Prediction of Soil Water Thresholds for Trees in the Semi-Arid Region on the Loess Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Calculation of θCB
2.2. Data of Soil and Trees
3. Results
3.1. Relationship between θTHR and θCB
3.2. θR-CB and FTSWTHR
3.3. Effects of Soil and Tree on other
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviations | Phrase |
θ | Soil water content |
θTHR | Soil water content threshold |
θFC | Field capacity |
Pn | Photosynthetic rate |
Tr | Transpiration rate |
TPAW | Total plant available water |
FPAW | Fraction of plant available water |
FTSW | Fraction of transpirable soil water |
APAW | Actual plant available water |
ATSW | Actual transpirable soil water |
TTSW | Total transpirable soil water |
θPWP | Permanent wilting point |
FPAWTHR | Threshold FPAW |
FTSWTHR | Threshold FTSW |
SWRC | Soil water retention curve |
θCB | Capillary break capacity |
θCB-E | Empirical estimate of capillary break water |
θR-CB | The ratio of θCB to θFC |
θR-THR | The ratio of θTHR to θFC |
θMH | The maximum hygroscopy |
θHE | Soil water held by surface tension |
Db | Soil bulk density |
References
- Ritchie, J.T. Water dynamics in the soil-plant-atmosphere system. Pant Soil 1981, 58, 81–96. [Google Scholar]
- Sadras, V.O.; Milroy, S.P. Soil-water thresholds for the responses of leaf expansion and gas exchange: A review. Field Crop. Res. 1996, 47, 253–266. [Google Scholar] [CrossRef]
- Devi, M.J.; Sinclair, T.R.; Beebe, S.E.; Rao, I.M. Comparison of common bean (Phaseolus vulgaris L.) genotypes for nitrogen fixation tolerance to soil drying. Plant Soil 2013, 364, 29–37. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Ludlow, M.M. Influence of Soil Water Supply on the Plant Water Balance of Four Tropical Grain Legumes. Aust. J. Plant Physiol. 1986, 13, 329–341. [Google Scholar] [CrossRef]
- Lecoeur, J.; Wery, J.; Sinclair, T.R. Model of Leaf Area Expansion in Field Pea Subjected to Soil Water Deficits. Agron. J. 1996, 88, 467–472. [Google Scholar] [CrossRef]
- Rosenthal, W.D.; Arkin, G.F.; Shouse, P.J.; Jordan, W.R. Water Deficit Effects on Transpiration and Leaf Growth. Agron. J. 1987, 79, 1019–1026. [Google Scholar] [CrossRef]
- Casadebaig, P.; Debaeke, P.; Lecoeur, J. Thresholds for leaf expansion and transpiration response to soil water deficit in a range of sunflower genotypes. Eur. J. Agron. 2008, 28, 646–654. [Google Scholar] [CrossRef]
- Gholipoor, M.; Sinclair, T.R.; Prasad, P.V.V. Genotypic variation within sorghum for transpiration response to drying soil. Plant Soil 2012, 357, 35–40. [Google Scholar] [CrossRef]
- Nable, R.O.; Robertson, M.J.; Berthelsen, S. Response of shoot growth and transpiration to soil drying in sugarcane. Plant Soil 1998, 207, 59–65. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Zhang, G.C.; Gu, S.Y.; Xia, J.B.; Zhao, J.K. Critical responses of photosynthetic efficiency of goldspur apple tree to soil water variation in semiarid loess hilly area. Photosynthetica 2010, 48, 589–595. [Google Scholar] [CrossRef]
- Zhang, G.-C.; Xia, J.-B.; Shao, H.-B.; Zhang, S.-Y. Grading Woodland Soil Water Productivity and Soil Bioavailability in the Semi-Arid Loess Plateau of China. CLEAN–Soil Air Water 2012, 40, 148–153. [Google Scholar] [CrossRef]
- Lagergren, F.; Lindroth, A. Transpiration response to soil moisture in pine and spruce trees in Sweden. Agric. For. Meteorol. 2002, 112, 67–85. [Google Scholar] [CrossRef]
- Robertson, M.J.; Fukai, S. Comparison of water extraction models for grain sorghum under continuous soil drying. Field Crop. Res. 1994, 36, 145–160. [Google Scholar] [CrossRef]
- Richards, L.A.; Weaver, L.R. Fifteen-atmosphere percentage as related to the permanent wilting point. Soil Sci. 1944, 56, 331–339. [Google Scholar] [CrossRef]
- Silva, A.P.; Kay, B.D.; Perfect, E. Characterization of the Least Limiting Water Range of Soils. Soil Sci. Soc. Am. J. 1994, 58, 1775–1781. [Google Scholar] [CrossRef]
- Zhuang, J.; Wang, W. Studies on the relationship between soil water-retention characters in low suction range and the early stage of soil drought. Acta Pedol. Sin. 1986, 23, 29–31. [Google Scholar]
- Shao, X.; Wang, Y.; Bi, L.; Dai, L.; Yuan, Y.; Su, X.; Mo, J. Evaluation on soil water validity using optimum partitioning clustering method. Trans. CSAE 2010, 26, 106–111. [Google Scholar]
- Shao, M.; Horton, R. Integral Method for Estimating Soil Hydraulic Properties. Soil Sci. Soc. Am. J. 1998, 62, 585–592. [Google Scholar] [CrossRef]
- Xia, J.-B.; Zhang, S.-Y.; Zhao, Z.-G.; Zhao, Y.-Y.; Gao, Y.; Gu, G.-Y.; Sun, J.-K. Critical effect of photosynthetic efficiency in Salix matsudana to soil moisture and its thres-hold grade in shell ridge island. Chin. J. Plant Ecol. 2013, 37, 851–860. [Google Scholar] [CrossRef]
- Lang, Y.; Wang, M. Threshold Effect of Photosynthesis in Forsythia suspense to Soil Water and its Photosynthetic Productivity Grading in Spring and Summer. Sci. Silvae Sin. 2016, 52, 38–46. [Google Scholar]
- Qian, S. On theoretical equation of field moisture capacity. Acta Pedol. Sin. 1985, 22, 233–240. [Google Scholar]
- Brutsaert, W. Probability laws for pore-size distribution. Soil Sci. 1966, 101, 85–92. [Google Scholar] [CrossRef]
- Terleev, V.V.; Mirschel, W.; Badenko, V.L.; Guseva, I.Y. An improved Mualem–Van Genuchten method and its verification using data on Beit Netofa clay. Eurasian Soil Sci. 2017, 50, 445–455. [Google Scholar] [CrossRef]
- Zhang, W. Studies on Photosynthetic Physiology and Water Consumption Characteristics of Main Tree Species in Semi-Arid Region on Loess Plateau; Beijing Forest University: Beijing, China, 2006. [Google Scholar]
- Zhang, C.Z.; Liu, X.; He, K.N. Grading of Robinia pseudoacacia and Platycladus orientalis woodland soil's water availability and productivity in semi-arid region of Loess Plateau. Chin. J. Appl. Ecol. 2003, 14, 858–862. [Google Scholar]
- Wu, Y. Studying on the Soil Water Availability to Typical Plants on the Loess Plauteau; Gruduate University of Chinese Academy of Sciences: Beijing, China, 2010. [Google Scholar]
- Xia, J.-B.; Zhang, G.-C.; Sun, J.-K.; Liu, X. Threshold effects of photosynthetic and physiological parameters in Prunus sibirica to soil moisture and light intensity. Chin. J. Plant Ecol. 2011, 35, 322–329. [Google Scholar] [CrossRef]
- Jing, X.; Fan, S.; Cai, C.; Liu, G.; Wang, S.; Luo, H.; Liu, M. Classification of soil water availability and productivity of Moso bamboo (Phyllostachys edulis) seedlings based on photosynthetic characteristics. Chin. J. Ecol. 2021, 40, 3088–3097. [Google Scholar]
- Haise, H.R.; Haas, H.J.; Jensen, L.R. Soil Moisture Studies of Some Great Plains Soils: II. Field Capacity as Related to 1/3-Atmosphere Percentage, and “Minimum Point” as Related to 15- and 26-Atmosphere Percentages. Soil Sci. Soc. Am. J. 1955, 19, 20–25. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Drury, C.F.; Yang, X.M.; Tan, C.S. Optimal soil physical quality inferred through structural regression and parameter interactions. Geoderma 2008, 146, 466–474. [Google Scholar] [CrossRef]
- Leão, T.P.; da Silva, A.P.; Macedo, M.C.M.; Imhoff, S.; Euclides, V.P.B. Least limiting water range: A potential indicator of changes in near-surface soil physical quality after the conversion of Brazilian Savanna into pasture. Soil Tillage Res. 2006, 88, 279–285. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Drury, C.F.; Tan, C.S.; Fox, C.A.; Yang, X.M. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma 2009, 152, 252–263. [Google Scholar] [CrossRef]
- Drewry, J.J.; Cameron, K.C.; Buchan, G.D. Pasture yield and soil physical property responses to soil compaction from treading and grazing—A review. Soil Res. 2008, 46, 237–256. [Google Scholar] [CrossRef]
- Carter, M. Temporal variability of soil macroporosity in a fine sandy loam under mouldboard ploughing and direct drilling. Soil Tillage Res. 1988, 12, 37–51. [Google Scholar] [CrossRef]
- Drewry, J.J.; Cameron, K.C.; Buchan, G.D. Effect of simulated dairy cow treading on soil physical properties and ryegrass pasture yield. N. Zealand J. Agric. Res. 2001, 44, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Verdonck, O.; Penninck, R.; De Boodt, M. Physical properties of different horticultural substrates. Acta Hortic. 1983, 150, 155–160. [Google Scholar] [CrossRef]
- Warrick, A.W. Soil Physics Companion; CRC Press LLC.: Boca Raton, FL, USA, 2002. [Google Scholar]
- White, R.E. Principles and Practice of Soil Science, 4th ed.; Blackwell Publishing: Oxford, UK, 2006. [Google Scholar]
- Liu, N.B.; Dong, S.L. Evaluation on Water Capacity and Antidrought of Main Soils in Loess Plateau. Bulletin of Soil and Water Conservation 1997, 7, 20–26. [Google Scholar]
Soil Number | Plant | Db g cm−3 | θFC | 1θPWP | 2TPAW | References |
---|---|---|---|---|---|---|
cm3 cm−3 | ||||||
1# | Robinia pseudoacacia | 1.35 | 0.321 | 0.093 | 0.228 | [26] |
2# | Ulmus pumila | 1.22 | 0.247 | 0.053 | 0.194 | [24] |
2# | Robinia pseudoacacia | 1.22 | 0.247 | 0.057 | 0.190 | |
2# | Pinus tabulaeformis | 1.22 | 0.247 | 0.045 | 0.202 | |
2# | Platycladus orientalis | 1.22 | 0.247 | 0.047 | 0.200 | |
2# | Prunus armeniaca | 1.22 | 0.247 | 0.054 | 0.193 | |
2# | Acer truncatum | 1.22 | 0.247 | 0.048 | 0.199 | |
2# | Caragana microphylla | 1.22 | 0.247 | 0.049 | 0.198 | |
2# | Hippophae Rhamnoides | 1.22 | 0.247 | 0.058 | 0.189 | |
3# | Robinia pseudoacacia | 1.20 | 0.252 | 0.054 | 0.198 | [25] |
3# | Platycladus orientalis | 1.20 | 0.252 | 0.047 | 0.205 | |
4# | Salix matsudana | 1.24 | 0.253 | 0.045 | 0.208 | [19] |
5# | Phyllostachys edulis | 1.14 | 0.326 | 0.057 | 0.269 | [28] |
6# | Prunus armeniaca | 1.21 | 0.333 | 0.076 | 0.257 | [27] |
Soil Number | Plant | θTHR | θCB | θR-THR | θR-CB | FTSWTHR |
---|---|---|---|---|---|---|
cm3 cm−3 | ||||||
1# | Robinia pseudoacacia | 0.219 | 0.218 | 0.68 | 0.68 | 0.55 |
2# | Ulmus pumila | 0.132 | 0.134 | 0.53 | 0.54 | 0.41 |
2# | Robinia pseudoacacia | 0.137 | 0.134 | 0.55 | 0.54 | 0.42 |
2# | Pinus tabulaeformis | 0.139 | 0.134 | 0.56 | 0.54 | 0.46 |
2# | Platycladus orientalis | 0.134 | 0.134 | 0.54 | 0.54 | 0.43 |
2# | Prunus armeniaca | 0.132 | 0.134 | 0.53 | 0.54 | 0.41 |
2# | Acer truncatum | 0.137 | 0.134 | 0.55 | 0.54 | 0.45 |
2# | Caragana microphylla | 0.134 | 0.134 | 0.54 | 0.54 | 0.43 |
2# | Hippophae Rhamnoides | 0.135 | 0.134 | 0.55 | 0.54 | 0.41 |
3# | Robinia pseudoacacia | 0.138 | 0.137 | 0.55 | 0.54 | 0.42 |
3# | Platycladus orientalis | 0.132 | 0.137 | 0.52 | 0.54 | 0.42 |
4# | Salix matsudana | 0.142 | 0.141 | 0.56 | 0.56 | 0.47 |
5# | Phyllostachys edulis | 0.209 | 0.206 | 0.64 | 0.63 | 0.57 |
6# | Prunus armeniaca | 0.206 | 0.219 | 0.62 | 0.66 | 0.51 |
Mean | 0.152 | 0.152 | 0.57 | 0.57 | 0.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chi, C.; Wang, J.; Zhi, J. Prediction of Soil Water Thresholds for Trees in the Semi-Arid Region on the Loess Plateau. Processes 2022, 10, 2354. https://doi.org/10.3390/pr10112354
Chi C, Wang J, Zhi J. Prediction of Soil Water Thresholds for Trees in the Semi-Arid Region on the Loess Plateau. Processes. 2022; 10(11):2354. https://doi.org/10.3390/pr10112354
Chicago/Turabian StyleChi, Chunming, Jingjing Wang, and Jinhu Zhi. 2022. "Prediction of Soil Water Thresholds for Trees in the Semi-Arid Region on the Loess Plateau" Processes 10, no. 11: 2354. https://doi.org/10.3390/pr10112354
APA StyleChi, C., Wang, J., & Zhi, J. (2022). Prediction of Soil Water Thresholds for Trees in the Semi-Arid Region on the Loess Plateau. Processes, 10(11), 2354. https://doi.org/10.3390/pr10112354