Low-Frequency Corrosion Fatigue Test Study of Sucker Rods under High-Salinity Well Fluids in Deep CBM Wells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Equipment and Materials
2.2. Design for Corrosive Media Selection
2.3. Design of Corrosion Fatigue Test Conditions
3. Results and Discussion
3.1. 4330 Corrosion Fatigue Experiments on Pumping Rods in Different Corrosive Solutions
3.1.1. 4330 Corrosion Fatigue Experiments on Pumping Rods at Different Cl− Concentrations
3.1.2. 4330 Corrosion Fatigue Experiments on Sucker Rods at Different HCO3− Concentrations
3.2. 4330 Corrosion Fatigue Experiments on Pumping Rods at Different Temperature Conditions
3.3. 4330 Corrosion Fatigue Experiments on Pumping Rods at Different Stress Levels
4. Conclusions
- The corrosion fatigue life of 4330 sucker rod gradually decreases with the increase of Cl− concentration. When the Cl− concentration is higher than the threshold value of 155 mg/L, the corrosion fatigue life of 4330 sucker rod sharply decreases. When this threshold is exceeded, the downward trend slows down. The significant factor affecting the corrosion fatigue life of 4330 material is not the concentration of Cl− but the existence of Cl−. The corrosion fatigue life of 4330 sucker rod is further reduced when HCO3− and Cl− coexist, and the existence of HCO3− has an adverse impact on its corrosion fatigue life.
- The temperature promotes the effect of Cl− on the corrosion fatigue life of 4330 sucker rod. With the increase of temperature, the corrosion fatigue life of 4330 sucker rod decreases gradually. When the well fluid temperature is lower than 50 °C, the effect of temperature on the corrosion fatigue life of sucker rod is more significant; When the temperature of well fluid exceeds 70 °C, the decline trend of corrosion fatigue life slows down.
- Through the corrosion fatigue test of 4330 sucker rod under different stress levels, the low-frequency corrosion fatigue S-N curve under corrosion environment is obtained. Based on the fitted S-N curve (stress-fatigue life curve), the fatigue limit of 4330 sucker rod in 10,000 mg/L Cl− solution at room temperature is calculated as 196 MPa at stress ratio of 0.6. Under the same fatigue life, the stress level under the corrosive environment is greatly reduced compared with the non-corrosive environment. It provides a basis for the stress load design and corrosion fatigue life prediction of sucker rod under high salinity conditions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, A.M.; Qi, Y.G. Theoretical Exploration and Engineering Practice of Coal Bed Methane Development, 1st ed.; China University of Petroleum Press: Qingdao, China, 2014; pp. 1–19. [Google Scholar]
- Jia, B.; Xian, C.-G. Permeability measurement of the fracture-matrix system with 3D embedded discrete fracture model. Pet. Sci. 2022, 19, 1757–1765. [Google Scholar] [CrossRef]
- Vishnyakov, D.; Solodkiy, E.; Alnico, S. Improving Sucker-rod pump energy efficiency through electric drive movement control. In Proceedings of the 2021 28th International Workshop on Electric Drives: Improving Reliability of Electric Drives (IWED), Moscow, Russia, 27–29 January 2021; pp. 1–3. [Google Scholar]
- Li, D.J.; Wang, W.; Pang, B.; Lin, W.; Li, W.Z.; Ji, L.; Feng, Y.R. Influence factors on corrosion fatigue life of sucker rods used in coalbed methane well. Trans. Mater. Heat Treat. 2017, 38, 121–127. [Google Scholar]
- Tskacs, G. Sucker-Rod Pumping Handbook: Production Engineering Fundamentals and Long-Stroke Rod Pumping; Gulf Professional Publishing: Amsterdam, The Netherlands, 2015; pp. 15–19. [Google Scholar]
- Wang, Y.H. Application of HY grade ultra-high strength sucker rod in Wennan Oilfield. Energy Conserv. Pet. Petrochem. Ind. 2019, 9, 63–65. [Google Scholar]
- Lei, T.Q. A review of corrosion fatigue studies on high strength steels. J. Shandong Electr. Power High. Spec. Sch. 2021, 24, 48–52+62. [Google Scholar]
- Wang, Z.L. A Design Method for Extending Fatigue Life of Pumping Rod Based on Stress Ratio. Unconv. Oil Gas 2023, 10, 127–134+142. [Google Scholar]
- Alireza, B.; Meysam, H. A critical review on very high cycle corrosion fatigue: Mechanisms, methods, materials, and models. J. Space Saf. Eng. 2023, 10, 284–323. [Google Scholar]
- Fujii, T.; Sawada, T.; Shimamura, Y. Nucleation of stress corrosion cracking in aluminum alloy 6061 in sodium chloride solution: Mechanical and microstructural aspects. J. Alloys Compd. 2023, 938, 168583. [Google Scholar] [CrossRef]
- Chen, G.X.; Wang, M.J.; Cui, C.X. Corrosion-Fatigue Life Prediction of the U-Shaped Beam in Urban Rail Transit under a Chloride Attack Environment. Materials 2022, 15, 5902. [Google Scholar] [CrossRef]
- Morgantini, M.; MacKenzie, D.; Comlekci, T. The Effect of Mean Stress on Corrosion Fatigue Life. Procedia Eng. 2018, 213, 581–588. [Google Scholar] [CrossRef]
- Zhu, Y.M.; Chen, J.J.; Tang, W.X. Fatigue and Corrosion Fatigue of 18Ni Maraging Steel. Arch. Metall. Mater. 2021, 66, 381–390. [Google Scholar]
- Al-shawish, T.A.M. Study on the Corrosion Resistance and Fatigue Performance of High Chromium Alloy Steel Sucker Rods. Master’s Thesis, China University of Petroleum (East China), Shanghai, China, 2021. [Google Scholar]
- Tian, G.; Yi, Y.G.; Han, X.; Cai, L.L.; Yu, H.Y.; Zeng, D.Z. Corrosion Law and Corrosion Prediction of Sucker Rod in CO2 Composite Steam Flooding Production Well. Corros. Prot. 2021, 42, 21–26. [Google Scholar]
- Santos, E.A.; Giorgetti, V.; Souza Junior, C.A.; Marcomini, J.B.; Sordi, V.L.; Rovere, C.A. Stress corrosion cracking and corrosion fatigue analysis of API X70 steel exposed to a circulating ethanol environment. Int. J. Press. Vessel. Pip. 2022, 200, 104846. [Google Scholar] [CrossRef]
- Di Egidio, G.; Tonelli, L.; Morri, A.; Boromei, I.; Shashkov, P.; Martini, C. Influence of Anodizing by Electro-Chemical Oxidation on Fatigue and Wear Resistance of the EV31A-T6 Cast Magnesium Alloy. Coatings 2023, 13, 62. [Google Scholar] [CrossRef]
- Su, W.; Zhu, H.M. In situ corrosion fatigue life of 2198-T8 Al–Li alloy based on tests and DIC technique. Mater. Test. 2022, 64, 1383–1396. [Google Scholar] [CrossRef]
- Huang, L.; Zheng, S.; Qin, Y.; Han, J.; Qiao, Y.; Chen, J. Corrosion Behavior of Selective Laser Melted Ti-6Al-4V in 0.1 mol/L NaOH Solution. Coatings 2023, 13, 150. [Google Scholar] [CrossRef]
- Schönowitz, M.; Maier, B.; Grün, F.; BauerTroßmann, K. Influence of corrosion fatigue on the fatigue strength of an AlSi10MgMn high-pressure die-casting alloy with regard to the surface condition. Mater. Corros. 2023, 74, 1382–1389. [Google Scholar] [CrossRef]
- Olumide, T.O.; Olamide, B.O.; Timothy, O.O.; Adeyeri, M.K. Stress-Corrosion and Corrosion-Fatigue Properties of Surface-Treated Aluminium Alloys for Structural Applications. Chem. Afr. 2023, 6, 1699–1708. [Google Scholar]
- Chen, Z.Y.; Zhu, Z.L.; Wang, B.H.; Ma, C.H.; Liu, Y.T.; Khan, H.I.; Pan, P.; Zhang, T.; Wang, X.; Zhang, N. Effect of different loading conditions on corrosion fatigue crack growth rate of a nickel-based alloy in supercritical water. Int. J. Fatigue 2023, 175, 107815. [Google Scholar] [CrossRef]
- Kret, N.V.; Svirska, L.M.; Venhrynyuk, T.P. Corrosion-Fatigue Crack Propagation in Exploited Pump Rods Made of 20N2M Steel. Mater. Sci. 2020, 56, 279–283. [Google Scholar] [CrossRef]
- Marcus, W.; Anja, P. Corrosion Fatigue of Standard Duplex Stainless Steel X2CrNiMoN22-5-3 under Rotation Bending Load in Northern German Basin Environment. Solid State Phenom. 2023, 6918, 71–76. [Google Scholar]
- Knysh Vitalii, V.; Mordyuk Bohdan, N.; Solovei Sergii, O.; Volosevich, P.Y.; Skoryk Mykola, A.; Lesyk Dmytro, A. Combining electric discharge surface alloying and high-frequency mechanic impact post-processing for increased corrosion fatigue life of as-welded transverse non-load-carrying attachments of the S355 steel. Int. J. Fatigue 2023, 177, 107926. [Google Scholar] [CrossRef]
- Liu, M. Anatomy of the Goodman stress diagram method for determining the allowable stress of a pumping rod. Oilfield Mach. 1986, 15, 7–9. [Google Scholar]
- Lin, Y.H.; Zhang, D.P.; Luo, F.Q. Study on fatigue life calculation of pumping rods. Pet. Drill. Technol. 2005, 6, 66–69+105. [Google Scholar]
- Yang, C.H. Corrosion Fatigue Life Assessment and Reliability of Oil Well Pipes in Cl- Bearing Service Environment. Master’s Thesis, Xi’an University of Petroleum, Xi’an, China, 2021. [Google Scholar]
- Li, C. Stress Corrosion and Fatigue Properties of ZL101 Aluminum Alloy. Shanghai. Master’s Thesis, Shanghai Jiao Tong University, Shanghai, China, 2011. [Google Scholar]
- Yi, M. Development of 1000 MPa Grade Low Carbon Bainite Steel for Pumping Rod. Ph.D. Thesis, Northeastern University, Shenyang, China, 2015. [Google Scholar]
- Ji, Z.G.; Yin, F.F. Testing the fatigue life of materials using a high-frequency fatigue tester. Eng. Test. 2008, 3, 7–9. [Google Scholar]
- Liu, Z.; Li, Y.C.; Wang, Z.G.; Wang, Y.; Liu, C.Y. Effect of loading frequency and heat treatment on the fatigue crack expansion rate of die-cast magnesium alloy AZ91H. J. Aerosp. Mater. 2000, 1, 7–11. [Google Scholar]
- Adedipe, O.; Brennan, F.; Kolios, A. Corrosion fatigue load frequency sensitivity analysis. Mar. Struct. 2015, 42, 115. [Google Scholar] [CrossRef]
- Guo, C. Study on Fatigue Crack Expansion Rate and Life Prediction of 4130X Material Under Different Corrosion Conditions. Master’s Thesis, Beijing University of Technology, Beijing, China, 2022. [Google Scholar]
- Zhong, Y.; Shao, Y.B.; Gao, X.D.; Luo, X.F.; Zhu, H.M. Fatigue crack growth of EH36 steel in air and corrosive marine environments. J. Constr. Steel Res. 2023, 210, 108104. [Google Scholar] [CrossRef]
- Chen, W.J.; Lu, W.; Gou, G.Q.; Dian, L.W.; Zhu, Z.Y.; Jin, J.J. The Effect of Fatigue Damage on the Corrosion Fatigue Crack Growth Mechanism in A7N01P-T4 Aluminum Alloy. Metals 2023, 13, 104. [Google Scholar] [CrossRef]
- NACE TM0177-2016; Standard Test Method: Laboratory Testing of Metals for Resistance to Sulfide Stress Cracking and Stress Corrosion Cracking in H2S Environments. NACE International: Houston, TX, USA, 2005.
- ISO 6892-1:2019; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Peking, China. Standardization Administration of the People’s Republic of China: Peking, China, 2011.
- Li, Y. The Research with Corrosion Resistance to Stress of Sucker Rod in High Water Conditions. Master’s Thesis, China University of Petroleum (East China), Qingdao, China, 2014. [Google Scholar]
- Polyanskiy, V.M.; Puchkov, Y.A.; Orlov, M.R.; Napriyenko, S.A.; Lavrov, A.V. lnfluence of tensile stresses on the corrosion resistance o f titanium alloy VT22 in aqueous solution of NaCI. Inorg. Mater. Appl. Res. 2017, 8, 94–99. [Google Scholar] [CrossRef]
- Behera, P.K.; Katiyar, P.K.; Misra, S.; Mondal, K. Effect of Pre-induced Plastic Strains on the Corrosion Behavior of Reinforcing Bar in 3.5 pct NaCl Solution. Metall. Mater. Trans. A 2021, 52, 605–626. [Google Scholar] [CrossRef]
- Liu, G.X.; Wu, M.; Xie, F. Effect of HCO3− on Electrochemical Corrosion Behavior of X100 Pipeline Steel in Marine Environment. J. Petrochem. Univ. 2019, 31, 66–70. [Google Scholar]
- Zhou, T.Y.; Yu, Y.X.; Zhao, B. Study on the Pitting Corrosion of 20# Steel in HCO3− and Cl− Mixed Solution. Saf. Health Environ. 2020, 20, 30–34. [Google Scholar]
- Mangat, P.S.; Ojedokun, O.O. Bound chloride ingress in alkali activated concrete. Constr. Build. Mater. 2019, 212, 375–387. [Google Scholar] [CrossRef]
- Zang, Q.S.; Liu, K.; Ma, M.Y. Effects of frequency, pH value, and temperature on the corrosion fatigue performance of A537 marine steel. Corros. Sci. Prot. Technol. 1989, 2, 10–14. [Google Scholar]
- Gibson, G.J.; Perkins, K.M.; Gray, S.; Leggett, A.J. Influence of shot peening on high-temperature corrosion and corrosion-fatigue of nickel based superalloy 720Li. Mater. High Temp. 2016, 33, 225–233. [Google Scholar] [CrossRef]
- Liang, Y.; Zhao, C.; Fan, S.; Lei, Y.; Shi, H.X. Experimental analysis of fatigue performance of sucker rods. Equip. Environ. Eng. 2019, 16, 39–42. [Google Scholar]
Sample Material | Diameter /mm | Tensile Strength (σb)/MPa | Elongation Rate (δ)/% | Reduction of Area (Ψ)/% | Density (ρ)/m3·kg−1 | Elastic Modulus €/GPa |
---|---|---|---|---|---|---|
4330 | 4.961 | 1080 | >10 | >45 | 7850 | 209 |
Material | C | Mn | P | S | Si | Cr | Mo | Ni | V |
---|---|---|---|---|---|---|---|---|---|
4330 | 0.3~0.36 | 0.40~0.60 | ≤0.015 | ≤0.010 | 0.15~0.35 | 0.90~1.20 | 0.4~0.50 | 2.75~3.00 | 0.05~0.1 |
No. | Factor | ||||
---|---|---|---|---|---|
ρ(Cl−) /mg/L | ρ(HCO3−) /mg/L | ρ(Ca2+) /mg/L | Test Result | ||
Level | |||||
1 | 2 | 3 | 4 | Elongation Loss Iδ | |
1 | 1 (10,000) | 1 (0) | 1 (200) | 1 | 7.62% |
2 | 1 (10,000) | 2 (250) | 2 (400) | 2 | 15.51% |
3 | 1 (10,000) | 3 (500) | 3 (600) | 3 | 13.78% |
4 | 2 (20,000) | 1 (0) | 2 (400) | 3 | 20.14% |
5 | 2 (20,000) | 2 (250) | 3 (600) | 1 | 19.22% |
6 | 2 (20,000) | 3 (500) | 1 (200) | 2 | 14.81% |
7 | 3 (30,000) | 1 (0) | 3 (600) | 2 | 29.82% |
8 | 3 (30,000) | 2 (250) | 1 (200) | 3 | 21.37% |
9 | 3 (30,000) | 3 (500) | 2 (400) | 1 | 16.32% |
I | 36.91% | 57.58% | 43.8% | ||
II | 54.17% | 56.1% | 51.97% | ||
III | 67.51% | 44.91% | 62.82% | ||
K1 | 12.303% | 19.193% | 14.6% | ||
K2 | 18.057% | 18.7% | 17.323% | ||
K3 | 22.503% | 14.97% | 20.94% | ||
R | 10.2% | 4.223% | 6.34% |
Test Number | ρ(Cl−)/mg/L | ρ(HCO3−)/mg/L | 4330 | 30CrMoA | ||
---|---|---|---|---|---|---|
Elongation Loss/% | Absorbed Work Loss/% | Elongation Loss/% | Absorbed Work Loss/% | |||
1 | 5000 | 0 | 13.88 | 19.40 | 7.49 | 8.21 |
2 | 10,000 | 0 | 14.08 | 20.36 | 9.09 | 11.31 |
3 | 15,000 | 0 | 25.65 | 32.02 | 7.99 | 10.95 |
4 | 20,000 | 0 | 41.51 | 47.98 | 13.38 | 16.79 |
5 | 25,000 | 0 | 45.90 | 53.21 | 15.47 | 17.50 |
6 | 40,000 | 0 | 49.25 | 56.24 | 17.64 | 18.96 |
7 | 15,000 | 200 | 47.54 | 34.95 | 18.00 | 12.32 |
8 | 15,000 | 400 | 35.60 | 24.00 | 15.42 | 10.84 |
9 | 15,000 | 600 | 2.25 | 1.37 | 12.34 | 10.00 |
10 | 15,000 | 800 | 1.98 | 1.23 | 11.99 | 9.23 |
ρ(Cl−)/mg/L | σmax/Mpa | σmin/Mpa | Stress Ratio | N × 104 | × 104 | σ2 | ||
---|---|---|---|---|---|---|---|---|
0 | 750 | 450 | 0.6 | 24.30 | 22.42 | 22.09 | 22.94 | 0.947 |
1000 | 750 | 450 | 0.6 | 9.81 | 8.56 | 7.93 | 8.77 | 0.610 |
3000 | 750 | 450 | 0.6 | 9.50 | 8.54 | 8.03 | 8.69 | 0.371 |
5000 | 750 | 450 | 0.6 | 7.52 | 6.98 | 4.11 | 6.20 | 2.240 |
10,000 | 750 | 450 | 0.6 | 7.22 | 6.70 | 5.81 | 6.58 | 0.339 |
25,000 | 750 | 450 | 0.6 | 8.35 | 7.83 | 6.48 | 7.55 | 0.621 |
40,000 | 750 | 450 | 0.6 | 6.82 | 6.11 | 5.81 | 6.25 | 0.179 |
Material | ρ(Cl−)/mg/L | S/MPa | Stress Ratio | N × 104 |
---|---|---|---|---|
4330 | 10,000 | 530 | 0.6 | 22.88 |
4330 | 10,000 | 600 | 0.6 | 14.96 |
4330 | 10,000 | 640 | 0.6 | 15.31 |
4330 | 10,000 | 700 | 0.6 | 9.92 |
4330 | 10,000 | 750 | 0.6 | 6.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Jing, C.; Li, J.; Wang, B.; Ma, M.; Yi, T.; Hu, H. Low-Frequency Corrosion Fatigue Test Study of Sucker Rods under High-Salinity Well Fluids in Deep CBM Wells. Processes 2024, 12, 60. https://doi.org/10.3390/pr12010060
Zhang F, Jing C, Li J, Wang B, Ma M, Yi T, Hu H. Low-Frequency Corrosion Fatigue Test Study of Sucker Rods under High-Salinity Well Fluids in Deep CBM Wells. Processes. 2024; 12(1):60. https://doi.org/10.3390/pr12010060
Chicago/Turabian StyleZhang, Fenna, Chuankai Jing, Jia Li, Bin Wang, Mingwei Ma, Tiantian Yi, and Hao Hu. 2024. "Low-Frequency Corrosion Fatigue Test Study of Sucker Rods under High-Salinity Well Fluids in Deep CBM Wells" Processes 12, no. 1: 60. https://doi.org/10.3390/pr12010060
APA StyleZhang, F., Jing, C., Li, J., Wang, B., Ma, M., Yi, T., & Hu, H. (2024). Low-Frequency Corrosion Fatigue Test Study of Sucker Rods under High-Salinity Well Fluids in Deep CBM Wells. Processes, 12(1), 60. https://doi.org/10.3390/pr12010060