Predicting Enthalpy of Combustion Using Machine Learning
Abstract
:1. Introduction
2. Theoretical Background
3. Dataset and Machine Learning
4. Results and Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gharagheizi, F.; Mirkhani, S.A.; Tofangchi Mahyari, A.-R. Prediction of Standard Enthalpy of Combustion of Pure Compounds Using a Very Accurate Group-Contribution-Based Method. Energy Fuels 2011, 25, 2651–2654. [Google Scholar] [CrossRef]
- Albahri, T.A. Accurate prediction of the standard net heat of combustion from molecular structure. J. Loss Prev. Process Ind. 2014, 32, 377–386. [Google Scholar] [CrossRef]
- Dashti, A.; Mazaheri, O.; Amirkhani, F.; Mohammadi, A.H. Molecular descriptors-based models for estimating net heat of combustion of chemical compounds. Energy 2021, 217, 119292. [Google Scholar] [CrossRef]
- Qasem, M.A.A.; Al-Mutairi, E.M.; Jameel, A.G.A. Smoke point prediction of oxygenated fuels using neural networks. Fuel 2023, 332, 126026. [Google Scholar] [CrossRef]
- Qasem, M.A.A.; van Oudenhoven, V.C.O.; Pasha, A.A.; Pillai, S.N.; Reddy, V.M.; Ahmed, U.; Razzak, S.A.; Al-Mutairi, E.M.; Jameel, A.G.A. A machine learning model for predicting threshold sooting index (TSI) of fuels containing alcohols and ethers. Fuel 2022, 322, 123941. [Google Scholar] [CrossRef]
- Aljaman, B.; Ahmed, U.; Zahid, U.; Reddy, V.M.; Sarathy, S.M.; Jameel, A.G.A. A comprehensive neural network model for predicting flash point of oxygenated fuels using a functional group approach. Fuel 2022, 317, 123428. [Google Scholar] [CrossRef]
- Ilieş, B.D.; Khandavilli, M.; Li, Y.; Kukkadapu, G.; Wagnon, S.W.; Abdul Jameel, A.G.; Sarathy, S.M. Probing the Chemical Kinetics of Minimalist Functional Group Gasoline Surrogates. Energy Fuels 2021, 35, 3315–3332. [Google Scholar] [CrossRef]
- Pei, X.; Abdul Jameel, A.G.; Chen, C.; AlGhamdi, I.A.; AlAhmadi, K.; AlBarakati, E.; Saxena, S.; Roberts, W.L. Swirling Flame Combustion of Heavy Fuel Oil: Effect of Fuel Sulfur Content. J. Energy Resour. Technol. 2020, 143, 082103. [Google Scholar] [CrossRef]
- Abdul Jameel, A.G.; Alkhateeb, A.; Telalović, S.; Elbaz, A.M.; Roberts, W.L.; Sarathy, S.M. Environmental Challenges and Opportunities in Marine Engine Heavy Fuel Oil Combustion. In Proceedings of the Fourth International Conference in Ocean Engineering (ICOE 2018), Chennai, India, 18–21 February 2018; pp. 1047–1055. [Google Scholar] [CrossRef]
- Ordonez-Loza, J.; Chejne, F.; Jameel, A.G.A.; Telalovic, S.; Arrieta, A.A.; Sarathy, S.M. An investigation into the pyrolysis and oxidation of bio-oil from sugarcane bagasse: Kinetics and evolved gases using TGA-FTIR. J. Environ. Chem. Eng. 2021, 9, 106144. [Google Scholar] [CrossRef]
- Abdul Jameel, A.G. Predicting Sooting Propensity of Oxygenated Fuels Using Artificial Neural Networks. Processes 2021, 9, 1070. [Google Scholar] [CrossRef]
- Abdul Jameel, A.G.; van Oudenhoven, V.C.O.; Naser, N.; Emwas, A.-H.; Gao, X.; Sarathy, S.M. Predicting Ignition Quality of Oxygenated Fuels Using Artificial Neural Networks. SAE Int. J. Fuels Lubr. 2021, 14, 57–85. [Google Scholar] [CrossRef]
- Abdul Jameel, A.G. Identification and Quantification of Hydrocarbon Functional Groups in Gasoline Using 1H-NMR Spectroscopy for Property Prediction. Molecules 2021, 26, 6989. [Google Scholar] [CrossRef]
- Palani, R.; AbdulGani, A.; Balasubramanian, N. Treatment of Tannery Effluent Using a Rotating Disc Electrochemical Reactor. Water Environ. Res. 2017, 89, 77–85. [Google Scholar] [CrossRef]
- Abdul Jameel, A.G.; Naser, N.; Emwas, A.-H.; Dooley, S.; Sarathy, S.M. Predicting Fuel Ignition Quality Using 1H NMR Spectroscopy and Multiple Linear Regression. Energy Fuels 2016, 30, 9819–9835. [Google Scholar] [CrossRef]
- Abdul Jameel, A.G.; Van Oudenhoven, V.; Emwas, A.-H.; Sarathy, S.M. Predicting Octane Number Using Nuclear Magnetic Resonance Spectroscopy and Artificial Neural Networks. Energy Fuels 2018, 32, 6309–6329. [Google Scholar] [CrossRef] [Green Version]
- Edwards, T.; Maurice, L.Q. Surrogate Mixtures to Represent Complex Aviation and Rocket Fuels. J. Propuls. Power 2001, 17, 461–466. [Google Scholar] [CrossRef]
- Huber, M.L.; Lemmon, E.W.; Ott, L.S.; Bruno, T.J. Preliminary Surrogate Mixture Models for the Thermophysical Properties of Rocket Propellants RP-1 and RP-2. Energy Fuels 2009, 23, 3083–3088. [Google Scholar] [CrossRef]
- Shrestha, A. JP-8 Surrogates for Diesel Engine Application: Development, Validation, and CFD Simulation; Wayne State University: Detroit, MI, USA, 2014. [Google Scholar]
- Kalghatgi, G.T.; Hildingsson, L.; Harrison, A.J.; Johansson, B. Surrogate fuels for premixed combustion in compression ignition engines. Int. J. Engine Res. 2011, 12, 452–465. [Google Scholar] [CrossRef]
- Huber, M.L.; Lemmon, E.W.; Bruno, T.J. Surrogate Mixture Models for the Thermophysical Properties of Aviation Fuel Jet-A. Energy Fuels 2010, 24, 3565–3571. [Google Scholar] [CrossRef]
- Eddings, E.G.; Yan, S.; Ciro, W.; Sarofim, A.F. Formulation of a surrogate for the simulation of jet fuel pool fires. Combust. Sci. Technol. 2005, 177, 715–739. [Google Scholar] [CrossRef]
- Naik, C.V.; Puduppakkam, K.V.; Modak, A.; Wang, C.; Meeks, E. Validated F-T Fuel Surrogate Model for Simulation of Jet-Engine Combustion. In Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air, Glasgow, UK, 14–18 June 2010; pp. 1301–1308. [Google Scholar]
- Grubinger, T.; Lenk, G.; Schubert, N.; Wallek, T. Surrogate generation and evaluation of gasolines. Fuel 2021, 283, 118642. [Google Scholar] [CrossRef]
- Xu, R.; Wang, H.; Colke, M.; Edwards, T. Thermochemical Properties of Jet Fuels; 6 July 2015 ed.; Stanford University: Stanford, CA, USA, 2015. [Google Scholar]
- Prosen, E.J.; Rossini, F.D. Heats of combustion and formation of the paraffin hydrocarbons at 25-degrees-c. J. Res. Natl. Bur. Stand. 1945, 34, 263–269. [Google Scholar] [CrossRef]
- Rossini, F.D.; Knowlton, J.W. Heats of combustion and of formation of the normal olefin (alkene-1) hydrocarbons in the gaseous state. J. Res. Natl. Bur. Stand. 1937, 19, 339–345. [Google Scholar] [CrossRef]
- Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y. Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons. J. Phys. Chem. Ref. Data 2008, 37, 1855–1996. [Google Scholar] [CrossRef] [Green Version]
- Kharasch, M.S. Heats of combustion of organic compounds. Bur. Stand. J. Res. 1929, 2, 359–430. [Google Scholar] [CrossRef]
- Green, J.H.S. Thermodynamic properties of organic oxygen compounds. Q. Rev. Chem. Soc. 1961, 15, 125–152. [Google Scholar] [CrossRef]
- Sagadeev, E.V.; Sagadeev, V.V. Calculation of the Heat of Combustion of Hydrocarbon Components of Fuels. High Temp. 2004, 42, 421–425. [Google Scholar] [CrossRef]
- Harrop, D.; Head, A.J.; Lewis, G.B. Thermodynamic properties of organic oxygen compounds 22. Enthalpies of combustion of some aliphatic ketones. J. Chem. Thermodyn. 1970, 2, 203–210. [Google Scholar] [CrossRef]
- Good, W.D.; Smith, N.K. Enthalpies of combustion of toluene, benzene, cyclohexane, cyclohexene, methylcyclopentane, 1-methylcyclopentene, and n-hexane. J. Chem. Eng. Data 1969, 14, 102–106. [Google Scholar] [CrossRef]
- Montgomery, R.L.; Rossini, F.D.; Mansson, M. Enthalpies of combustion, vaporization, and formation of phenylbenzene, cyclohexylbenzene, and cyclohexylcyclohexane; enthalpy of hydrogenation of certain aromatic systems. J. Chem. Eng. Data 1978, 23, 125–129. [Google Scholar] [CrossRef]
- NIST Chemistry WebBook; U.S. Secretary of Commerce on behalf of the United States of America: Washington, DC, USA, 2021.
- ToolBox, E. Combustion Heat; The Engineering ToolBox: Online, 2017. [Google Scholar]
- Domalski, E.S. Selected Values of Heats of Combustion and Heats of Formation of Organic Compounds Containing the Elements C, H, N, O, P, and S. J. Phys. Chem. Ref. Data 1972, 1, 221–277. [Google Scholar] [CrossRef]
No. | Variables | Definitions |
---|---|---|
1 | P.CH3 (wt %) | Weight percentage of paraffinic CH3 groups in the compound |
2 | P.CH2 (wt %) | Weight percentage of paraffinic CH2 groups in the compound |
3 | P.CH (wt %) | Weight percentage of paraffinic CH groups in the compound |
4 | Olef (wt %) | Weight percentage of olefin groups in the compound |
5 | Naph (wt %) | Weight percentage of naphthene groups in the compound |
6 | Arom (wt %) | Weight percentage of aromatic groups in the compound |
7 | Alc OH (wt %) | Weight percentage of alcohol groups in the compound |
8 | Ether O (wt %) | Weight percentage of ether groups in the compound |
9 | Aldeh CHO (wt %) | Weight percentage of aldehyde groups in the compound |
10 | Ketone CO (wt %) | Weight percentage of ketone groups in the compound |
11 | Ester (wt %) | Weight percentage of ester groups in the compound |
12 | Mol wt | Molecular weight of the compound |
13 | BI | Branching index of the compound |
Sr. No. | Compound Name | Compound Formula | Enthalpy of Combustion (Kcal/mol) | References |
---|---|---|---|---|
1 | Ethane | C2H6 | 372.82 | [26] |
2 | Propane | C3H8 | 530.605 | |
3 | n-Butane | C4H10 | 687.982 | |
4 | n-Pentane | C5H12 | 838.8 | |
5 | n-Hexane | C6H14 | 995.01 | |
6 | n-Heptane | C7H16 | 1151.27 | |
7 | n-Octane | C8H18 | 1307.53 | |
8 | n-Nonane | C9H20 | 1463.3 | |
9 | n-Decane | C10H22 | 1620.06 | |
10 | n-Undecane | C11H24 | 1776.32 | |
11 | n-Dodecane | C12H26 | 1932.59 | |
12 | n-Hexadecane | C16H34 | 2557.64 | |
13 | 2-Methylpropane | C4H10 | 686.342 | |
14 | 2-Methylbutane | C5H12 | 837.3 | |
15 | 2,2-Dimethylpropane | C5H12 | 840.49 | |
16 | 2-Methylpentane | C6H14 | 993.71 | |
17 | 3-Methylpentane | C6H14 | 994.25 | |
18 | 2,2-Dimethylbutane | C6H14 | 991.52 | |
19 | 2,3-Dimethylbutane | C6H14 | 993.05 | |
20 | 2-Methylhexane | C7H16 | 1149.97 | |
21 | 3-Methylhexane | C7H16 | 1150.55 | |
22 | 3-Ethylpentane | C7H16 | 1151.13 | |
23 | 2,2-Dimethylpentane | C7H16 | 1147.85 | |
24 | 2,3-Dimethylpentane | C7H16 | 1149.09 | |
25 | 2,4-Dimethylpentane | C7H16 | 1148.73 | |
26 | 3,3-Dimethylpentane | C7H16 | 1148.83 | |
27 | 2,2,3-Trimethylbutane | C7H16 | 1148.27 | |
28 | 2-Methylheptane | C8H18 | 1306.28 | |
29 | 3-Methylheptane | C8H18 | 1306.92 | |
30 | 4-Methylheptane | C8H18 | 1307.09 | |
31 | 3-Ethylhexane | C8H18 | 1307.39 | |
32 | 2,2-Dimethylhexane | C8H18 | 1304.64 | |
33 | 2,3-Dimethylhexane | C8H18 | 1306.86 | |
34 | 2,4-Dimethylhexane | C8H18 | 1305.8 | |
35 | 2,5-Dimethylhexane | C8H18 | 1305 | |
36 | 3,3-Dimethylhexane | C8H18 | 1305.68 | |
37 | 3,4-Dimethylhexane | C8H18 | 1307.04 | |
38 | 2-Methyl-3-ethylpentane | C8H18 | 1307.58 | |
39 | 3-Methyl-3-ethylpentane | C8H18 | 1306.8 | |
40 | 2,2,3-Trimethylpentane | C8H18 | 1305.83 | |
41 | 2,2,4-Trimethylpentane | C8H18 | 1305.29 | |
42 | 2,3,3-Trimethylpentane | C8H18 | 1306.64 | |
43 | 2,3,4-Trimethylpentane | C8H18 | 1306.28 | |
44 | 2,2,3,3-Tetramethylbutane | C8H18 | 1303.03 | |
45 | n-Tridecane | C13H28 | 2088.85 | |
46 | n-Tetradecane | C14H30 | 2245.11 | |
47 | n-Pentadecane | C15H32 | 2401.37 | |
48 | n-Heptadecane | C17H36 | 2713.9 | |
49 | n-Octadecane | C18H38 | 2870.16 | |
50 | n-nonadecane | C19H40 | 3026.43 | |
51 | n-Eicosane | C20H42 | 3182.69 | |
52 | Ethylene | C2H4 | 337.25 | [27] |
53 | Propylene | C3H6 | 419.9 | |
54 | n-1-Butene | C4H8 | 649.66 | |
55 | n-1-Pentene | C5H10 | 806.78 | |
56 | n-1-Hexene | C6H12 | 963.9 | |
57 | n-1-Heptene | C7H14 | 1120.9 | |
58 | n-1-Octene | C8H16 | 1277.97 | |
59 | n-1-Nonene | C9H18 | 1434.9 | |
60 | n-1-Decene | C10H20 | 1591.95 | |
61 | Benzene | C6H6 | 3267.49 | [28] |
62 | Toluene | C7H8 | 3909.9 | |
63 | Naphthalene | C9H10 | 5157 | |
64 | 2-Methyl-2-butene | C13H12 | 3362.2 | [29] |
65 | 1-Methyl-1-cyclohexene | C7H12 | 4353 | |
66 | 1-Pentanol | C5H12O | 3329.96 | [30] |
67 | 1-Octanol | C8H18O | 5292.5 | |
68 | 1-Butanol | C4H10O | 2675.61 | |
69 | 1-Decanol | C10H22O | 10,468.26 | |
70 | 1,2,3-trimethylcyclohexane | C12H10O2 | 5837.7 | [29] |
71 | Ethylcyclohexane | C12H10O2 | 5059.1 | |
72 | methylcyclohexane | C12H10O2 | 4565.9 | |
73 | 2-Methylheptane | C12H10O2 | 5464.7 | |
74 | Bicyclohexane | C6H10 | 3818.8 | |
75 | 1,3-Dimethylcyclopentane | C7H14 | 4561.3 | |
76 | 1,2,4-Trimethylcyclopentane | C8H16 | 5208.3 | |
77 | 1,1-Dimethylcyclohexane | C8H16 | 5196.1 | |
78 | 1,3-Dimethylcyclohexane | C8H16 | 5177.3 | |
79 | 1,4-Dimethylcyclohexane | C8H16 | 5138.8 | |
80 | 1,2,3-Trimethylcyclohexane | C9H18 | 5837.7 | |
81 | 1,3,3-Trimethylcyclohexane | C9H18 | 5832.6 | |
82 | 3,3-Dimethylcyclohexene | C9H18 | 4995.4 | |
83 | Bicycloheptane | C7H12 | 4308.7 | |
84 | Ethylenecyclohexane | C10H18 | 5059.1 | |
85 | Isopropyl-1-cyclohexene-1 | C9H16 | 5611.2 | |
86 | o-Xylene | C8H10 | 4578.1 | |
87 | m-Xylene | C8H10 | 4567.7 | |
88 | p-Xylene | C8H10 | 4556.8 | |
89 | Diamylene | C10H20 | 6616.8 | |
90 | 1-methyl-3-cyclohexene | C7H12 | 4364.3 | |
91 | Phenyl-1-butene-2 | C10H12 | 5702.1 | |
92 | Isopropyl alcohol | C3H3O | 1985.6 | |
93 | Ethylvinyl carbinol | C5H10O | 3148.6 | |
94 | Pinacolyl alcohol | C6H14O | 3925.2 | |
95 | 1,3-Dimethylcyclohexanol-5 | C8H16O | 4949 | |
96 | Trimethyl carbinol | C4H10O | 2631.7 | |
97 | Dimethylethyl carbinol | C5H12O | 3281.2 | |
98 | 1,3-Dimethylcyclohexanol-2 | C8H16O | 5001.7 | |
99 | 2-Methyl-2-propanol | C4H10O | 2631.7 | |
100 | Ethylene glycol | C2H6O2 | 1179.8 | |
101 | Propylene glycol | C3H8O2 | 1802.4 | |
102 | Phenol | C6H6O | 3064.3 | |
103 | Glycerol | C3H8O2 | 1661.5 | |
104 | Anisole | C7H8O | 3787.8 | |
105 | Phenetole | C8H10O | 4423.1 | |
106 | m-Cresol methyl ether | C8H10O | 4423.6 | |
107 | Safrole | C10H10O2 | 5206.6 | |
108 | Isosafrole | C10H10O2 | 5163.9 | |
109 | Acenaphthene | C12H10 | 6241.1 | |
110 | Phenyl-1-butene-2 | C12H10 | 5702.1 | |
111 | Phenyl-1-pentene-2 | C11H14 | 6325.4 | |
112 | Benzil | C14H10O2 | 6789.9 | |
113 | Benzoin | C14H10O2 | 6994.8 | |
114 | Furfuraldehyde | C5H4O2 | 2339.8 | |
115 | 1-Naphthalenol | C10H8O | 4960.9 | |
116 | Vinyl acetate | C4H5O2 | 2084.5 | |
117 | Ethylcycloheptane | C9H18 | 5883.2 | |
118 | 1-Methyl-3-propylcyclohexane | C10H20 | 6285.1 | |
119 | Ethyl-1-cyclohexene-1 | C8H14 | 5042.3 | |
120 | 1-Isopropyl-1-cyclohexene | C9H16 | 5611.2 | |
121 | Methylenecyclohexane | C7H12 | 4404.3 | |
122 | Propyl benzoate | C10H12O2 | 5250.1 | |
123 | 1-Methylcyclohexane-1,2-diol | C7H14O2 | 4164.5 | |
124 | Diphenylstyrene | C20H16 | 10,493.5 | |
125 | Amyl benzoate | C12H16O | 6568.4 | |
126 | Cycloheptene | C7H12 | 4390.7 | |
127 | 1,2-Propadiene | C3H4 | 1962.05 | |
128 | Eugenol acetate | C12H14O3 | 6268.3 | |
129 | Phenyl benzoate | C13H10O2 | 6321.4 | |
130 | Isopropyltoluene | C7H8 | 5895.9 | |
131 | 1,2,4-trimethylbenzene | C5H10O | 5195.3 | |
132 | Cyclohexanol | C6H12 | 3724.9 | |
133 | Cyclopentanone | C7H14 | 2852.1 | |
134 | Isopropenylbenzene | C16H32 | 5218.7 | |
135 | Propylbenzene | C18H36 | 5214.9 | |
136 | Styrene | C13H26 | 4375 | |
137 | Cyclohexane | C6H12 | 3919.8 | [31] |
138 | Methyl cyclohexane | C7H14 | 4564.3 | |
139 | Ethyl cyclohexane | C8H16 | 5222.6 | |
140 | Propyl cyclohexane | C9H18 | 5875.8 | |
141 | 1,1-Dimethyl cyclohexane | C8H16 | 5216 | |
142 | 1,2-Dimethyl cyclohexane | C8H16 | 5216.5 | |
143 | Cyclopentane | C5H10 | 3291.6 | |
144 | Propyl cyclopentane | C8H16 | 5245.6 | |
145 | Butyl cyclopentane | C9H18 | 5899.9 | |
146 | Decyl cyclopentane | C15H30 | 9822.1 | |
147 | 1,1-Dimethyl cyclopentane | C7H14 | 4583.3 | |
148 | 1,2-Dimethyl cyclopentane | C7H14 | 4561.3 | |
149 | 2-Hexanone | C6H12O | 3754.02 | [32] |
150 | 3-Hexanone | C6H12O | 3755.9 | |
151 | 3,3-Dimethylbutan-2-one | C6H12O | 3347.49 | |
152 | 5-Nonanone | C9H18O | 5715.81 | |
153 | 6-Undecanone | C11H22O | 7024.6 | |
154 | 2-Pentanone | C5H10O | 3099.41 | |
155 | 3-Pentanone | C5H10O | 3100.19 | |
156 | Cyclohexene | C6H10 | 895.27 | [33] |
157 | 1-Methylcyclopentene | C6H10 | 895.69 | |
158 | Cyclohexyl-benzene | C12H16 | 6922.73 | [34] |
159 | Phenylbenzene | C12H10O2 | 6245.45 | |
160 | Cyclohexyl-cyclohexane | C12H22 | 7578.83 | |
161 | Ethylbenzene | C8H10 | 4563.9 | [35] |
162 | Propylbenzene | C9H12 | 5218 | |
163 | 1,2-Dimethylbenzene | C8H10 | 4552.6 | |
164 | 1,3-Dimethylbenzene | C8H10 | 4551.6 | |
165 | 1,4-Dimethylbenzene | C8H10 | 4552.6 | |
166 | Heptyl cyclohexane | C13H26 | 8478.5 | |
167 | Methanol | CH4O | 726 | |
168 | Ethanol | C2H6O | 1367.3 | |
169 | 1-Propanol | C3H8O | 2021 | |
170 | 2-Propanol | C3H8O | 2005.8 | |
171 | 1-Hexanol | C6H14O | 3983.8 | |
172 | 1-Heptanol | C7H16O | 4637.6 | |
173 | Ethan-1,2-diol | C2H6O2 | 1179.5 | |
174 | Propan-1,2,3-triol | C3H8O3 | 1655.2 | |
175 | 2-Methylpropan-2-ol | C4H10O | 2643.8 | |
176 | Cyclohexanol | C6H12O | 3737 | |
177 | Methanal | CH2O | 570.6 | |
178 | Ethanal | C2H4O | 1167.1 | |
179 | Propanal | C3H6O | 1820.8 | |
180 | Butanal | C4H8O | 2476 | |
181 | 2-Methylpropanal | C4H8O | 2468.3 | |
182 | Pentanal | C5H10O | 3166 | |
183 | Benzaldehyde | C7H6O | 3525.1 | |
184 | 2-Propanone | C3H6O | 1816.5 | |
185 | 2-Butanone | C4H8O | 2441.5 | |
186 | 3-Methylbutanone | C5H10O | 3097 | |
187 | Cyclohexanone | C6H10O | 3519.3 | |
188 | Phenylethanone | C8H8O | 4148.7 | |
189 | Methyl methanoate | C2H4O2 | 972.6 | |
190 | Cyclopropane | C3H6 | 2091.4 | |
191 | Cyclobutane | C4H8 | 2720.9 | |
192 | Cycloheptane | C7H14 | 4598.4 | |
193 | Cyclooctane | C8H16 | 5266.7 | |
194 | Cyclononane | C9H18 | 5932.5 | |
195 | Styrene | C8H8 | 4395 | |
196 | Acetaldehyde | C2H4O | 1167 | [36] |
197 | Benzaldehyde | C7H6O | 843.2 | [37] |
198 | Octaldehyde | C8H16O | 1218.9 | |
199 | Ethanedial | C2H2O2 | 205.76 | |
200 | pyrene | C16H10 | 1873.83 | |
201 | 1,2-benzanthracene | C18H12 | 2144 | |
202 | perylene | C20H12 | 2334.6 | |
203 | methyl formate | C2H4O2 | 234.1 | |
204 | Heptanal | C7H14O | 1062.2 |
Sr. No. | Compound Name | Measured/Obtained Enthalpy of Combustion (KJ/mol) | Predicted Enthalpy of Combustion (KJ/mol) | Error (%) |
---|---|---|---|---|
1 | 2-Methylhexane | 4811.5 | 4819.7 | 0.2 |
2 | 2,2,3-Trimethylpentane | 5463.6 | 5285.9 | 3.3 |
3 | n-1-Decene | 6660.7 | 7139.8 | 7.2 |
4 | Propylbenzene | 5214.9 | 5187 | 0.5 |
5 | 1-Methylcyclopentene | 3747.6 | 4056.3 | 8.2 |
6 | Diphenylstyrene | 10,493.5 | 10,378 | 1.1 |
7 | Heptanal | 4444.2 | 4727.3 | 6.4 |
8 | Phenol | 3064.3 | 3164.8 | 3.3 |
9 | Glycerol | 1661.5 | 1587.7 | 4.4 |
10 | Phenetole | 4423.1 | 4150.6 | 6.2 |
11 | Pinacolyl alcohol | 3925.2 | 3715.4 | 5.3 |
12 | Methyl methanoate | 972.6 | 1003.5 | 3.2 |
13 | Ethanedial | 860.9 | 941.3 | 9.3 |
14 | Sr#2 | 6937.1 | 7359.7 | 6.1 |
15 | Sr#3 | 6054.9 | 6282.3 | 3.8 |
16 | Sr#4 | 5755.7 | 5913 | 2.7 |
17 | Sr#7 | 6173.8 | 6128.9 | 0.7 |
18 | Sr#8 | 6205.3 | 5798.3 | 6.6 |
19 | Sr#9 | 6241.7 | 6388.5 | 2.4 |
20 | Sr#10 | 6245.4 | 6225.6 | 0.3 |
21 | Sr#11 | 6671 | 7016.6 | 5.2 |
22 | Sr#12 | 6715.9 | 6989.8 | 4.1 |
23 | Sr#13 | 4950.2 | 5258.2 | 6.2 |
24 | Sr#14 | 3930.1 | 4128.6 | 5.1 |
25 | Sr#15 | 4455.3 | 4271.8 | 4.1 |
26 | Sr#16 | 6550 | 6076.1 | 7.2 |
27 | Sr#20 | 4520 | 4739.6 | 4.9 |
28 | Sr#22 | 4347.7 | 4471.2 | 2.8 |
29 | Sr#23 | 3793.2 | 3704.6 | 2.3 |
30 | Sr#25 | 6334.2 | 6811.6 | 7.5 |
31 | Sr#26 | 6493.8 | 6804.7 | 4.8 |
32 | Sr#27 | 6843.3 | 6916.7 | 1.1 |
33 | Sr#28 | 7795.1 | 8041.5 | 3.2 |
34 | Sr#29 | 7640.7 | 8319.1 | 8.9 |
35 | Sr#30 | 7678.7 | 7683.5 | 0.1 |
36 | Sr#31 | 7033.3 | 7647.5 | 8.7 |
37 | Sr#32 | 5778.1 | 5646.1 | 2.3 |
38 | Sr#33 | 7268.4 | 7297.5 | 0.4 |
39 | Sr#34 | 7223.8 | 7643.7 | 5.8 |
40 | Sr#36 | 9921.4 | 10,002 | 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdul Jameel, A.G.; Al-Muslem, A.; Ahmad, N.; Alquaity, A.B.S.; Zahid, U.; Ahmed, U. Predicting Enthalpy of Combustion Using Machine Learning. Processes 2022, 10, 2384. https://doi.org/10.3390/pr10112384
Abdul Jameel AG, Al-Muslem A, Ahmad N, Alquaity ABS, Zahid U, Ahmed U. Predicting Enthalpy of Combustion Using Machine Learning. Processes. 2022; 10(11):2384. https://doi.org/10.3390/pr10112384
Chicago/Turabian StyleAbdul Jameel, Abdul Gani, Ali Al-Muslem, Nabeel Ahmad, Awad B. S. Alquaity, Umer Zahid, and Usama Ahmed. 2022. "Predicting Enthalpy of Combustion Using Machine Learning" Processes 10, no. 11: 2384. https://doi.org/10.3390/pr10112384
APA StyleAbdul Jameel, A. G., Al-Muslem, A., Ahmad, N., Alquaity, A. B. S., Zahid, U., & Ahmed, U. (2022). Predicting Enthalpy of Combustion Using Machine Learning. Processes, 10(11), 2384. https://doi.org/10.3390/pr10112384