Prediction of Oil Production in a Tight Sandstone Reservoir: Triassic Chang 9 Member, Jiyuan Area, Ordos Basin, NW China
Abstract
:1. Introduction
2. Geological Settings
3. Materials and Methods
3.1. Materials
3.2. Experiment and Methods
3.3. Conventional Logging Interpretation
4. Results
4.1. Sedimentary Facies
4.2. Petrography
4.2.1. Detrital Components
4.2.2. Texture
4.2.3. Interstitial Materials
4.3. Pore Space
4.4. Petrophysical Properties and Productivity
4.4.1. Porosity and Permeability
4.4.2. Oil-Bearing Capacity
4.4.3. Oil Productivity
4.5. Sand Body Architectures
4.5.1. Massive Architecture
4.5.2. Massive and Serrated Architecture
4.5.3. Fining Upward Architecture
4.5.4. Fining Upward and Serrated Architecture
4.5.5. Digitate Architecture
5. Discussion
5.1. Factors Controlling the Productivity of Tight Sandstone Oil Reservoirs
5.1.1. Lithology
5.1.2. Physical Properties
5.1.3. Thickness of the Effective Reservoir
5.1.4. Macroscopic Sand Body Architecture
5.2. Powerful Indicators for Productivity Prediction
5.3. Comparison of Productivity Prediction Methods for Tight Sandstone Oil Reservoirs
5.4. Significance for Petroleum Exploration and Development in Tight Sandstone
6. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmitt, M.; Fernandes, C.P.; Wolf, F.G.; da Cunha Neto, J.A.B.; Rahner, C.P.; dos Santos, V.S.S. Characterization of Brazilian tight gas sandstones relating permeability and Angstrom-to micron-scale pore structures. J. Nat. Gas Sci. Eng. 2015, 27, 785–807. [Google Scholar] [CrossRef]
- Gaus, G.; Amann-Hildenbrand, A.; Krooss, B.M.; Fink, R. Gas permeability tests on core plugs from unconventional reservoir rocks under controlled stress: A comparison of different transient methods. J. Nat. Gas Sci. Eng. 2019, 65, 224–236. [Google Scholar] [CrossRef]
- Xie, R.C.; Zhou, W.; Liu, C.; Yin, S.; Radwan, A.E.; Lei, W.; Cai, W.L. Experimental investigation on dynamic and static rock mechanical behavior, failure modes, and sequences of frequent interbedded sand and shale reservoirs. Interpretation 2022, 10, 1–52. [Google Scholar] [CrossRef]
- Gilman, J.R.; Kazemi, H. Improvements in Simulation of Naturally Fractured Reservoirs. Soc. Pet. Eng. J. 1983, 23, 695–707. [Google Scholar] [CrossRef]
- Clarkson, C.; Freeman, M.; He, L.; Agamalian, M.; Melnichenko, Y.; Mastalerz, M.; Bustin, R.; Radliński, A.; Blach, T. Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis. Fuel 2012, 95, 371–385. [Google Scholar] [CrossRef]
- Huang, H.X.; Chen, L.; Sun, W.; Xiong, F.Y.; Ji, W.; Jia, J.K.; Tang, X.L.; Zhang, S.H.; Gao, J.W.; Luo, B. Pore-throat structure and fractal characteristics of shihezi formation tight gas sandstone in the Ordos basin, China. Fractals 2018, 26, 1840005. [Google Scholar] [CrossRef]
- Yao, J.L.; Zhao, Y.D.; Liu, G.L.; Qi, Y.L.; Li, Y.H.; Luo, A.X.; Zhang, X.L. Formation patterns of Chang 9 oil reservoir in Triassic Yanchang Formation, Ordos Basin, NW China. Pet. Explor. Dev. 2018, 45, 389–401. [Google Scholar] [CrossRef]
- Meyers, B.W.; Clinton, L.; Carlson, N.R. Productivity analysis of an East Texas gas well. In Proceedings of the SPWLA 25th Annual Logging Symposium, Oslo, Norway, 10–13 June 1984. [Google Scholar]
- Cheng, M.L.; Leal, M.A.; McNaughton, D. Productivity prediction from well logs in variable grain size reservoirs Cretaceous Qishn Formation, Republic of Yemen. Log Anal. 1999, 40, 24–34. [Google Scholar]
- Acharya, M.N.; Kabir, M.M.R.; Al-Ajmi, S.A.H. Flow capacity evaluation in a complex carbonate Reservoir: Key to understand reservoir productivity and stimulation effectiveness. In Proceedings of the SPE Technical Conference and Exhibition, San Antonio, TX, USA, 8–10 October 2012. [Google Scholar]
- Ren, J.H.; Zhang, L.; Ezekiel, J.; Ren, S.; Meng, S.Z. Reservoir characteristics and productivity analysis of tight sand gas in Upper Paleozoic Ordos Basin China. J. Nat. Gas Sci. Eng. 2014, 19, 244–250. [Google Scholar] [CrossRef]
- Farman, A.S.; Yeung, H. Experimental study of two-phase Air-water flow in large-diameter vertical pipes. Chem. Eng. Commun. 2015, 202, 823–842. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, Y.; Li, S.T.; Su, L.; Wang, Y.; Yan, C.C.; Mou, W.W.; Li, Y. Dissolution simulation of Chang 8 tight reservoir in Jiyuan area of Ordos Basin, China and its influencing factors. J. Earth Sci. Environ. 2017, 39, 225–237. [Google Scholar]
- Thomas, F.; Shtepani, E.; Bennion, D.; Rushing, J. The Influence of Equilibrium Water on Gas-Well Productivity. J. Can. Pet. Technol. 2003, 42, 35–39. [Google Scholar] [CrossRef]
- Li, X.; Zhao, W.Z.; Zhou, C.C.; Wang, T.S.; Li, C.L. Dual-porosity saturation model of low-porosity and low-permeability clastic reservoirs. Pet. Explor. Dev. 2012, 39, 88–98. [Google Scholar] [CrossRef]
- Soto, B.R.; Perez, O.; Arteaga, D. A new reservoir classification based on pore types improves characterization. In Emu Official Organ of the Australasian Ornithologists Union; Australasian Ornithologists’ Union: Melbourne, Australia, 2012; Volume 83, pp. 59–65. [Google Scholar]
- Lai, B.T.; Miskimins, J.L. A new technique for accurately measuring two-phase relative permeability under non-Darcy flow conditions. J. Pet. Sci. Eng. 2015, 127, 398–408. [Google Scholar] [CrossRef]
- Hu, S.F.; Zhou, C.C.; Li, X.; Li, C.L.; Zhang, S.Q. A tight sandstone trapezoidal pore oil saturation model. Pet. Explor. Dev. 2017, 44, 876–886. [Google Scholar] [CrossRef]
- Nolte, S.; Fink, R.; Krooss, B.M.; Littke, R. Simultaneous determination of the effective stress coefficients for permeability and volumetric strain on a tight sandstone. J. Nat. Gas Sci. Eng. 2021, 95, 104186. [Google Scholar] [CrossRef]
- Li, G.X.; Liu, C.L.; Zhou, Y.N.; Wu, H.N.; Awan, R.S.; Shi, F.; Wu, Y.F.; Zang, Q.B.; Wu, Y.P. Controlling effects of pore-throat structure and fractal characteristics on the physical properties of ultra-low permeability sandstone reservoirs: A case study of the sixth member of the Yanchang Formation in the Xiaojiahe area, Ordos Basin. Geol. J. 2023, 58, 1945–1964. [Google Scholar] [CrossRef]
- Guo, Z.H.; Zhao, Y.C. Logging evaluation to tight gas reservoir in He-2 member of Daniudi Gas field. Nat. Gas Geosci. 2010, 21, 87–94. [Google Scholar]
- Zou, C.N.; Yang, Z.; Zhu, R.K.; Wu, S.T.; Fu, J.H.; Lei, D.W.; Hou, L.H.; Lin, S.H.; Pan, S.Q. Geologic significance and optimization technique of sweet sports in unconventional shale systems. J. Asian Earth Sci. 2019, 178, 97–112. [Google Scholar] [CrossRef]
- Oloso, M.S.; Khoukhi, A.; Abdulraheem, A.; Elshafei, M. Prediction of crude oil viscosity and gas/oil ratio curves using recent advances to neural networks. In Proceedings of the SPE/EAGE Reservoir Characterization and Simulation Conference, Abu Dhabi, United Arab Emirates, 19–21 October 2009. [Google Scholar]
- Alarifi, S.; Alnuaim, S.; Abdulraheem, A. Productivity index prediction for oil horizontal wells using different artificial intelligence techniques. In Proceedings of the SPE Middle East Oil & Gas Show and Conference, Manama, Bahrain, 8–11 March 2015; p. 172729. [Google Scholar]
- Zhang, Z.H.; Liao, J.B.; Li, Z.Y.; Zheng, X.M.; Di, J.; Yu, P.H. Fast prediction of productivity level of low permeability reservoirs based on multilayer perceptron: A case study of Chang 3, 4+5 reservoirs of Baibao, Nanliang areas in Ordos basin. Prog. Geophys. 2019, 34, 1962–1970. [Google Scholar]
- Rinaldi; Djauhari, H. Prediction of specific productivity index for Sihapas Formation in uncored wells of minas field using limited available core and log date. Soc. Pet. Eng. J. 1997, 38037. [Google Scholar] [CrossRef]
- Mao, Z. Method and models for productivity prediction of hydrocarbon reservoirs. Acta Pet. Sin. 2000, 21, 58–62. [Google Scholar]
- Tan, C.Q.; Ma, N.R. Model and method for oil and gas productivity prediction of reservoir. J. Earth Sci. Environ. 2004, 26, 42–46. [Google Scholar]
- Feng, C.; Lin, W.; Cheng, Z. Reservoir classification and productivity forecasting method for low porosity and permeability reservoir with log data. Well Logging Technol. 2012, 36, 308–313. [Google Scholar]
- Liu, J.L.; Liu, Z.Q.; Xiao, K.H.; Huang, Y.Q.; Jin, W.J. Characterization of favorable lithofacies in tight sandstone reservoirs and its significance for gas exploration and exploitation: A case study of the second Member of Triassic Xujiahe Formation in the Xinchang area, Sichuan Basin. Pet. Explor. Dev. 2020, 47, 1194–1205. [Google Scholar] [CrossRef]
- Qiao, J.C.; Zeng, J.H.; Jiang, S.; Wang, Y.N. Impacts of sedimentology and diagenesis on pore structure and reservoir quality in tight oil sandstone reservoirs: Implications for macroscopic and microscopic heterogeneities. Mar. Pet. Geol. 2020, 111, 279–300. [Google Scholar] [CrossRef]
- Liu, H.L.; Qiu, Z.; Xu, L.M.; Wang, F.Q.; Tong, Q.; Lin, J.H.; Yin, S.; Wang, W.Q. Distribution of shallow water delta sand bodies and the genesis of thick layer sand bodies of the Triassic Yanchang Formation, Longdong Area, Ordos Basin. Pet. Explor. Dev. 2021, 48, 123–135. [Google Scholar] [CrossRef]
- Liu, J.D.; Li, L.; Zhang, C.J.; Jiang, Y.L.; Swennen, R.; Zhao, C.J.; Hou, S. Identification and quantitative evaluation of pores and throats of a tight sandstone reservoir (Upper Triassic Xujiahe Formation, Sichuan Basin, China). Mar. Pet. Geol. 2022, 140, 105663. [Google Scholar] [CrossRef]
- Dong, X.X.; Meng, X.Z.; Pu, R.H. Impacts of mineralogy and pore throat structure on the movable fluid of tight sandstone gas reservoirs in coal measure strata: A case study of the Shanxi formation along the southeastern margin of the Ordos Basin. J. Pet. Sci. Eng. 2023, 220, 111257. [Google Scholar] [CrossRef]
- Chen, Y.H.; Liu, S.H.; Zhu, Z.W.; Wang, Z.; Sun, X.G.; Xu, T. Geochemical characteristics and sedimentary setting of chang 9 shale in the Upper Triassic Yanchang Formation of southeastern Ordos Basin (NW China). J. Pet. Sci. Eng. 2021, 196, 108081. [Google Scholar] [CrossRef]
- Cui, J.W.; Zhang, Z.Y.; Zhang, Y.; Liu, G.L.; Qi, Y.L. Oil and gas accumulation periods and charging path of continental lake basin: A case study of the Chang 9-Chang 10 oil reservoir in the Yanchang formation in the Ordos Basin. J. Pet. Sci. Eng. 2022, 219, 111136. [Google Scholar] [CrossRef]
- Feng, D.H.; Liu, C.L.; Feng, X.L.; Wang, X.P.; Awan, R.S.; Yang, X.Y.; Xu, N.; Wu, Y.F.; Wu, Y.P.; Zang, Q.B. Movable fluid evaluation of tight sandstone reservoirs in lacustrine delta front setting: Occurrence characteristics, multiple control factors, and prediction model. Mar. Pet. Geol. 2023, 155, 106393. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Li, Z.Y.; Deng, X.Q.; Liao, J.B.; Zheng, X.M. Multi-parameters logging identifying method for sand body architectures of tight sandstones: A case from the Triassic Chang 9 Member, Longdong area, Ordos Basin, NW China. J. Pet. Sci. Eng. 2022, 216, 110824. [Google Scholar] [CrossRef]
- Yang, Y.T.; Li, W.; Ma, L. Tectonic and stratigraphic controls of hydrocarbon systems in the Ordos basin: A multicycle cratonic basin in central China. AAPG Bull. 2005, 89, 255–269. [Google Scholar] [CrossRef]
- Zhou, Y.; Ji, Y.L.; Xu, L.M.; Che, S.Q.; Niu, X.B.; Wan, L.; Zhou, Y.Q.; Li, Z.C.; You, Y. Controls on reservoir heterogeneity of tight sand oil reservoirs in Upper Triassic Yanchang Formation in Longdong Area, southwest Ordos Basin, China: Implications for reservoir quality prediction and oil accumulation. Mar. Pet. Geol. 2016, 78, 110–135. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Li, Z.Y.; Deng, X.Q.; Liao, J.B.; Li, X.B. Quantitative characterization and distribution of petrologically superior sandbodies in a shallow-water delta: Chang 81 sub-member, Triassic Yanchang Formation, Longdong area, Ordos Basin, China. Arab. J. Geosci. 2022, 15, 733. [Google Scholar] [CrossRef]
- Li, Y.; Chang, X.C.; Yin, W.; Wang, G.W.; Zhang, J.L.; Shi, B.B.; Zhang, J.H.; Mao, L.X. Quantitative identification of diagenetic facies and controls on reservoir quality for tight sandstones: A case study of the Triassic Chang 9 oil layer, Zhenjing area, Ordos Basin. Mar. Pet. Geol. 2019, 102, 680–694. [Google Scholar] [CrossRef]
- Xie, X.Y. Provenance and sediment dispersal of the Triassic Yanchang Formation, southwest Ordos Basin, China, and its implication. Sediment. Geol. 2016, 335, 1–16. [Google Scholar] [CrossRef]
- Wang, G.W.; Chang, X.C.; Yin, W.; Li, Y.; Song, T.T. Impact of diagenesis on reservoir quality and heterogeneity of the Upper Triassic Chang 8 tight oil sandstones in the Zhenjing area, Ordos Basin, China. Mar. Pet. Geol. 2017, 83, 84–96. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, C.Y.; Zheng, C.Y.; Wu, B.X.; Zheng, G.D. Geochemical study of crude oils from the Xifeng oilfield of the Ordos basin, China. J. Asian Earth Sci. 2008, 31, 341–356. [Google Scholar] [CrossRef]
- Liu, H.P.; Zhao, Y.C.; Luo, Y.; Xiao, G.J.; Meng, Y.J.; Zhou, S.B.; Shao, L.K. Origin of the reservoir quality difference between Chang 8 and Chang 9 Member sandstones in the Honghe Oil Field of the Southern Ordos Basin, China. J. Pet. Sci. Eng. 2020, 185, 106668. [Google Scholar] [CrossRef]
- Fu, J.H.; Liu, G.D.; Yang, W.W. A study of the accumulation periods of low permeability reservoir of Yanchang formation in Longdong area, Ordos Basin. Earth Sci. Front. 2013, 20, 125–131. [Google Scholar]
- Chen, S.J.; Lei, J.J.; Liu, C.; Yao, J.L.; Li, Y.; Li, S.X.; Su, K.M.; Xiao, Z.L. Factors controlling the reservoir accumulation of Triassic Chang 6 Member in Jiyuan-Wuqi area, Ordos Basin, NW China. Pet. Explor. Dev. 2019, 46, 253–264. [Google Scholar] [CrossRef]
- Zou, C.N.; Zhai, G.M.; Zhang, G.Y.; Wang, H.J.; Zhang, G.S.; Li, J.Z.; Wang, Z.M.; Wen, Z.X.; Ma, F.; Liang, Y.B.; et al. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources. Pet. Explor. Dev. 2015, 42, 14–28. [Google Scholar] [CrossRef]
- GB/T 18295-2001; Analysis Method of Sandstone Sample of Petroleum and Gas Reservoir by Scanning Electron Microscope. Standardization Administration of China: Beijing, China, 2001; pp. 2–5.
- SY/T 5346-2005; Rock Capillary Pressure Measurement. National Development and Reform Commission of China: Beijing, China, 2005; pp. 6–8.
- GB/T 29172-2012; Practices for Core Analysis. Standardization Administration of China: Beijing, China, 2012; pp. 78–153.
- SY/T 5788.3-2014; Specifications for Geological Logging of Oil and Gas Well. National Energy Administration of China: Beijing, China, 2014; pp. 17–24.
- Allen, D.R. Chapter 7 identification of sediments—Their depositional environment and degree of compaction—From well logs. Dev. Sedimentol. 1975, 18, 349–401. [Google Scholar]
- Serra, O.; Abbott, H.T. The Contribution of Logging Data to Sedimentology and Stratigraphy. Soc. Pet. Eng. J. 1982, 22, 117–131. [Google Scholar] [CrossRef]
- Shi, Y.J.; Zhang, H.T.; Zhou, J.Y.; Ding, W.P.; Wang, C.S. Division of formation structure using conventional logging attributes analysis. Well Logging Technol. 2016, 40, 493–497. [Google Scholar]
- Folk, R. Petrology of Sedimentary Rocks; Hemphill Publishing Company: Austin, TX, USA, 1980. [Google Scholar]
- Morad, S.; Al-Ramadan, K.; Ketzer, J.M. Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: Implications for msaa transfer in sedimentary basins. Sedimentology 2010, 47, 95–120. [Google Scholar] [CrossRef]
- Nabawy, B.S.; Abudeif, A.M.; Masoud, M.M.; Radwan, A.E. An integrated workflow for petrophysical characterization, microfacies analysis, and diagenetic attributes of the Lower Jurassic type section in northeastern Africa margin: Implications for subsurface gas prospection. Mar. Pet. Geol. 2022, 140, 105678. [Google Scholar] [CrossRef]
- Rogers, J.J.W. Relationships between porosity, median size, and sorting coefficients of synthetic sands. J. Sediment. Petrol. 1961, 31, 467–470. [Google Scholar]
- Barbier, M.; Hamon, Y.; Callot, J.-P.; Floquet, M.; Daniel, J.-M. Sedimentary and diagenetic controls on the multiscale fracturing pattern of a carbonate reservoir: The Madison Formation (Sheep Mountain, Wyoming, USA). Mar. Pet. Geol. 2012, 29, 50–67. [Google Scholar] [CrossRef]
- Anovitz, L.; Cole, D.; Rother, G.; Allard, L.; Jackson, A.; Littrell, K. Diagenetic changes in macro- to nano-scale porosity in the St. Peter Sandstone: An (ultra) small angle neutron scattering and backscattered electron imaging analysis. Geochim. Cosmochim. Acta 2013, 102, 280–305. [Google Scholar] [CrossRef]
- Sander, R.; Pan, Z.; Connell, L.D. Laboratory measurement of low permeability unconventional gas reservoir rocks: A review of experimental methods. J. Nat. Gas Sci. Eng. 2017, 37, 248–279. [Google Scholar] [CrossRef]
- An, W.Q.; Yue, X.A.; Zou, J.R.; Zhang, L.J.; Yan, R.J. Measuring gas permeability in tight cores at high pressure: Insights into supercritical carbon dioxide seepage characteristics. Geoenergy Sci. Eng. 2023, 229, 212070. [Google Scholar] [CrossRef]
- Xie, L.Z.; Yuan, Z.R.; He, B.; Wang, R.X. Experimental and molecular dynamics studies on the multiscale permeability properties of various gases in salt rock. Energy 2024, 290, 130079. [Google Scholar] [CrossRef]
- Bloch, S.; Lander, R.H.; Bonnell, L.M. Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability. AAPG Bull. 2002, 86, 301–328. [Google Scholar]
- Li, M.; Yao, J.L.; Guo, Y.H.; Li, Z.F.; Wang, H.C.; Song, X.J. Sandbody architecture types and diagenesis differences of quartz sandstone of the Member 23 of Permian Shanxi Formation, eastern Ordos Basin. J. Palaeogeogr. 2018, 20, 465–476. [Google Scholar]
- Chen, L.C.; Tan, J.Q.; Cui, H.S.; Ma, X.; Song, X.Q.; Yuan, Q.; Liu, J. Hydrocarbon generation mechanism of lamalginite- and telalginite-dominated source rocks in a saline lake basin: A case study of the Permian Lucaogou formation in the Jimusaer Sag, Junggar Basin. Energy Geosci. 2023, 4, 100191. [Google Scholar] [CrossRef]
- Lv, J.H.; Jiang, F.J.; Hu, T.; Zhang, C.X.; Huang, R.D.; Hu, M.L.; Xue, J.; Huang, L.L.; Wu, Y.P.; Xue, J.; et al. Control of complex lithofacies on the shale oil potential in ancient alkaline lacustrine basins: The Fengcheng Formation, Mahu Sag, Junggar Basin. Geoenergy Sci. Eng. 2023, 224, 211501. [Google Scholar] [CrossRef]
- Salih, N.M. The impact of hydrothermal fluids on porosity enhancement and hydrocarbon migration in Qamchuqa Formation, Lower Cretaceous, Kirkuk Oil Company. Minerals 2023, 13, 377. [Google Scholar] [CrossRef]
- Salih, N.M.; Al-Majmaie, S.M.; Muhammad, Z.A. The porous–permeable zones in heterogeneous carbonate reservoirs: A case study from Amara Oilfield, Iraq. Proceedings 2023, 87, 35. [Google Scholar]
- Yao, J.L.; Zeng, J.H.; Luo, A.X.; Yang, Z.F.; Deng, X.Q. Controlling effect of source-reservoir structure in tight reservoir on oil-bearing property: A case study of Chang 6—Chang 8 Members in Heshui area of Ordos Basin, China. J. Earth Sci. Environ. 2019, 41, 267–280. [Google Scholar]
- Nasehi, M.J.; Mortazavi, A. Effects of in-situ stress regime and intact rock strength parameters on the hydraulic fracturing. J. Pet. Sci. Eng. 2013, 108, 211–221. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Yu, H.G.; Chen, H.Y.; Du, S.K.; Li, C. Quantitative characterization of fracture-pore distribution and effects on production capacity of weathered volcanic crust reservoirs: Insights from volcanic gas reservoirs of the Dixi area, Junggar Basin, Western China. Mar. Pet. Geol. 2022, 140, 105651. [Google Scholar] [CrossRef]
- Cui, X.Y.; Radwan, A. Coupling relationship between current in-situ stress and natural fractures of continental tight sandstone oil reservoirs. Interpretation 2022, 10, SF9–SF21. [Google Scholar] [CrossRef]
- Li, N.; Wang, K.W.; Zhang, G.; Wu, H.L.; Zhao, L.Z.; Wu, L.H.; Feng, Q.F.; Feng, Z. Prediction of gas production in carbonates based on CT analysis and nuclear magnetic response (NMR) logging. Pet. Explor. Dev. 2015, 42, 167–174. [Google Scholar] [CrossRef]
- Li, X.; Li, C.L.; Li, B.; Liu, X.F.; Yuan, C. Response laws of rock electrical property and saturation evaluation method of tight sandstone. Pet. Explor. Dev. 2020, 47, 214–224. [Google Scholar] [CrossRef]
- Zhang, L.; Bao, Z.D.; Dou, L.X.; Zang, D.S.; Mao, S.W.; Song, J.; Zhao, J.H.; Wang, Z.C. Sedimentary characteristics and pattern of distributary channels in shallow water deltaic red bed succession: A case from the Late Cretaceous Yaojia formation, southern Songliao Basin, NE China. J. Pet. Sci. Eng. 2018, 171, 1171–1190. [Google Scholar] [CrossRef]
- Zhang, L.; Bao, Z.D.; Lin, Y.B.; Chen, Y.M.; Lin, X.H.; Dou, L.X.; Kong, B. Genetic types and sedimentary model of sandbodies in a shallow-water delta: A case study of the first Member of Cretaceous Yaojia Formation in Qian’an area, south of Songliao Basin, NE China. Pet. Explor. Dev. 2017, 44, 727–736. [Google Scholar] [CrossRef]
- Wang, M.Q.; Xie, J.; Zhang, Q.; Wang, Y.J.; Duan, Y.J. Characteristics and sedimentary model of a reticular shallow-water delta with distributary channels: Lower member of the Neogene Minghuazhen Formation in the Bozhong area of the Huanghekou Sag, China. Arab. J. Geosci. 2019, 12, 760. [Google Scholar] [CrossRef]
- Wang, Q.; Tan, M.J.; Xiao, C.W.; Wang, S.Y.; Han, C.; Zhang, L.T. Pore-scale electrical numerical simulation and new saturation model of fractured tight sandstone. AAPG Bull. 2022, 106, 1479–1497. [Google Scholar] [CrossRef]
Code. | Genesis | Sedimentary Bedding | Lithology | Hydrodynamic | Well Logging Facies | Logging Identification Criteria |
---|---|---|---|---|---|---|
A | Distributary channel | Massive bedding Large cross-bedding | Fine-medium sandstone | stronger | High amplitude smooth cylindrical shape | GR < 80 API, Thickness > 3 m 0.45 < Rg < 0.55, Dvr < 4 |
B | High amplitude smooth bell shape | GR < 80 API, Thickness > 3 m Rg > 0.55, Dvr < 4 | ||||
C | Distributary channel | Horizontal, Wavy, Sand ripple, Parallel, Oblique, Small cross-bedding | Fine sandstone, very fine sandstone, siltstone | Strong-moderate | Medium-low amplitude toothed cylindrical shape | GR < 110 API, Thickness > 3 m 0.45 < Rg < 0.55, Dvr > 4 |
D | Weak-moderate | Medium-low amplitude toothed bell shape | GR < 110 API, Thickness > 3 m Rg > 0.55, Dvr > 4 | |||
E | Levee | Wavy bedding Sand ripple bedding | Fine sandstone, very fine sandstone, siltstone | Weaker | Medium-high finger shape | GR < 110 API Thickness < 3 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Liao, J.; Li, Z. Prediction of Oil Production in a Tight Sandstone Reservoir: Triassic Chang 9 Member, Jiyuan Area, Ordos Basin, NW China. Processes 2024, 12, 382. https://doi.org/10.3390/pr12020382
Zhang Z, Liao J, Li Z. Prediction of Oil Production in a Tight Sandstone Reservoir: Triassic Chang 9 Member, Jiyuan Area, Ordos Basin, NW China. Processes. 2024; 12(2):382. https://doi.org/10.3390/pr12020382
Chicago/Turabian StyleZhang, Zhaohui, Jianbo Liao, and Zhiyong Li. 2024. "Prediction of Oil Production in a Tight Sandstone Reservoir: Triassic Chang 9 Member, Jiyuan Area, Ordos Basin, NW China" Processes 12, no. 2: 382. https://doi.org/10.3390/pr12020382
APA StyleZhang, Z., Liao, J., & Li, Z. (2024). Prediction of Oil Production in a Tight Sandstone Reservoir: Triassic Chang 9 Member, Jiyuan Area, Ordos Basin, NW China. Processes, 12(2), 382. https://doi.org/10.3390/pr12020382