Purification, Structural Elucidation, and Anticancerous Properties of a Novel Flavonoid from Flowers of Leucas indica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Collection of Plant Material
2.3. Cell Viability Assay
2.3.1. Preparation of Cell Suspension
2.3.2. Silica Gel Column Chromatography
2.3.3. Thin Layer Chromatography (TLC)
2.3.4. Purification of the Active Compound by High Performance Liquid Chromatography (HPLC)
2.4. Physical and Structural Characterization of the Purified Bioactive Compound
2.4.1. UV-Visible Spectrum
2.4.2. Infrared (IR) Spectroscopy
2.4.3. Mass Spectrometry
2.4.4. Nuclear Magnetic Resonance Spectroscopy (NMR)
3. Results
- 3C DEPT 45 NMR: δ 146.81, 123.50, 114.99, 114.47, 105.59, 55.98, 49.61, 31.93, 30.63, 30.67, 29.70, 29.36, 22.69, 17.62, 14.12.
- 13C DEPT 90 NMR: δ 146.73, 123.50, 114.82, 114.54, 109.53, 76.86, 29.70.
- 13C DEPT 135 NMR: δ 163.47, 146.83, 123.57, 115.61, 114.81, 114.53, 109.53, 55.97, 49.60, 31.93, 30.67, 29.70, 29.36, 22.69, 17.63, 14.12.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Miranda-Filho, A.; Bray, F. Global patterns and trends in cancers of the lip, tongue and mouth. Oral Oncol. 2020, 102, 104551. [Google Scholar] [CrossRef]
- Garcia-Oliveira, P.; Otero, P.; Pereira, A.; Chamorro, F.; Carpena, M.; Echave, J.; Fraga-Corral, M.; Simal-Gandara, J.; Prieto, M. Status and Challenges of Plant-Anticancer Compounds in Cancer Treatment. Pharmaceuticals 2021, 14, 157. [Google Scholar] [CrossRef]
- Greenwell, M.; Rahman, P. Medicinal Plants: Their Use in Anticancer Treatment. Int. J. Pharm. Sci. Res. 2015, 6, 4103–4112. [Google Scholar]
- Iqbal, J.; Abbasi, B.H.; Mahmood, T.; Kanwal, S.; Ali, B.; Shah, S.A.; Khalil, A.T. Plant-derived anticancer agents: A green anticancer approach. Asian Pac. J. Trop. Biomed. 2017, 7, 1129–1150. [Google Scholar] [CrossRef]
- Lichota, A.; Gwozdzinski, K. Anticancer Activity of Natural Compounds from Plant and Marine Environment. Int. J. Mol. Sci. 2018, 19, 3533. [Google Scholar] [CrossRef] [Green Version]
- Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front. Pharmacol. 2020, 10, 1614. [Google Scholar] [CrossRef] [Green Version]
- Clardy, J.; Walsh, C. Lessons from natural molecules. Nature 2004, 432, 829–837. [Google Scholar] [CrossRef]
- Valentino, G.; Graziani, V.; D’Abrosca, B.; Pacifico, S.; Fiorentino, A.; Scognamiglio, M. NMR-Based Plant Metabolomics in Nutraceutical Research: An Overview. Molecules 2020, 25, 1444. [Google Scholar] [CrossRef] [Green Version]
- Desai, A.G.; Qazi, G.N.; Ganju, R.K.; El-Tamer, M.; Singh, J.; Saxena, A.K.; Bedi, Y.S.; Taneja, S.C.; Bhat, H.K. Medicinal Plants and Cancer Chemoprevention. Curr. Drug Metab. 2008, 9, 581–591. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Sharma, B.; Kanwar, S.S.; Kumar, A. Lead Phytochemicals for Anticancer Drug Development. Front. Plant Sci. 2016, 7, 1667. [Google Scholar] [CrossRef]
- Hedge, I.C. Labiatae of South-West Asia: Diversity, distribution and endemism. Proc. R. Soc. Edinburgh. Sect. B Boil. Sci. 1986, 89, 23–35. [Google Scholar] [CrossRef]
- Das, S.N.; Patro, V.J.; Dinda, S.C. A review on Ethanobotanical survey of genus Leucas. Pharmacogn. Rev. 2012, 6, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, V.S. Further notes on the ethno botany of Cannanore district, Kerala. J. Econ. Tax Bot. 1987, 11, 47–50. [Google Scholar]
- Maïkere-Faniyo, R.; Van Puyvelde, L.; Mutwewingabo, A.; Habiyaremye, F. Study of Rwandese medicinal plants used in the treatment of diarrhoea I. J. Ethnopharmacol. 1989, 26, 101–109. [Google Scholar] [CrossRef]
- Selvanayahgam, Z.E.; Gnanevendhan, S.G.; Balakrishna, K.; Rao, R.B. Antisnake venom botanicals from ethno medicine. J. Herbs Spices Med. Plants 1994, 2, 45–100. [Google Scholar] [CrossRef]
- Saha, K.; Mukherjee, P.K.; Das, J.; Pal, M.; Saha, B. Wound healing activity of Leucas lavandulaefolia Rees. J. Ethnopharmacol. 1997, 56, 139–144. [Google Scholar] [CrossRef]
- Mangathayaru, K.; Lakshmikant, J.; Sundar, N.S.; Swapna, R.; Grace, X.F.; Vasantha, J. Antimicrobial activity of Leucas aspera flowers. Fitoterapia 2005, 76, 752–754. [Google Scholar] [CrossRef]
- Manivannana, R.; Sukumar, D. The RBC membrane stabilization in an in vitro method by the drug isolated from Leucas aspera. Int. J. Appl Sci Eng. 2007, 5, 133–138. [Google Scholar]
- Sowjanya, M.; Kiran Kumar, M.; Sandeep, B.V. Assessment of Phytochemicals and Antioxidant activities of Leucas indica aerial parts—A comparative study. Int. J. Life Sci. 2016, 4, 29–43. [Google Scholar]
- Mattana, C.M.; Satorres, S.E.; Escobar, F. Antibacterial and cytotoxic activities of acacia aroma extracts. Emir. J. Food Agric. 2012, 24, 308–313. [Google Scholar]
- Suffness, M.; Pezzuto, J.M. Assays related to cancer drug discovery. In Methods in Plant Biochemistry: Assays for Bioactivity; Hostettmann, K., Ed.; Academic Press: London, UK, 1990; pp. 71–133. [Google Scholar]
- Babykutty, S.; Padikkala, J.; Sathiadevan, P.; Vijayakurup, V.; Azis, T.; Srinivas, P.; Gopala, S. Apoptosis induction of Centella asiatica on human breast cancer cells. Afr. J. Tradit. Complement. Altern. Med. 2009, 6, 9–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, T.; Ali, M.; Khan, A.; Nisar, P.; Jan, S.A.; Afridi, S.; Shinwari, Z.K. Anticancer Plants: A Review of the Active Phytochemicals, Applications in Animal Models, and Regulatory Aspects. Biomolecules 2019, 10, 47. [Google Scholar] [CrossRef] [Green Version]
- Madhu, G.C.; Kannaiyan, J.; Paulraj, B.; Veeramani, V. Anti-diabetic, Anti-cancer Activity and Associated Toxicity of Leucas aspera Extract in Wistar Albino Rats. Int. J. Pharm. Sci. Drug Res. 2019, 11, 387–392. [Google Scholar] [CrossRef] [Green Version]
- Jayanthi, M.K. Evaluation of anticancer activity of ethanol extract of Leucas aspera flower. Int. J. Green Pharm. 2020, 14, 257. [Google Scholar]
- Meghashri, S.; Kumar, H.V.; Gopal, S. Antioxidant properties of a novel flavonoid from leaves of Leucas aspera. Food Chem. 2010, 122, 105–110. [Google Scholar] [CrossRef]
- Vinayagam, A.V.A.; Sudha, P.N.S.P.N. In Vitro Cytotoxicity Activity of Acteoside from Leucas Indica Flowers. Indian J. Appl. Res. 2011, 4, 1–3. [Google Scholar] [CrossRef]
- Mostafa, M.; Nilufar, N.; Mosihuzzaman, M.; Talat, M.; Iqbal, M.C.; Attaur, R. Free radical scavenging phenylethanoid glycosides from Leucas indica Linn. Nat. Prod Res. 2007, 21, 354–361. [Google Scholar] [CrossRef]
- Shah, M.; Prajapati, M.; Patel, J.; Modi, K. Leucas aspera: A review. Pharmacogn. Rev. 2010, 4, 85–87. [Google Scholar] [CrossRef]
- Molla, M.I.; Ela, S.P. Leucas Zeylanica Is a Bangladeshi Plant with Significant Medicinal Prospect: A Review. GSC Biol. Pharm. Sci. 2021, 16, 011–018. [Google Scholar] [CrossRef]
- Huang, W.; Ding, Y.; Miao, Y.; Liu, M.-Z.; Li, Y.; Yang, G.-F. Synthesis and antitumor activity of novel dithiocarbamate substituted chromones. Eur. J. Med. Chem. 2009, 44, 3687–3696. [Google Scholar] [CrossRef] [PubMed]
- Desideri, N.; Mastromarino, P.; Conti, C. Synthesis and Evaluation of Antirhinovirus Activity of 3-Hydroxy and 3-Methoxy 2-Styrylchromones. Antivir. Chem. Chemother. 2003, 14, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Nam, D.H.; Lee, K.Y.; Moon, C.S.; Lee, Y.S. Synthesis and anticancer activity of chromone-based analogs of lavendustin A. Eur. J. Med. Chem. 2010, 45, 4288–4292. [Google Scholar] [CrossRef] [PubMed]
- Chohan, Z.H.; Shaikh, A.U.; Naseer, M.M.; Supuran, C.T. In-vitro antibacterial, antifungal and cytotoxic properties of metal-based furanyl derived sulfonamides. J. Enzyme Inhib. Med. Chem. 2006, 21, 771–781. [Google Scholar] [CrossRef]
- Awadallah, F.M.; El-Waei, T.A.; Hanna, M.M.; Abbas, S.E.; Ceruso, M.; Oz, B.E.; Guler, O.O.; Supuran, C.T. Synthesis, carbonic anhydrase inhibition and cytotoxic activity of novel chromone-based sulfonamide derivatives. Eur. J. Med. Chem. 2015, 96, 425–435. [Google Scholar] [CrossRef]
S. No | Mobile Phase | Ratio | Fraction Number | Total No. of Volume COLLECTED (mL) |
---|---|---|---|---|
1 | Chloroform | 100 | 1–5 | 250 (each 50 mL) |
2 | Chloroform:Methanol | 80:20 | 6–10 | 250 (each 50 mL) |
3 | Chloroform:Methanol | 60:40 | 11–15 | 250 (each 50 mL) |
4 | Chloroform:Methanol | 40:60 | 16–20 | 250 (each 50 mL) |
5 | Chloroform:Methanol | 20:80 | 21–25 | 250 (each 50 mL) |
6 | Methanol | 100 | 26–30 | 250 (each 50 mL) |
Sample Conc. (µg/mL) | % Cell Viability | |||
---|---|---|---|---|
MCF | HeLa | HCT-116 | HL 60 | |
0 | 100 | 100 | 100 | 100 |
5 | 70.14 | 90.23 | 81.9 | 77.91 |
10 | 60.95 | 86.29 | 79.84 | 69.34 |
15 | 53.08 | 62.09 | 71.89 | 60.67 |
30 | 41.26 | 58.41 | 58.16 | 51.19 |
90 | 28.28 | 37.56 | 49.16 | 44.16 |
120 | 26.78 | 28.23 | 40.26 | 30.36 |
200 | 19.60 | 19.46 | 39.78 | 26.49 |
300 | 15.74 | 16.81 | 26.55 | 19.66 |
IC50 | 16.429 | 73.549 | 190.587 | 206.465 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sowjanya, M.; Venkata Sandeep, B.; Venkaiah, K.; Dirisala, V.R.; Reddy, M.H.; Pradeepkiran, J.A.; Sainath, S.B. Purification, Structural Elucidation, and Anticancerous Properties of a Novel Flavonoid from Flowers of Leucas indica. Processes 2022, 10, 2341. https://doi.org/10.3390/pr10112341
Sowjanya M, Venkata Sandeep B, Venkaiah K, Dirisala VR, Reddy MH, Pradeepkiran JA, Sainath SB. Purification, Structural Elucidation, and Anticancerous Properties of a Novel Flavonoid from Flowers of Leucas indica. Processes. 2022; 10(11):2341. https://doi.org/10.3390/pr10112341
Chicago/Turabian StyleSowjanya, Muthyam, Bhagavathula Venkata Sandeep, Kaduru Venkaiah, Vijaya R. Dirisala, Malapati Hanuma Reddy, Jangampalli Adi Pradeepkiran, and Sri Bhashyam Sainath. 2022. "Purification, Structural Elucidation, and Anticancerous Properties of a Novel Flavonoid from Flowers of Leucas indica" Processes 10, no. 11: 2341. https://doi.org/10.3390/pr10112341
APA StyleSowjanya, M., Venkata Sandeep, B., Venkaiah, K., Dirisala, V. R., Reddy, M. H., Pradeepkiran, J. A., & Sainath, S. B. (2022). Purification, Structural Elucidation, and Anticancerous Properties of a Novel Flavonoid from Flowers of Leucas indica. Processes, 10(11), 2341. https://doi.org/10.3390/pr10112341