The Liquid Phase Oxidation of Light Hydrocarbons for Thermo-Gas-Chemical Enhanced Oil Recovery Method
Abstract
:1. Introduction
- -
- The oxidation of solvents depends on the length of hydrocarbon chains: with an increase in the length of the hydrocarbon chains, its reactivity and oxidation ability improves. For instance, the oxidation of methane under atmospheric pressure initiates at 420 °C, ethane at 285 °C and propane at 270 °C. The increase in pressure reduces the initial oxidation temperature, i.e., methane at 10 MPa reacts with oxygen already at 330 °C. In the series CH4 < C2H6 < C3H8 < C5H12–C8H18, the rate constant of hydrocarbon oxidation also increases, which suggests that with an increase in the molecular weight of hydrocarbons, oxidation reactions should be carried out at lower temperatures and pressures [24,25]. From propane to octane, the number of possible reactions that occur during the oxidation of corresponding alkane increases sharply because of isomerism. Therefore, oxidation of more heavier aliphatic hydrocarbons produces a wide range of products–oxygenates [26];
- -
- n-hexane is available and widely applied solvent in laboratory investigations;
- -
2. Materials and Methods
3. Results and Discussion
3.1. The Pressure and Temperature Profiles
(1) Initiation of chains: | |
(2) Chain continuation: | |
(3) Branching of chains: | |
(4) Chain termination: | |
Where, RH–hydrocarbon, –alkyl radical, –alkoxy radical, –peroxide radical, –organic hydroperoxide, –hydroxyl radical, P1, P2, P3–molecular products. |
3.2. Evaluation of n-Hexane Oxidation Products by FT-IR Spectroscopy
3.3. The Composition of n-Hexane Oxidation Products by GC-MS
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carbonate Reservoirs. 2021. Available online: https://www.slb.com/technical-challenges/carbonates (accessed on 8 November 2022).
- Available online: https://www.gazprom-neft.ru/press-center/sibneft-online/archive/2018-march/1489610/ (accessed on 3 March 2020).
- Kayukova, G.P.; Mikhailova, A.N.; Khasanova, N.M.; Morozov, V.P.; Vakhin, A.V.; Nazimov, N.A.; Sotnikov, O.S.; Khisamov, R.S. Influence of hydrothermal and pyrolysis processes on the transformation of organic matter of dense low-permeability rocks from Domanic formations of the Romashkino oil field. Geofluids 2018, 2018, 9730642. [Google Scholar] [CrossRef] [Green Version]
- Nosova, A.; Petrov, S.; Safiulina, A.; Kayukova, G.P.; Bashkirceva, N. The transformation of high-viscosity oil of carbonate rock in the presence of CO [AcAc] 3 catalyst in a vapor-air medium. Pet. Sci. Technol. 2018, 36, 1001–1006. [Google Scholar] [CrossRef]
- Gabdrakhmanov, D.T.; Kayukova, G.P.; Uspensky, B.V.; Kosachev, I.P. About oil-bearing formation of Romashkinskoe Oil Field–Evidence from Berezovskaya Area. Rev. Tur. Estud. Práticas 2019, 4, 94–99. [Google Scholar]
- Naqvi, S. Enhanced Oil Recovery of Heavy Oil by Using Thermal and Non-Thermal Methods. Master’s Thesis, Dalhousie University, Halifax, NS, Canada, 2012. [Google Scholar]
- Farley, J.T.; Miller, B.M.; Schoettle, V. Design criteria for matrix stimulation with hydrochloric-hydrofluoric acid. J. Pet. Technol. 1970, 22, 433–440. [Google Scholar] [CrossRef]
- Kalfayan, L. Production Enhancement with Acid Stimulation; Pennwell Books: Tulsa, OK, USA, 2008; ISBN 159370139X. [Google Scholar]
- Narozhnyy, I.; Narozhnaya, E.; Ilyenko, A. Economic Evaluation of Applying the Technology of Water-Gas Stimulation of Formation to Enhance Oil Recovery. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Surakarta, Indonesia, 24–25 August 2021; Volume 720, p. 12035. [Google Scholar]
- Shageev, A.F.; Vakhin, A.V.; Yarullin, R.S.; Sitnov, S.A.; Nurgaliev, D.K.; Baygildin, E.R. Lukyanov O.V. Method for Thermochemical Treatment of an Oil Carbonate Formation for the Production of Heave Oil and a Device for Its Implementation. RU Patent No. 2765941, 7 February 2022. [Google Scholar]
- Belosludtseva, L.A.; Belosludtsev, D.A. Isoprene production from raw materials of the Orenburg helium plant. Environ. Prot. oil Gas Complex 2011, 2011, 25–29. [Google Scholar]
- Margolis, L.Y. Oxidation of Hydrocarbons on Heterogeneous Catalysts; Khimiya: Moscow, Russia, 1977. [Google Scholar]
- Kim, D.-C.; Ihm, S.-K. Application of spinel-type cobalt chromite as a novel catalyst for combustion of chlorinated organic pollutants. Environ. Sci. Technol. 2001, 35, 222–226. [Google Scholar] [CrossRef]
- Mota, S.; Volta, J.C.; Vorbeck, G.; Dalmon, J.A. Selective Oxidation of n-Butane on a V–P–O Catalyst: Improvement of the Catalytic Performance under Fuel-Rich Conditions by Doping. J. Catal. 2000, 193, 319–329. [Google Scholar] [CrossRef]
- Khashan, G.; Sitnov, S.; Ziganshina, M.; Dolgikh, S.; Slavkina, O.; Shchekoldin, K. Aquathermolysis of heavy oil in the presence of iron tallate and mineral components of reservoir rock. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Changchun, China, 21–23 August 2020; Volume 516, p. 12028. [Google Scholar]
- Sitnov, S.A.; Mukhamatdinov, I.I.; Vakhin, A.V.; Ivanova, A.G.; Voronina, E.V. Composition of aquathermolysis catalysts forming in situ from oil-soluble catalyst precursor mixtures. J. Pet. Sci. Eng. 2018, 169, 44–50. [Google Scholar] [CrossRef]
- Kayukova, G.P.; Mikhailova, A.N.; Kosachev, I.P.; Feoktistov, D.A.; Vakhin, A.V. Conversion of heavy oil with different chemical compositions under catalytic aquathermolysis with an amphiphilic Fe-Co-Cu catalyst and kaolin. Energy Fuels 2018, 32, 6488–6497. [Google Scholar] [CrossRef]
- Emanuel, N.M.; Denisov, E.T. Chain Reactions of Oxidation of Hydrocarbons in the Liquid Phase; Nauka: Moscow, Russia, 1965. [Google Scholar]
- Galukhin, A.V.; Erokhin, A.A.; Osin, Y.N.; Nurgaliev, D.K. Catalytic aquathermolysis of heavy oil with iron tris (acetylacetonate): Changes of heavy oil composition and in situ formation of magnetic nanoparticles. Energy Fuels 2015, 29, 4768–4773. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; He, J.; Li, P.; Yang, C. Mechanism of catalytic aquathermolysis: Influences on heavy oil by two types of efficient catalytic ions: Fe3+ and Mo6+. Energy Fuels 2010, 24, 1502–1510. [Google Scholar] [CrossRef]
- Ibrahim, S.Y.; Hassaballah, A.A. Production of acetic acid by oxidation of butane with air under high pressure. Pet. Sci. Technol. 2005, 23, 67–73. [Google Scholar] [CrossRef]
- Schulz, J. Process for Converting Butane to Acetic Acid. S.R. Patent No 403257, 23 July 1975. [Google Scholar]
- Colman, D.A.; Cooper, J.B. Process of the Producting of Acetic Acid. L.A.R. U.S. Patent No. 6057475, 2 May 2000. [Google Scholar]
- Bruno, J. Preparation of Hydroperoxides by Autoxidation. Barone Patent 4152358 US C07C409/08, 5 January 1979. [Google Scholar]
- Hendrix, D.C. Process for the Oxidation of Hydrocarbons Utilizing Partitioning of Oxidizing Gas. U.S. Patent No. 5068464, 26 November 1991. [Google Scholar]
- Vrubel, H.; Ciuffi, K.J.; Ricci, G.P.; Nunes, F.S.; Nakagaki, S. Highly selective catalytic epoxidation of cyclohexene and cyclooctene with t-butyl hydroperoxide by molybdenum (VI) compounds heterogenized in silica produced by the sol–gel process. Appl. Catal. A Gen. 2009, 368, 139–145. [Google Scholar] [CrossRef]
- Karalin, E.A.; Oparkin, A.V.; Murtazin, N.F. The relationship of the molecular structure and chemical nature of the solvent with the absolute. Bull. Technol. Univ. 2015, 18, 38–40. [Google Scholar]
- Vakhin, A.V.; Aliev, F.A.; Mukhamatdinov, I.I.; Sitnov, S.A.; Sharifullin, A.V.; Kudryashov, S.I.; Afanasiev, I.S.; Petrashov, O.V.; Nurgaliev, D.K. Catalytic aquathermolysis of boca de jaruco heavy oil with nickel-based oil-soluble catalyst. Processes 2020, 8, 532. [Google Scholar] [CrossRef]
- Khelkhal, M.A.; Eskin, A.A.; Sitnov, S.A.; Vakhin, A.V. Impact of iron tallate on the kinetic behavior of the oxidation process of heavy oils. Energy Fuels 2019, 33, 7678–7683. [Google Scholar] [CrossRef]
- Gordadze, G.N.; Giruts, M.V.; Koshelev, V.N. Organic Geochemistry of Hydrocarbons: Textbook. Manual for Universities; Russian State University of Oil and Gas Named after I.M. Gubkin: Moscow, Russia, 2012. [Google Scholar]
- Usachev, N.Y.; Kharlamov, V.V.; Belanova, E.P.; Starostina, T.S.; Krukovsky, I.M. Oxidative processing of lower alkanes: State and prospects. Russ. Chem. J. 2008, 52, 22–31. [Google Scholar]
- Medina, O.E.; Gallego, J.; Cespedes, S.; Nassar, N.N.; Montoya, T.; Corteś, F.B.; Franco, C.A. Effect of pressure on thermo-oxidative reactions of saturates, aromatics, and resins (S-Ar-R) from extra-heavy crude oil. Fuel 2022, 311, 122596. [Google Scholar] [CrossRef]
- Tsyskovsky, V.K. Synthesis of Fatty Acids and Alcohols by Oxidation of Liquid Paraffins; Goshimizdat: Leningrad, Russia, 1960. [Google Scholar]
- Yang, L.; Sheng, J.J. Experimental study on the oxidation behaviors of Wolfcamp light crude oil and its saturate, aromatic and resin fractions using accelerated rate calorimetry tests. Fuel 2020, 276, 117927. [Google Scholar] [CrossRef]
- Krylov, O.V. Heterogeneous Catalysis; Nova Publishers Inc.: New York, NY, USA, 2004. [Google Scholar]
- Medina, O.E.; Gallego, J.; Perez-Cadenas, A.F.; Carrasco-Marin, F.; Cortés, F.B.; Franco, C.A. Insights into the Morphology Effect of Ceria on the Catalytic Performance of NiO–PdO/CeO2 Nanoparticles for Thermo-oxidation of n-C7 Asphaltenes under Isothermal Heating at Different Pressures. Energy Fuels 2021, 35, 18170–18184. [Google Scholar] [CrossRef]
- Tarasevich, B.N. IR Spectra of the Main Classes of Organic Connections. Reference Materials; Lomonosov Moscow State University: Moscow, Russia, 2012. [Google Scholar]
- Bellamy, L. IR Spectra of COMPLEX Molecules; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Kazitsyna, L.A.; Kupletskaya, N.B. Application of UV, IR, and NMR Spectroscopy in Organic Chemistry; Vysshaya Shkola: Moscow, Russia, 1971; pp. 23–60. [Google Scholar]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2009; ISBN 0470405872. [Google Scholar]
- Thivasasith, A.; Maihom, T.; Pengpanich, S.; Limtrakul, J.; Wattanakit, C. Insights into the reaction mechanism of n-hexane dehydroaromatization to benzene over gallium embedded HZSM-5: Effect of H2 incorporated on active sites. Phys. Chem. Chem. Phys. 2019, 21, 5359–5367. [Google Scholar] [CrossRef] [PubMed]
+Me | Water Phase | Organic Phase | Extract |
---|---|---|---|
Metals (Fe, Cr, Ni) | Aqueous phase of corresponding oxidation products accumulated after Dewar condenser | Organic phase of corresponding oxidation products accumulated after Dewar condenser | Liquid-phase organic extracts after extraction of silica in soxhlet by hot solvent |
№ | Component | Retention Time, min | Content, % | |||
---|---|---|---|---|---|---|
Blank Sample (without Catalyst) | Catalyst | |||||
Fe | Cr | Ni | ||||
1 | Formic acid | 3.02 | 1.0 | - | 1.3 | - |
2 | 1-Hexadecanol | 3.08 | 1.6 | - | 2.8 | 5.3 |
3 | Acetic acid | 3.13 | 7.7 | 14.4 | 3.0 | 4.0 |
4 | 1-Hexanol | 3.20 | 5.3 | - | 1.6 | 2.8 |
5 | Propionic acid | 3.30 | 7.3 | - | 1.8 | 4.0 |
6 | Valeric acid | 3.58 | 14.7 | 11.4 | 10.8 | 18.9 |
7 | Hexanoic acid | 3.71 | 2.3 | 10.5 | - | 7.3 |
8 | Heptanoic acid | 3.78 | 2.3 | - | 1.6 | 3.3 |
9 | Nonanoic acid | 3.95 | 2.9 | - | 4.5 | 7.0 |
10 | Decanoic acid | 4.00 | 1.1 | - | - | - |
11 | Propionic acid, hexyl ester | 4.06 | 6.5 | - | 7.7 | 10.6 |
12 | Undecanoic acid | 4.19 | 4.2 | - | - | - |
13 | Nonanoic acid, hexyl ester | 4.23 | 1.7 | - | - | - |
14 | Dodecanoic acid | 4.32 | 0.9 | - | - | - |
15 | Tridecanoic acid | 4.51 | 1.9 | - | - | - |
16 | 2-Hexadecanol | 4.58 | 2.1 | 2.5 | - | - |
17 | Tetradecanoic acid | 4.70 | 4.9 | 4.4 | 2.6 | 8.4 |
18 | Naphthalene | 5.15 | 31.7 | 56.8 | 62.3 | 28.4 |
Total | 100 | 100 | 100 | 100 |
№ | Component | Retention Time, min | Content, % | ||
---|---|---|---|---|---|
Catalyst | |||||
Fe | Cr | Ni | |||
1 | Formic acid | 4.44 | - | 2.8 | - |
2 | Acetaldehyde | 5.14 | 1.9 | 26.7 | 17.9 |
3 | Methyl formate | 5.3 | - | 3.3 | - |
4 | Propanal | 6.08 | - | 8.0 | 3.5 |
5 | Methyl ester of acetic acid | 6.11 | 1.8 | - | - |
6 | Methyl alcohol | 6.40 | 26.7 | 14.1 | 42.0 |
7 | Acetone | 6.86 | 2.3 | 20.0 | 8.2 |
8 | Ethanol | 7.19 | 10.0 | 5.1 | 18.6 |
9 | 2-butanone | 9.00 | - | 2.9 | - |
10 | 1-Propanol | 10.58 | 4.4 | - | 3.7 |
11 | 1-Butanol | 14.73 | 3.2 | - | - |
12 | Acetic acid | 24.73 | 37.7 | - | - |
13 | Benzaldehyde | 29.21 | 0.9 | - | - |
14 | 2,5-hexadione | 30.98 | 2.9 | - | - |
15 | Phenol | 33.83 | 3.9 | - | - |
16 | 1,1-Ethanediol diacetate | 35.09 | - | 1.8 | - |
17 | Dibutyl ether decanedionic acid | 37.55 | 3.0 | 8.1 | 4.9 |
18 | Pyrene | 39.18 | 1.3 | - | 1.2 |
Total | 100 | 100 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sitnov, S.A.; Shageev, A.F.; Aliev, F.A.; Bajgildin, E.R.; Davletshin, R.R.; Feoktistov, D.A.; Dmitriev, A.V.; Vakhin, A.V. The Liquid Phase Oxidation of Light Hydrocarbons for Thermo-Gas-Chemical Enhanced Oil Recovery Method. Processes 2022, 10, 2355. https://doi.org/10.3390/pr10112355
Sitnov SA, Shageev AF, Aliev FA, Bajgildin ER, Davletshin RR, Feoktistov DA, Dmitriev AV, Vakhin AV. The Liquid Phase Oxidation of Light Hydrocarbons for Thermo-Gas-Chemical Enhanced Oil Recovery Method. Processes. 2022; 10(11):2355. https://doi.org/10.3390/pr10112355
Chicago/Turabian StyleSitnov, Sergey A., Albert F. Shageev, Firdavs A. Aliev, Emil R. Bajgildin, Rustam R. Davletshin, Dmitry A. Feoktistov, Andrey V. Dmitriev, and Alexey V. Vakhin. 2022. "The Liquid Phase Oxidation of Light Hydrocarbons for Thermo-Gas-Chemical Enhanced Oil Recovery Method" Processes 10, no. 11: 2355. https://doi.org/10.3390/pr10112355
APA StyleSitnov, S. A., Shageev, A. F., Aliev, F. A., Bajgildin, E. R., Davletshin, R. R., Feoktistov, D. A., Dmitriev, A. V., & Vakhin, A. V. (2022). The Liquid Phase Oxidation of Light Hydrocarbons for Thermo-Gas-Chemical Enhanced Oil Recovery Method. Processes, 10(11), 2355. https://doi.org/10.3390/pr10112355