD3, TGFB1, TP53 |
Molecular Mechanisms of Cancer | 23.3 | ADRB2, BCL2, CDKN1A, FOS, IFNG, IL2, IL2RA, IL4, JUN, NCOA1, NCOA2, NOS2, NOS3, PGR, PIK3CG, PTGS2, RELA, RXRA, SMAD3, TGFB1 |
HER-2 Signaling in BC | 22 | BAX, BCL2, CASP3, CASP8, CASP9, CCND1, CDK4, CDKN1A, E2F1, FOS, JUN, PIK3CG, PRKCA, RELA, SMAD3, SMAD7, TGFB1, TP53, |
Pancreatic Adenocarcinoma Signaling | 19.3 | CASP3, CASP9, CCND1, CDK4, CDKN1A, FOS, JUN, PGR, PIK3CG, PRKCA, PTGS2, RELA, SMAD3, TP53 |
IL-12 Signaling and Production in Macrophages | 18.8 | BCL2, CASP9, CCND1, CDK4, CDKN1A, E2F1, PIK3CG, PTGS2, RELA, SMAD3, TGFB1, TP53 |
Colorectal Cancer Metastasis Signaling | 18.4 | FOS, IFNG, IL4, JUN, NCOA1, NOS2, PIK3CG, PON1, PRKCA, RELA, RXRA, TGFB1 |
Aryl Hydrocarbon Receptor Signaling | 18.3 | BAX, CASP3, CASP9, CCND1, FOS, IFNG, JUN, NOS2, PIK3CG, PTGS2, RELA, SMAD3, TGFB1, TP53 |
Erythropoietin Signaling Pathway | 17.6 | BAX, CCND1, CDK4, CDKN1A, E2F1, FOS, JUN, NCOA2, RELA, RXRA, TGFB1, TP53 |
Small Cell Lung Cancer Signaling | 17 | CCND1, FOS, IFNG, IL2, IL4, JUN, NOS3, PIK3CG, PRKCA, RELA, TGFB1, TP53 |
Coronavirus Pathogenesis Pathway | 16 | BCL2, CASP9, CCND1, CDK4, E2F1, PIK3CG, PTGS2, RELA, RXRA, TP53 |
Gene Name | PDB ID | Tet | Fang | Cyclanoline | Hesperetin | Beta-Sitosterol | N- Methylflindersine |
---|---|---|---|---|---|---|---|
TP53 | 5O1E | −7.5 | −7.8 | −7.6 | −7.8 | −7.2 | −8 |
JUN | 5FV8 | −7.3 | −7.3 | −6.4 | −6.3 | −6.4 | −6.2 |
Casp3 | 1NMS | −8.5 | −8.8 | −7.3 | −7 | −7.2 | −7.1 |
RELA | 3QXY | −9.2 | −9.5 | −8.2 | −7.2 | −7.1 | −8.4 |
PTGS2 | 5F19 | −10.2 | −10.5 | −8.2 | −8.2 | −7.9 | −9 |
NOS3 | 4D1P | −9.2 | −10.3 | −8.4 | −7.8 | −7.6 | −8.1 |
Casp8 | 6PX9 | −7.2 | −7.5 | −7.1 | −7 | −7.8 | −8.5 |
PIK3CG | 4WWO | −9 | −10.6 | −7.9 | −7.9 | −7.8 | −7.8 |
IL2 | 1M49 | −8.6 | −9.2 | −7.7 | −7.4 | −8 | −6.8 |
Bcl2 | 6QGK | −8.7 | −9.2 | −7.5 | −7.2 | −7.3 | −8.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Wang, Y.; Yan, J.; Hou, C.; Zhong, X.; Zhao, Y.; Zhou, Q.; Wang, X. Network Pharmacology and Molecular Docking Integrated Strategy to the Screening of Active Components and Mechanisms of Stephaniae Tetrandrae Radix on Breast Cancer. Processes 2022, 10, 2340. https://doi.org/10.3390/pr10112340
Wang K, Wang Y, Yan J, Hou C, Zhong X, Zhao Y, Zhou Q, Wang X. Network Pharmacology and Molecular Docking Integrated Strategy to the Screening of Active Components and Mechanisms of Stephaniae Tetrandrae Radix on Breast Cancer. Processes. 2022; 10(11):2340. https://doi.org/10.3390/pr10112340
Chicago/Turabian StyleWang, Kaiyue, Yi Wang, Junyuan Yan, Chunyu Hou, Xinqin Zhong, Yucui Zhao, Qian Zhou, and Xiaoying Wang. 2022. "Network Pharmacology and Molecular Docking Integrated Strategy to the Screening of Active Components and Mechanisms of Stephaniae Tetrandrae Radix on Breast Cancer" Processes 10, no. 11: 2340. https://doi.org/10.3390/pr10112340
APA StyleWang, K., Wang, Y., Yan, J., Hou, C., Zhong, X., Zhao, Y., Zhou, Q., & Wang, X. (2022). Network Pharmacology and Molecular Docking Integrated Strategy to the Screening of Active Components and Mechanisms of Stephaniae Tetrandrae Radix on Breast Cancer. Processes, 10(11), 2340. https://doi.org/10.3390/pr10112340