Effects of Low-Level Organic Mercury Exposure on Oxidative Stress Profile
Abstract
:1. Introduction
2. Materials and Methods
3. Results
Subjects and Baseline Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mercury and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/mercury-and-health (accessed on 16 June 2022).
- Sakamoto, M.; Nakamura, M.; Murata, K. Mercury as a Global Pollutant and Mercury Exposure Assessment and Health Effects. Nippon. Eiseigaku Zasshi Jpn. J. Hyg. 2018, 73, 258–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO Regional Office for Europe. Air Quality Guidelines, 2nd ed.; Chapter 6.9; WHO Regional Office for Europe: Copenhagen, Denmark, 2000; Available online: https://www.euro.who.int/__data/assets/pdf_file/0004/123079/AQG2ndEd_6_9Mercury.PDF (accessed on 16 June 2022).
- Boerleider, R.Z.; Roeleveld, N.; Scheepers, P.T. Human biological monitoring of mercury for exposure assessment. AIMS Environ. Sci. 2017, 4, 251–276. [Google Scholar] [CrossRef]
- Mercury Factsheet|National Biomonitoring Program|CDC. Published 2 September 2021. Available online: https://www.cdc.gov/biomonitoring/Mercury_FactSheet.html (accessed on 16 June 2022).
- Choi, H.; Park, S.-K.; Kim, M.-H. Risk Assessment of Mercury through Food Intake for Korean Population. Korean J. Food Sci. Technol. 2012, 44, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Ye, B.-J.; Kim, B.-G.; Jeon, M.-J.; Kim, S.-Y.; Kim, H.-C.; Jang, T.-W.; Chae, H.-J.; Choi, W.-J.; Ha, M.-N.; Hong, Y.-S. Evaluation of mercury exposure level, clinical diagnosis and treatment for mercury intoxication. Ann. Occup. Environ. Med. 2016, 28, 5. [Google Scholar] [CrossRef] [Green Version]
- Posin, S.L.; Kong, E.L.; Sharma, S. Mercury Toxicity; StatPearls Publishing: Tampa, FL, USA, 2022. Available online: http://www.ncbi.nlm.nih.gov/books/NBK499935/ (accessed on 16 June 2022).
- Rice, K.M.; Walker, E.M., Jr.; Wu, M.; Gillette, C.; Blough, E.R. Environmental Mercury and Its Toxic Effects. J. Prev. Med. Public Health 2014, 47, 74–83. [Google Scholar] [CrossRef]
- Lund, B.-O.; Miller, D.M.; Woods, J.S. Studies on Hg(II)-induced H2O2 formation and oxidative stress in vivo and in vitro in rat kidney mitochondria. Biochem. Pharmacol. 1993, 45, 2017–2024. [Google Scholar] [CrossRef]
- Younus, H. Therapeutic potentials of superoxide dismutase. Int. J. Health Sci. 2018, 12, 88–93. [Google Scholar]
- Lubos, E.; Loscalzo, J.; Handy, D.E. Glutathione Peroxidase-1 in Health and Disease: From Molecular Mechanisms to Therapeutic Opportunities. Antioxid. Redox Signal. 2011, 15, 1957–1997. [Google Scholar] [CrossRef] [Green Version]
- Linšak, Ž.; Linšak, D.T.; Špirić, Z.; Srebočan, E.; Glad, M.; Milin, Č. Effects of mercury on glutathione and glutathione-dependent enzymes in hares (Lepus europaeus Pallas). J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng. 2013, 48, 1325–1332. [Google Scholar] [CrossRef]
- Del Rio, D.; Stewart, A.J.; Pellegrini, N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 316–328. [Google Scholar] [CrossRef]
- Agarwal, R.; Behari, J.R. Effect of Selenium Pretreatment in Chronic Mercury Intoxication in Rats. Bull. Environ. Contam. Toxicol. 2007, 79, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Silva-Filho, R.; Santos, N.; Santos, M.C.; Nunes, Á.; Pinto, R.; Marinho, C.; Lima, T.; Fernandes, M.P.; Santos, J.C.C.; Leite, A.C.R. Impact of environmental mercury exposure on the blood cells oxidative status of fishermen living around Mundaú lagoon in Maceió—Alagoas (AL), Brazil. Ecotoxicol. Environ. Saf. 2021, 219, 112337. [Google Scholar] [CrossRef] [PubMed]
- Becker, A.; Soliman, K.F.A. The Role of Intracellular Glutathione in Inorganic Mercury-Induced Toxicity in Neuroblastoma Cells. Neurochem. Res. 2009, 34, 1677–1684. [Google Scholar] [CrossRef] [Green Version]
- Schwalfenberg, G.K.; Genuis, S.J. Vitamin D, Essential Minerals, and Toxic Elements: Exploring Interactions between Nutrients and Toxicants in Clinical Medicine. Sci. World J. 2015, 2015, 318595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiseman, C.L.S.; Parnia, A.; Chakravartty, D.; Archbold, J.; Copes, R.; Cole, D. Total, methyl and inorganic mercury concentrations in blood and environmental exposure sources in newcomer women in Toronto, Canada. Environ. Res. 2018, 169, 261–271. [Google Scholar] [CrossRef]
- Rambousková, J.; Krsková, A.; Slavíková, M.; Čejchanová, M.; Černá, M. Blood levels of lead, cadmium, and mercury in the elderly living in institutionalized care in the Czech Republic. Exp. Gerontol. 2014, 58, 8–13. [Google Scholar] [CrossRef]
- Chen, C.; Qu, L.; Li, B.; Xing, L.; Jia, G.; Wang, T.; Gao, Y.; Zhang, P.; Li, M.; Chen, W.; et al. Increased Oxidative DNA Damage, as Assessed by Urinary 8-Hydroxy-2′-Deoxyguanosine Concentrations, and Serum Redox Status in Persons Exposed to Mercury. Clin. Chem. 2005, 51, 759–767. [Google Scholar] [CrossRef] [Green Version]
- Lemire, M.; Fillion, M.; Frenette, B.; Mayer, A.; Philibert, A.; Passos, C.J.S.; Guimaraes, J.R.D.; Barbosa, F.; Mergler, N. Selenium and Mercury in the Brazilian Amazon: Opposing Influences on Age-Related Cataracts. Environ. Health. Perspect. 2010, 118, 1584–1589. [Google Scholar] [CrossRef]
- Siblerud, R.; Mutter, J.; Moore, E.; Naumann, J.; Walach, H. A Hypothesis and Evidence That Mercury May be an Etiological Factor in Alzheimer’s Disease. Int. J. Environ. Res. Public Health 2019, 16, 5152. [Google Scholar] [CrossRef] [Green Version]
- Alexander, J.; Thomassen, Y.; Aaseth, J. Increased urinary excretion of selenium among workers exposed to elemental mercury vapor. J. Appl. Toxicol. 1983, 3, 143–145. [Google Scholar] [CrossRef]
- Lopes, A.C.B.A.; Urbano, M.; de Souza-Nogueira, A.; Oliveira-Paula, G.H.; Michelin, A.P.; Carvalho, M.D.F.H.; Camargo, A.E.I.; Peixe, T.S.; Cabrera, M.A.S.; Paoliello, M.M.B. Association of lead, cadmium and mercury with paraoxonase 1 activity and malondialdehyde in a general population in Southern Brazil. Environ. Res. 2017, 156, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Branco, V.; Canário, J.; Lu, J.; Holmgren, A.; Carvalho, C. Mercury and selenium interaction in vivo: Effects on thioredoxin reductase and glutathione peroxidase. Free Radic. Biol. Med. 2011, 52, 781–793. [Google Scholar] [CrossRef] [PubMed]
- Al-Azzawie, H.F.; Umran, A.; Hyader, N.H. Oxidative Stress, Antioxidant Status and DNA Damage in a Mercury Exposure Workers. Br. J. Pharmacol. Toxicol. 2013, 4, 80–88. [Google Scholar] [CrossRef]
- Shenker, B.J.; Pankoski, L.; Zekavat, A.; Shapiro, I.M. Mercury-Induced Apoptosis in Human Lymphocytes: Caspase Activation Is Linked to Redox Status. Antioxid. Redox Signal. 2002, 4, 379–389. [Google Scholar] [CrossRef] [PubMed]
Variables | Total (n, %) | Males (n, %) | Females (n, %) | p |
---|---|---|---|---|
Total (n, %) | 67 | 38 (56.71) | 29 (43.38) | NS |
Area | ||||
Urban | 59 (88.05) | 34 (89.47) | 25 (82.20) | NS |
Rural | 8 (11.94) | 4 (10.52) | 4 (13.79) | NS |
Age (years) | ||||
19–39 | 11 (16.41) | 5 (13.15) | 6 (20.68) | NS |
39–59 | 23 (34.32) | 12 (31.57) | 11 (37.93) | NS |
60–69 | 16 (23.88) | 9 (23.68) | 7 (24.13) | NS |
≥70 | 17 (25.37) | 12 (17.91) | 5 (17.24) | <0.005 |
Education | ||||
less than high school | 19 (28.35) | 9 (23.68) | 10 (34.48) | NS |
high school diploma | 21 (31.34) | 16 (42.13) | 5 (17.24) | NS |
college graduate | 27 (40.29) | 13 (34.21) | 14 (48.27) | NS |
Smoking | ||||
past smoker | 22 (32.83) | 15 (39.47) | 7 (24.13) | NS |
never smoker | 11 (16.41) | 2 (5.26) | 9 (31.03) | NS |
current smoker | 34 (50.74) | 21 (55.26) | 13 (44.82) | NS |
Alcohol | ||||
Yes | 38 (56.71) | 32 (84.21) | 6 (20.68) | <0.005 |
No | 29 (43.28) | 6 (15.78) | 23 (79.31) | <0.005 |
Age (years) | HgBL (mcg) | SOD (U/gHg) | GPx (U/I) | MLD (Micromol/L) | GSH-ly (mfi) | Se (mcg/L) | Vitamin D (ng/mL) | |
---|---|---|---|---|---|---|---|---|
Median | 46 | 12 | 2331 | 12,649 | 1.3 | 320 | 125 | 28 |
Minimum | 37 | 1 | 1820 | 6347 | 0.3 | 202 | 43 | 19 |
Maximum | 66 | 25 | 2590 | 16,899 | 2.2 | 389 | 146 | 35 |
95% CI of median lower limit | 44 | 11 | 2267 | 11,270 | 1.2 | 300 | 122 | 27 |
95% CI of median upper limit | 48 | 13 | 2360 | 13,502 | 1.4 | 334 | 132 | 29 |
Coefficient of variation | 15.7% | 40.17% | 10.5% | 30.55% | 46.57% | 20.79% | 31.83% | 16.35% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tincu, R.C.; Cobilinschi, C.; Florea, I.A.; Cotae, A.-M.; Băetu, A.E.; Isac, S.; Ungureanu, R.; Droc, G.; Grintescu, I.M.; Mirea, L. Effects of Low-Level Organic Mercury Exposure on Oxidative Stress Profile. Processes 2022, 10, 2388. https://doi.org/10.3390/pr10112388
Tincu RC, Cobilinschi C, Florea IA, Cotae A-M, Băetu AE, Isac S, Ungureanu R, Droc G, Grintescu IM, Mirea L. Effects of Low-Level Organic Mercury Exposure on Oxidative Stress Profile. Processes. 2022; 10(11):2388. https://doi.org/10.3390/pr10112388
Chicago/Turabian StyleTincu, Radu Ciprian, Cristian Cobilinschi, Iulia Alexandra Florea, Ana-Maria Cotae, Alexandru Emil Băetu, Sebastian Isac, Raluca Ungureanu, Gabriela Droc, Ioana Marina Grintescu, and Liliana Mirea. 2022. "Effects of Low-Level Organic Mercury Exposure on Oxidative Stress Profile" Processes 10, no. 11: 2388. https://doi.org/10.3390/pr10112388
APA StyleTincu, R. C., Cobilinschi, C., Florea, I. A., Cotae, A. -M., Băetu, A. E., Isac, S., Ungureanu, R., Droc, G., Grintescu, I. M., & Mirea, L. (2022). Effects of Low-Level Organic Mercury Exposure on Oxidative Stress Profile. Processes, 10(11), 2388. https://doi.org/10.3390/pr10112388