Study on the Influence of Pressure Reduction and Chemical Injection on Hydrate Decomposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Equipment
2.2. Experimental Steps
2.2.1. Natural Gas Hydrate Synthesis Steps
2.2.2. Natural Gas Hydrate Decomposition Steps
3. Results
3.1. Multi-Stage Depressurization and Alcohol Injection to Promote Hydrate Decomposition
3.2. Multi-Stage Depressurization and Salt Injection to Promote Hydrate Decomposition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, X.; Wang, H.B.; Zhang, L.; He, J.Y.; Cen, X.Q. Research progress on production stimulation technology of natural gas hydrate reservoir exploitation. Sci. Technol. Eng. 2022, 22, 3405–3415. [Google Scholar]
- Zhang, X.B.; Lu, X.B.; Liu, L.L. Research progress on natural gas hydrate extraction methods. Adv. Geophys. 2014, 29, 858–869. [Google Scholar]
- Collett, T.S.; Ginsburg, G.D. Gas hydrates in the Messoyakha gas field of the west Siberian basin—A re-examination of the geologic evidence. Int. J. Offshore Polar Eng. 1998, 8, 22–29. [Google Scholar]
- Almenningen, S.; Flatlandsmo, J.; Fernø, M.A.; Ersland, G. Production of sedimentary methane hydrates by depressurization. SPE Bergen One Day Seminar. OnePetro 2016. [Google Scholar]
- Li, G.; Li, B.; Li, X.S.; Zhang, Y.; Wang, Y. Experimental and numerical studies on gas production from methane hydrate in porous media by depressurization in pilot-scale hydrate simulator. Energy Fuels 2012, 26, 6300–6310. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, J.C.; Li, X.S.; Zhang, Y.; Li, G. Analytic modeling and large-scale experimental study of mass and heat transfer during hydrate dissociation in sediment with different dissociation methods. Energy 2015, 90, 1931–1948. [Google Scholar] [CrossRef]
- Zhou, Y.; Castaldi, M.J.; Yegulalp, T.M. Experimental investigation of methane gas production from methane hydrate. Ind. Eng. Chem. Res. 2009, 48, 3142–3149. [Google Scholar] [CrossRef]
- Zhao, J.; Shi, D.; Zhao, Y. Mathematical model and simulation of gas hydrate reservoir decomposition by depressurization. Oil Gas Sci. Technol. 2012, 67, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Song, B.; He, Y.; Fan, Q.; Wu, Z.; Yang, B.; Zhou, Y. Numerical Study on Gas Production and Stratum Response to Marine Hydrate Dissociation Directed by Depressurization. In Proceedings of the 31st International Ocean and Polar Engineering Conference, Rhodes, Greece, 20 June 2021. [Google Scholar]
- Konno, Y.; Jin, Y.S.; Shinjou, K.; Nagao, J. Experimental evaluation of the gas recovery factor of methane hydrate in sandy sediment. RSC Adv. 2014, 4, 51666–51675. [Google Scholar] [CrossRef]
- Quan, H.P.; Li, Q.; Chen, T.D.; Ma, Q.; Zhai, X.E. Synthesis of a kinetic gas hydrate inhibitor. Sci. Technol. Eng. 2013, 13, 3986–3989. [Google Scholar]
- Kawamura, T.; Sakamoto, Y.; Ohtake, M.; Yamamoto, Y.; Haneda, H.; Yoon, J.H.; Komai, T. Dissociation behavior of hydrate core sample using thermodynamic inhibitor. Int. J. Offshore Polar Eng. 2007, 16, 5–9. [Google Scholar]
- Sung, W.; Kang, H. Experimental investigation of production behaviors of methane hydrate saturated in porous rock. Energy Sources 2003, 25, 845–856. [Google Scholar] [CrossRef]
- Fan, S.S.; Tian, G.L.; Liang, D.Q.; Liang, D.; Li, D. Natural gas hydrate dissociation by presence of ethylene glycol. Energy Fuels 2006, 20, 324–326. [Google Scholar] [CrossRef]
- Sun, Y.F. Experimental Study on Gas Hydrate Exploitation Combined with Depressurization and Other Technologies; China University of Petroleum: Beijing, China, 2019. [Google Scholar]
- Sun, Y.F.; Zhong, J.R.; Li, W.Z.; Ma, Y.M.; Li, R.; Zhu, T.; Ren, L.L.; Chen, G.J.; Sun, C.Y. Methane Recovery from Hydrate-Bearing Sediments by the Combination of Ethylene Glycol Injection and Depressurization. Energy Fuels 2018, 32, 7585–7594. [Google Scholar] [CrossRef]
- Zhang, J.; Guan, F.J.; Zhao, H. Feasibility analysis of natural gas hydrate exploitation by binary composite technology. Contemp. Chem. Ind. 2018, 47, 309–312. [Google Scholar]
- Sun, T.; Chen, Y.; Zhao, Y. Combining DWS Depressurization Method and Heat Injection to Improve the Hydrate Recovery. In Proceedings of the Offshore Technology Conference, Richardson, TX, USA, 30 April 2018. [Google Scholar]
- Li, S.X.; Chen, Y.M.; Zhang, W.W.; Xia, X.R. Experimental study on heat injection and depressurization production of natural gas hydrate in porous media. Exp. Mech. 2011, 26, 202–208. [Google Scholar]
- Bai, Y.H.; Li, Q.P. Simulation of gas hydrate reservoirs combined with warm water injection and pressure reduction method. Sci. China Tech. Sci. 2011, 41, 262–268. [Google Scholar]
- Gupta, A.; Aggarwal, A. Gas hydrates extraction by swapping-depressurisation method. In Proceedings of the Offshore Technology Conference-Asia, Kuala Lumpur, Malaysia, 25 March 2014. [Google Scholar]
- Wang, B.; Fan, Z.; Wang, P.F.; Liu, Y.; Zhao, J.; Song, Y. Analysis of depressurization mode on gas recovery from methane hydrate deposits and the concomitant ice generation. Appl. Energy 2018, 227, 624–633. [Google Scholar] [CrossRef]
- Khormali, A.; Sharifov, A.R.; Torba, D.I. The control of asphaltene precipitation in oil wells. Pet. Sci. Technol. 2018, 36, 443–449. [Google Scholar] [CrossRef]
- Liu, D.J.; Qi, L.P. Research progress on formation mechanism and reserve prediction of seabed sandstone hydrate. J. Petrochem. Univ. 2021, 34, 76–84. [Google Scholar]
- Wang, D.D. Geological Characteristics and Physical Properties of Low-Permeability Weakly Consolidated Hydrate Reservoirs in the South China Sea; China University of Geosciences: Wuhan, China, 2021. [Google Scholar] [CrossRef]
- Dai, S.J. Study on the remodeling of gas hydrate sediment samples in the South China Sea. China Pet. Chem. Stand. Qual. 2022, 42, 129–131. [Google Scholar]
- Gayet, P.; Dicharry, C.; Marion, G.; Graciaa, A.; Lachaise, J.; Nesterov, A. Experimental determination of methane hydrate dissociation curve up to 55MPa by using a small amount of surfactant as hydrate promoter. Chem. Eng. Sci. 2005, 60, 5751–5758. [Google Scholar] [CrossRef]
- Wang, Y.F.; Sun, C.Y.; Yu, X.C.; Wang Qing Li, Q.; Chen, G. Decomposition rule of hydrate injection inhibitor in pilot plant. Chem. Prog. 2022, 41, 1–13. [Google Scholar] [CrossRef]
- Zhang, G.Q. Mechanism analysis of the effect of electrolytes and alcohols on the phase balance of natural gas hydrate. Guangzhou Chem. Ind. 2020, 48, 17–20. [Google Scholar]
- Sun, Z.N. Molecular Simulation of Hydrate Decomposition Mechanism under the Action of Inhibitors; China University of Petroleum: Qingdao, China, 2015. [Google Scholar]
- Ding, T.; Wang, R.; Xu, J.; Wang, X.; Yu, Z.; Cheng, Y.; Wang, Z. Experimental study and modeling of methane hydrate dissociation by depressurization and chemical injection. In Proceedings of the 29th International Ocean and Polar Engineering Conference, Honolulu, HI, USA, 16 June 2019. [Google Scholar]
- Peng, L. Study on the Decomposition Law of Methane Hydrate in the Presence of Inorganic Salts; China University of Petroleum: Qingdao, China, 2017. [Google Scholar]
- Zhang, Z.X.; Xu, L.; Zhang, T.J. Molecular simulation of the mechanism of hydrate decomposition of inorganic salts. Inn. Mong. Petrochem. Ind. 2020, 46, 16–22. [Google Scholar]
Index | Pure Multistage Buck | Multi-Stage Depressurization + 20% Ethylene Glycol | Multi-Stage Depressurization + 30% Ethylene Glycol | Multi-Stage Depressurization + 20% Methanol | Multi-Stage Depressurization + 30% Methanol | Multi-Stage Depressurization + 20% Ethanol | Multi-Stage Depressurization + 30% Ethanol |
---|---|---|---|---|---|---|---|
Experimental pressure/MPa | 14.85 | 14.82 | 14.80 | 14.81 | 14.83 | 14.81 | 14.83 |
Experimental temperature/°C | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Experiment end pressure/MPa | 10.27 | 10.12 | 10.30 | 10.14 | 10.24 | 10.34 | 10.24 |
Hydrate Saturation/% | 48.0 | 48.5 | 46.5 | 48.5 | 48.0 | 46.1 | 48.2 |
Injection rate/(mL·min−1) | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
Buck mode/MPa | -4-3-2 | -4-3-2 | -4-3-2 | -4-3-2 | -4-3-2 | -4-3-2 | -4-3-2 |
Cumulative gas production/L | 48.83 | 54.51 | 54.14 | 53.25 | 53.47 | 53.76 | 53.45 |
Decomposition complete time/min | 300 | 163 | 144 | 163 | 152 | 194 | 179 |
Average gas production rate/(mL·min−1) | 161.7 | 334.4 | 376.0 | 326.7 | 351.8 | 277.1 | 298.6 |
Index | Pure Multistage Buck | Multi-Stage Depressurization + 10%CaCl2 | Multi-Stage Depressurization + 15% CaCl2 | Multi-Stage Depressurization + 10% NaCl | Multi-Stage Depressurization + 15% NaCl | Multi-Stage Depressurization + 10% KCl | Multi-Stage Depressurization + 15% KCl |
---|---|---|---|---|---|---|---|
Experimental pressure/MPa | 14.85 | 14.92 | 15.07 | 14.91 | 14.86 | 14.85 | 14.86 |
Experimental temperature/°C | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Experiment end pressure/MPa | 10.27 | 10.46 | 10.40 | 10.24 | 10.48 | 9.33 | 10.07 |
Hydrate Saturation/% | 48.0 | 46.5 | 48.2 | 49.1 | 45.7 | 57.2 | 50.5 |
Injection rate/(mL·min−1) | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
Buck mode/MPa | -4-3-2 | -4-3-2 | -4-3-2 | -4-3-2 | -4-3-2 | -4-3-2 | -4-3-2 |
Cumulative gas production/L | 48.83 | 53.84 | 55.20 | 54.17 | 52.92 | 53.90 | 53.11 |
Decomposition complete time/min | 300 | 174 | 161 | 211 | 189 | 289 | 240 |
Average gas production rate/(mL·min−1) | 161.7 | 309.4 | 342.9 | 256.7 | 280.0 | 186.5 | 221.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Song, Z.; Huang, X.; Xu, W.; Chen, Z. Study on the Influence of Pressure Reduction and Chemical Injection on Hydrate Decomposition. Processes 2022, 10, 2543. https://doi.org/10.3390/pr10122543
Wang L, Song Z, Huang X, Xu W, Chen Z. Study on the Influence of Pressure Reduction and Chemical Injection on Hydrate Decomposition. Processes. 2022; 10(12):2543. https://doi.org/10.3390/pr10122543
Chicago/Turabian StyleWang, Lei, Zhikang Song, Xin Huang, Wenjun Xu, and Zhengbang Chen. 2022. "Study on the Influence of Pressure Reduction and Chemical Injection on Hydrate Decomposition" Processes 10, no. 12: 2543. https://doi.org/10.3390/pr10122543
APA StyleWang, L., Song, Z., Huang, X., Xu, W., & Chen, Z. (2022). Study on the Influence of Pressure Reduction and Chemical Injection on Hydrate Decomposition. Processes, 10(12), 2543. https://doi.org/10.3390/pr10122543