The Mixture of Probability Distribution Functions for Wind and Photovoltaic Power Systems Using a Metaheuristic Method
Abstract
:1. Introduction
2. Mathematical Modeling
2.1. The Original Probability Distribution Functions
2.1.1. The Weibull Distribution
2.1.2. The Lognormal Distribution
2.1.3. The Gamma Distribution
2.1.4. The Inverse-Gaussian Distribution
2.2. The Two-Component Mixture of Probability Distribution Functions
2.2.1. The Two-Component Mixture of the Weibull Distribution
2.2.2. The Two-Component Mixture of the Gamma Distribution
2.2.3. The Two-Component Mixture of the Lognormal Distribution
2.2.4. The Two-Component Mixture of the Inverse-Gaussian Distribution
2.2.5. The Two-Component Mixture of the Weibull–Gamma Distribution
2.2.6. The Two-Component Mixture of the Weibull–Lognormal Distribution
2.2.7. The Two-Component Mixture of the Weibull–Inverse-Gaussian Distribution
2.3. The Three-Component Mixture of Probability Distribution Functions
2.3.1. The Three-Component Mixture of the Weibull Distribution
2.3.2. The Three-Component Mixture of the Weibull–Weibull–Gamma Distribution
2.3.3. The Three-Component Mixture of the Weibull–Gamma–Gamma Distribution
2.4. Statistical Error Anaylsis
2.5. The Mayfly Algorithm
2.5.1. The Males’ Movement
2.5.2. The Females’ Movement
2.5.3. Mating
2.5.4. Mutation
3. Wind Speed Modelling
3.1. The Original Probability Distribution Functions
3.2. The Two-Component Mixtures of Probability Distribution Functions
3.3. The Three-Component Mixtures of Probability Distribution Functions
4. Solar Irradiation Modelling
4.1. Original Probability Distribution Functions
4.2. The Two-Component Mixtures of Probability Distribution Functions
4.3. The Three-Component Mixtures of Probability Distribution Functions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luna-Rubio, R.; Trejo-Perea, M.; Vargas-Vázquez, D.; Ríos-Moreno, G. Optimal sizing of renewable hybrids energy systems: A review of methodologies. Sol. Energy 2012, 86, 1077–1088. [Google Scholar] [CrossRef]
- Erdinc, O.; Uzunoglu, M. Optimum design of hybrid renewable energy systems: Overview of different approaches. Renew. Sustain. Energy Rev. 2012, 16, 1412–1425. [Google Scholar] [CrossRef]
- Chauhan, A.; Saini, R. A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control. Renew. Sustain. Energy Rev. 2014, 38, 99–120. [Google Scholar] [CrossRef]
- Ioannou, A.; Angus, A.; Brennan, F. Risk-based methods for sustainable energy system planning: A review. Renew. Sustain. Energy Rev. 2017, 74, 602–615. [Google Scholar] [CrossRef]
- Spiecker, S.; Weber, C. The future of the European electricity system and the impact of fluctuating renewable energy–A scenario analysis. Energy Policy 2014, 65, 185–197. [Google Scholar] [CrossRef]
- Gooding, P.; Makram, E.; Hadidi, R. Probability analysis of distributed generation for island scenarios utilizing Carolinas data. Electr. Power Syst. Res. 2014, 107, 125–132. [Google Scholar] [CrossRef]
- Khamees, A.K.; Abdelaziz, A.Y.; Eskaros, M.R.; El-Shahat, A.; Attia, M.A. Optimal Power Flow Solution of Wind-Integrated Power System Using Novel Metaheuristic Method. Energies 2021, 14, 6117. [Google Scholar] [CrossRef]
- Khamees, A.K.; Abdelaziz, A.Y.; Eskaros, M.R.; El-Shahat, A.; Attia, M.A. Stochastic Modeling for Wind Energy and Multi-Objective Optimal Power Flow by Novel Meta-Heuristic Method. IEEE Access 2021, 9, 158353–158366. [Google Scholar] [CrossRef]
- Anaya-Lara, O.; Jenkins, N.; Ekanayake, J.B.; Cartwright, P.; Hughes, M. Wind Energy Generation: Modelling and Control; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Abdelaziz, A.Y.; Rahman, M.A.; El-Khayat, M.; Hakim, M. Short term wind power forecasting using autoregressive integrated moving average modeling. In Proceedings of the 15th International Middle East Power Systems Conference, Alexandria University, Mansoura, Egypt, 15–17 December 2012. [Google Scholar]
- Thevenard, D.; Pelland, S. Estimating the uncertainty in long-term photovoltaic yield predictions. Sol. Energy 2013, 91, 432–445. [Google Scholar] [CrossRef]
- Islam, M.; Saidur, R.; Rahim, N. Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function. Energy 2011, 36, 985–992. [Google Scholar] [CrossRef]
- Carta, J.; Ramirez, P. Analysis of two-component mixture Weibull statistics for estimation of wind speed distributions. Renew. Energy 2007, 32, 518–531. [Google Scholar] [CrossRef]
- Van der Auwera, L.; de Meyer, F.; Malet, L. The use of the Weibull three-parameter model for estimating mean wind power densities. J. Appl. Meteorol. Climatol. 1980, 19, 819–825. [Google Scholar] [CrossRef]
- Carta, J.A.; Ramírez, P. Use of finite mixture distribution models in the analysis of wind energy in the Canarian Archipelago. Energy Convers. Manag. 2007, 48, 281–291. [Google Scholar] [CrossRef]
- Celik, A.N. Energy output estimation for small-scale wind power generators using Weibull-representative wind data. J. Wind. Eng. Ind. Aerodyn. 2003, 91, 693–707. [Google Scholar] [CrossRef]
- Khamees, A.K.; Abdelaziz, A.Y.; Ali, Z.M.; Alharthi, M.M.; Ghoneim, S.S.; Eskaros, M.R.; Attia, M.A. Mixture probability distribution functions using novel metaheuristic method in wind speed modeling. Ain Shams Eng. J. 2022, 13, 101613. [Google Scholar] [CrossRef]
- Brano, V.L.; Orioli, A.; Ciulla, G.; Culotta, S. Quality of wind speed fitting distributions for the urban area of Palermo, Italy. Renew. Energy 2011, 36, 1026–1039. [Google Scholar] [CrossRef]
- Labeeuw, W.; Deconinck, G. Customer sampling in a smart grid pilot. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; IEEE: Piscataway, NJ, USA, 2012. [Google Scholar]
- Salameh, Z.M.; Borowy, B.S.; Amin, A.R. Photovoltaic module-site matching based on the capacity factors. IEEE Trans. Energy Convers. 1995, 10, 326–332. [Google Scholar] [CrossRef]
- Shi, G.; Eftekharnejad, S. Impact of solar forecasting on power system planning. In Proceedings of the 2016 North American Power Symposium (NAPS), Denver, CO, USA, 18–20 September 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Arevalo, J.C.; Santos, F.; Rivera, S. Uncertainty cost functions for solar photovoltaic generation, wind energy generation, and plug-in electric vehicles: Mathematical expected value and verification by Monte Carlo simulation. Int. J. Power Energy Convers. 2019, 10, 171–207. [Google Scholar] [CrossRef]
- Zervoudakis, K.; Tsafarakis, S. A Mayfly Optimization Algorithm. Comput. Ind. Eng. 2020, 145, 106559. [Google Scholar] [CrossRef]
- National Centers for Environmental Information. Available online: https://www.ncdc.noaa.gov/ (accessed on 1 March 2022).
- Wilcox, S. National Solar Radiation Database 1991–2010 Update; National Renewable Energy Laboratory, US Department of Energy: Washington, DC, USA, 2012.
- Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951, 18, 293–297. [Google Scholar] [CrossRef]
- Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions, Volume 2; John Wiley & Sons: Hoboken, NJ, USA, 1995; Volume 289. [Google Scholar]
- Morgan, V.T. Statistical distributions of wind parameters at Sydney, Australia. Renew. Energy 1995, 6, 39–47. [Google Scholar] [CrossRef]
- Folks, J.L.; Chhikara, R.S. The inverse Gaussian distribution and its statistical application—A review. J. R. Stat. Soc. Ser. B (Methodol.) 1978, 40, 263–275. [Google Scholar] [CrossRef]
- Akdağ, S.; Bagiorgas, H.; Mihalakakou, G. Use of two-component Weibull mixtures in the analysis of wind speed in the Eastern Mediterranean. Appl. Energy 2010, 87, 2566–2573. [Google Scholar] [CrossRef]
- Omitaomu, O.A.; Niu, H. Artificial intelligence techniques in smart grid: A survey. Smart Cities 2021, 4, 548–568. [Google Scholar] [CrossRef]
Mixture Distribution Function | Parameters | RMSE | R2 | X2 |
---|---|---|---|---|
Weibull | k = 1.7253 c = 3.3935 | 0.00624 | 0.99289 | 0.00021 |
Lognormal | = 1.1559 = 1 | 0.02495 | 0.80767 | 0.00336 |
Gamma | a = 2.6061 b = 1.2364 | 0.00384 | 0.99728 | 0.00007 |
Inverse-Gaussian | μ = 3.6769 λ = 6.8869 | 0.00707 | 0.99027 | 0.00027 |
Mixture Distribution Function | Parameters | RMSE | R2 | X2 |
---|---|---|---|---|
Two-component Mixture of Weibull | C1 = 5.934 K1 = 2.553 C2 = 2.800 K2 = 1.970 W = 0.265 | 0.002599 | 0.99873 | 0.00003 |
Two-component Mixture of Gamma | a1 = 2.9609 b1 = 1 a2 = 2.083 b2 = 1.982 W = 0.689 | 0.0033555 | 0.99788 | 0.00006 |
Two-component Mixture of Lognormal | = 1.155 1 = 1 2 = 1.155 2 = 1 W = 0.203 | 0.02495 | 0.80767 | 0.0033685 |
Two-component Mixture of Inverse-Gaussian | μ1 = 1 λ1 = 6.128 μ2 = 3.704 λ2 = 10 W = 0.1 | 0.0029649 | 0.99835 | 0.0000475 |
Weibull–Gamma Mixture | k1 = 1.9781 C1 = 2.5913 a2 = 5.0456 b2 = 1 W = 0.31 | 0.0026499 | 0.99867 | 0.000037 |
Weibull–Lognormal Mixture | k = 1.7371 c = 3.3862 = 4.5158 = 3.5407 W = 0.9927 | 0.0062237 | 0.9929 | 0.0002096 |
Weibull–Inverse-Gaussian Mixture | K = 1.7826 C = 3.2469 μ = 4.0216 λ = 6.9001 W = 0.5695 | 0.0039661 | 0.99702 | 0.00008 |
Mixture Distribution Function | Parameters | RMSE | R2 | X2 |
---|---|---|---|---|
Three-component Mixture of Weibull | C1 = 5.2195 K1 = 2.1407 C2 = 2.6216 K2 = 1.9431 C3 = 2.9419 K3 = 10 W1 = 0.39092 W2 = 0.59452 | 0.0010965 | 0.99977 | 0.0000065 |
Three-component Mixture of Weibull–Weibull–Gamma | C1 = 5.336 K1 = 2.0162 C2 = 3.0395 K2 = 5.2403 a = 2.7292 b = 1.0015 W1 = 0.27047 W2 = 0.05 | 0.00073657 | 0.9999 | 0.0000029 |
Three-component Mixture of Weibull–Gamma–Gamma | C1 = 3.0208 K1 = 5.2757 a1 = 5.6276 b1 = 1 a2 = 2.7443 b2 = 1 W1 = 0.05 W2 = 0.1904 | 0.00068585 | 0.99991 | 0.0000025 |
Mixture Distribution Function | Parameters | RMSE | R2 | X2 |
---|---|---|---|---|
Weibull | k = 4.0832 c = 10.7769 | 0.046732 | 0.29587 | 0.48938 |
Lognormal | = 2.319 = 0.31785 | 0.052494 | 0.16719 | 0.61751 |
Gamma | a = 10.968 b = 0.9481 | 0.050583 | 0.20968 | 0.57335 |
Inverse-Gaussian | μ = 10.6831 λ = 101.55 | 0.052646 | 0.16171 | 0.62109 |
Mixture Distribution Function | Parameters | RMSE | R2 | X2 |
---|---|---|---|---|
Two-component Mixture of Weibull | C1 = 11.259 K1 = 21.903 C2 = 8.8788 K2 = 3.2454 W = 0.2777 | 0.015156 | 0.92509 | 0.051472 |
Two-component Mixture of Gamma | a1 = 25 b1 = 0.2559 a2 = 25 b2 = 0.4382 W = 0.2464 | 0.041374 | 0.44749 | 0.38359 |
Two-component Mixture of Lognormal | α1 = 1.8872 β1 = 0.1588 α2 = 2.383 β2 = 0.1416 W = 0.3 | 0.034767 | 0.60672 | 0.27087 |
Two-component Mixture of Inverse-Gaussian | μ1 = 10.948 λ1 = 120 μ2 = 10 λ2 = 64.655 W = 0.6760 | 0.052049 | 0.18665 | 0.60707 |
Weibull–Gamma Mixture | k1 = 21.457 C1 = 11.224 a2 = 8.676 b2 = 0.993 W = 0.2747 | 0.013752 | 0.93832 | 0.042379 |
Weibull–Lognormal Mixture | k = 3.7122 c = 9.8743 α = 2.3805 β = 0.01052 W = 0.9650 | 0.042295 | 0.41596 | 0.40086 |
Weibull–Inverse-Gaussian Mixture | K = 13.3938 C = 11.324 μ = 11.489 λ = 31.870 W = 0.4073 | 0.042353 | 0.45024 | 0.40197 |
Mixture Distribution Function | Parameters | RMSE | R2 | X2 |
---|---|---|---|---|
Three-component Mixture of Weibull | C1 = 6.9165 K1 = 5.1352 C2 = 10.7532 K2 = 4.1362 C3 = 11.1145 K3 = 20 W1 = 0.24226 W2 = 0.5 | 0.013409 | 0.94138 | 0.04029 |
Three-component Mixture of Weibull–Weibull–Gamma | C1 = 11.1816 K1 = 17.0393 C2 = 7.8099 K2 = 4.33 a = 15.4322 b = 17.262 W1 = 0.41269 W2 = 0.5 | 0.014118 | 0.93492 | 0.044663 |
Three-component Mixture of Weibull–Gamma–Gamma | C = 11.1678 K = 17.0756 a1 = 15.6347 b1 = 0.48253 a2 = 15.4617 b2 = 8.3484 W1 = 0.39194 W2 = 0.49882 | 0.012515 | 0.94886 | 0.035096 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khamees, A.K.; Abdelaziz, A.Y.; Eskaros, M.R.; Attia, M.A.; Badr, A.O. The Mixture of Probability Distribution Functions for Wind and Photovoltaic Power Systems Using a Metaheuristic Method. Processes 2022, 10, 2446. https://doi.org/10.3390/pr10112446
Khamees AK, Abdelaziz AY, Eskaros MR, Attia MA, Badr AO. The Mixture of Probability Distribution Functions for Wind and Photovoltaic Power Systems Using a Metaheuristic Method. Processes. 2022; 10(11):2446. https://doi.org/10.3390/pr10112446
Chicago/Turabian StyleKhamees, Amr Khaled, Almoataz Y. Abdelaziz, Makram R. Eskaros, Mahmoud A. Attia, and Ahmed O. Badr. 2022. "The Mixture of Probability Distribution Functions for Wind and Photovoltaic Power Systems Using a Metaheuristic Method" Processes 10, no. 11: 2446. https://doi.org/10.3390/pr10112446
APA StyleKhamees, A. K., Abdelaziz, A. Y., Eskaros, M. R., Attia, M. A., & Badr, A. O. (2022). The Mixture of Probability Distribution Functions for Wind and Photovoltaic Power Systems Using a Metaheuristic Method. Processes, 10(11), 2446. https://doi.org/10.3390/pr10112446