A Systematic Review on Biosurfactants Contribution to the Transition to a Circular Economy
Abstract
:1. Introduction
- Identify and assess the role that biosurfactants play in the circular economy.
- Develop future research directions that take into account biosurfactants integration in the circular economy framework.
2. Main Characteristics of Biosurfactants
3. Circular Economy and Biosurfactants
4. Methodology
- Papers published in conferences, patents, technical reports, book chapters;
- Papers that did not clearly define their data sources or with unclear methodology; Papers not published in English;
- Papers published before 2010;
- Papers that are not relevant to the stated objectives.
5. Results
6. Discussion
6.1. Further Research Directions
6.2. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
No. | Authors | Article Title | Source Title | Key Words | Publication Year |
---|---|---|---|---|---|
1 | Ambaye, TG; Formicola, F; Sbaffoni, S; Franzetti, A; Vaccari, M | Insights into rhamnolipid amendment towards enhancing microbial electrochemical treatment of petroleum hydrocarbon contaminated soil | Chemosphere | Biosurfactants; Bioelectrochemical system; Circular economy; Illumina; Remediation; Current density | 2022 |
2 | Zhang, Y; Placek, TL; Jahan, R; Alexandridis, P; Tsianou, M | Rhamnolipid Micellization and Adsorption Properties | International journal of molecular sciences | biosurfactant; green surfactant; rhamnolipid; self-assembly; formulation; bioremediation; sustainability | 2022 |
3 | Kee, SH; Ganeson, K; Rashid, NFM; Yatim, AFM; Vigneswari, S; Amirul, AA; Ramakrishna, S; Bhubalan, K | A review on biorefining of palm oil and sugar cane agro-industrial residues by bacteria into commercially viable bioplastics and biosurfactants | Fuel | Polyhydroxyalkanoates; Biosurfactant; Palm oil; Agro-industrial waste; Circular economy; Sugar cane | 2022 |
4 | Hollenbach, R; Delavault, A; Gebhardt, L; Soergel, H; Muhle-Goll, C; Ochsenreither, K; Syldatk, C | Lipase-Mediated Mechanoenzymatic Synthesis of Sugar Esters in Dissolved Unconventional and Neat Reaction Systems | Acs sustainable chemistry and engineering | biocatalysis; solvent-free; transesterification; glycolipid; lipase; biosurfactants | 2022 |
5 | Martinez, M; Rodriguez, A; Gea, T; Font, X | A Simplified Techno-Economic Analysis for Sophorolipid Production in a Solid-State Fermentation Process | Energies | solid-state fermentation; sophorolipids; waste; biosurfactant; techno-economic analysis | 2022 |
6 | Kachrimanidou, V; Alimpoumpa, D; Papadaki, A; Lappa, I; Alexopoulos, K; Kopsahelis, N | Cheese whey utilization for biosurfactant production: evaluation of bioprocessing strategies using novel Lactobacillus strains | Biomass conversion and biorefinery | Biosurfactants; Lactobacilli; Cheese-whey; Bioprocessing strategies; Bioreactors | 2022 |
7 | Sarubbo, LA; Silva, MDC; Durval, IJB; Bezerra, KGO; Ribeiro, BG; Silva, IA; Twigg, MS; Banat, IM | Biosurfactants: Production, properties, applications, trends, and general perspectives | Biochemical engineering journal | Biosurfactant; Microorganisms; Environmental sustainability; Green technology; Industrial applications | 2022 |
8 | Abd El-Malek, F; Rofeal, M; Zabed, HM; Nizami, AS; Rehan, M; Qi, XH | Microorganism-mediated algal biomass processing for clean products manufacturing: Current status, challenges, and future outlook | Fuel | Algal biomass; Microbial fermentation; Sustainability; Value-added products; Biorefinery | 2022 |
9 | Khodavirdipour, A; Chamanrokh, P; Alikhani, MY; Alikhani, MS | Potential of Bacillus subtilis Against SARS-CoV-2-A Sustainable Drug Development Perspective | Frontiers in microbiology | Bacillus subitilis; biosurfactant; COVID-19; drug development; surfactin | 2022 |
10 | Sharma, P; Gaur, VK; Gupta, S; Varjani, S; Pandey, A; Gnansounou, E; You, SM; Ngo, HH; Wong, JWC | Trends in mitigation of industrial waste: Global health hazards, environmental implications, and waste-derived economy for environmental sustainability | Science of the total environment | Environmental sustainability; Waste-derived economy; Bioplastic; Biosurfactants; Organic waste | 2022 |
11 | Duquet, F; Nada, AA; Rivallin, M; Rouessac, F; Villeneuve-Faure, C; Roualdes, S | Influence of Bio-Based Surfactants on TiO2 Thin Films as Photoanodes for Electro-Photocatalysis | Catalysts | TiO2 thin film; bio-based surfactant; electro-photocatalysis; hydrogen | 2021 |
12 | Kachrimanidou, V; Papadaki, A; Lappa, I; Papastergiou, S; Kleisiari, D; Kopsahelis, N | Biosurfactant Production from Lactobacilli: an Insight on the Interpretation of Prevailing Assessment Methods | Applied biochemistry and biotechnology | Biosurfactants; Lactobacilli; Surface tension; Cheese-whey; Screening | 2022 |
13 | Hu, XM; Subramanian, K; Wang, HM; Roelants, SLKW; Soetaert, W; Kaur, G; Lin, CSK; Chopra, SS | Bioconversion of Food Waste to produce Industrial-scale Sophorolipid Syrup and Crystals: dynamic Life Cycle Assessment (dLCA) of Emerging Biotechnologies | Bioresource technology | Life Cycle Assessment; Sustainable Processes; Waste Valorization; Biosurfactants; Sophorolipids | 2021 |
14 | Vieira, IMM; Santos, BLP; Ruzene, DS; Silva, DP | An overview of current research and developments in biosurfactants | Journal of industrial and engineering chemistry | Biosurfactant; Surfactant; Microorganism; Sustainability | 2021 |
15 | Janek, T; Gudina, EJ; Polomska, X; Biniarz, P; Jama, D; Rodrigues, LR; Rymowicz, W; Lazar, Z | Sustainable Surfactin Production by Bacillus subtilis Using Crude Glycerol from Different Wastes | Molecules | Bacillus subtilis; biosurfactant; surfactin; lipopeptides; industrial wastes; crude glycerol | 2021 |
16 | Sonnabend, M; Aubin, SG; Schmidt, AM; Leimenstoll, MC | Sophorolipid-Based Oligomers as Polyol Components for Polyurethane Systems | Polymers | polyurethane; polyol; bio-based; sophorolipid-based polyols; hydroxyl fatty acid-based polyols; platform chemicals | 2021 |
17 | Castelein, M; Verbruggen, F; Van Renterghem, L; Spooren, J; Yurramendi, L; Du Laing, G; Boon, N; Soetaert, W; Hennebel, T; Roelants, S; Williamson, AJ | Bioleaching of metals from secondary materials using glycolipid biosurfactants | Minerals engineering | Sophorolipids; Bioleaching; Heavy metal recovery; Fayalite; Copper | 2021 |
18 | Hu, XM; Subramanian, K; Wang, HM; Roelants, SLKW; To, MH; Soetaert, W; Kaur, G; Lin, CSK; Chopra, SS | Guiding environmental sustainability of emerging bioconversion technology for waste-derived sophorolipid production by adopting a dynamic life cycle assessment (dLCA) approach | Environmental pollution | Sophorolipids; Biosurfactants; Life cycle assessment; Dynamic life cycle assessment; Feedstock optimization; In-situ separation | 2021 |
19 | Chebbi, A; Franzetti, A; Castro, FD; Tovar, FHG; Tazzari, M; Sbaffoni, S; Vaccari, M | Potentials of Winery and Olive Oil Residues for the Production of Rhamnolipids and Other Biosurfactants: A Step Towards Achieving a Circular Economy Model | Waste and biomass valorization | Winery wastes; Olive oil wastes; Circular economy; Rhamnolipids; Biosurfactants; Agricultural wastes | 2021 |
20 | Martinez-Arcos, A; Moldes, AB; Vecino, X | Adding value to secondary streams of corn wet milling industry | Cyta-journal of food | Corn stream; nutritional supplement; biosurfactants; circular economy | 2021 |
21 | Drakontis, CE; Amin, S | Design of sustainable lip gloss formulation with biosurfactants and silica particles | International journal of cosmetic science | sustainability; lip gloss; rheometer; Aerosil; silica particles; biosurfactants; rhamnolipids; sophorolipids; silicone oil; cosmetic formulation | 2020 |
22 | Singh, R; Glick, BR; Rathore, D | Role of textile effluent fertilization with biosurfactant to sustain soil quality and nutrient availability | Journal of environmental management | Textile effluent; Biosurfactant; Soil health; Triticum aestivum; Capsicum annum | 2020 |
23 | Hruzova, K; Patel, A; Masak, J; Matatkova, O; Rova, U; Christakopoulos, P; Matsakas, L | A novel approach for the production of green biosurfactant from Pseudomonas aeruginosa using renewable forest biomass | Science of the total environment | Rhamnolipid; Biosurfactants; Pseudomonas; Wood hydrolysate; Organosolv fractionation | 2020 |
24 | Sadhukhan, J; Dugmore, TIJ; Matharu, A; Martinez-Hernandez, E; Aburto, J; R26ahman, PKSM; Lynch, J | Perspectives on Game Changer Global Challenges for Sustainable 21st Century: Plant-Based Diet, Unavoidable Food Waste Biorefining, and Circular Economy | Sustainability | biorefinery and bioeconomy; food waste and circular economy; zero hunger zero poverty; sustainable food; food policy; vegan protein; | 2020 |
25 | Jimenez-Penalver, P; Koh, A; Gro28ss, R; Gea, T; Font, X | Biosurfactants from Waste: Structures and Interfacial Properties of Sophorolipids Produced from a Residual Oil Cake | Journal of surfactants and detergents | Biosurfactant; Critical micelle concentration; Emulsion; LC-MS; Sophorolipids; Waste | 2020 |
26 | Soare, M. G., Lakatos, E. S., Ene, N., Malo, N., Popa, O., and Babeanu, N. | The potential applications of Bacillus sp. And Pseudomonas sp. Strains with antimicrobial activity against phytopathogens, in waste oils and the bioremediation of hydrocarbons | Catalysts | antimicrobial activity; biosurfactants; emulsion index; sunflower oil; hydrocarbons | 2019 |
27 | Lu, Y; Zhu, YL; Xu, ZH; Liu, QX | Pseudo-Gemini Biosurfactants with CO2 Switchability for Enhanced Oil Recovery (EOR) | Tenside surfactants detergents | Biosurfactants; pseudo-gemini surfactants; CO2 switchable compounds; enhanced oil recovery (EOR); oil-water separation | 2019 |
28 | Etchegaray, A; Coutte, F; Chataigne, G; Bechet, M; dos Santos, RHZ; Leclere, V; Jacques, P | Production of Bacillus amyloliquefaciens OG and its metabolites in renewable media: valorization for biodiesel production and p-xylene decontamination | Canadian journal of microbiology | Bacillus sp.; sustainability; lipopeptides; biosurfactants; environmental decontamination; circular bioeconomy | 2017 |
29 | Franzetti, A; Gandolfi, I; Raimondi, C; Bestetti, G; Banat, IM; Smyth, TJ; Papacchini, M; Cavallo, M; Fracchia, L | Environmental fate, toxicity, characteristics, and potential applications of novel bioemulsifiers produced by Variovorax paradoxus 7bCT5 | Bioresource technology | Biosurfactant; Bioemulsifiers; Crude oil; Environmental sustainability | 2012 |
30 | Dreja, M; Vockenroth, I; Plath, N | Biosurfactants-Exotic Specialties or Ready for Application? | Tenside surfactants detergents | Biosurfactants; Sustainability; Surface Tension; Wetting; Detergents | 2012 |
References
- Fenibo, E.O.; Douglas, S.I.; Stanley, H.O. A Review on Microbial Surfactants: Production, Classifications, Properties and Characterization. J. Adv. Microbiol. 2019, 18, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Roy, A. A Review on the Biosurfactants: Properties, Types and its Applications. J. Fundam. Renew. Energy Appl. 2017, 8, 1–14. [Google Scholar] [CrossRef]
- Dhiman, V.; Giri, A.; Pant, D. Pollutants Bioremediation Using Biosurfactants: A Novel Approach for Improving Soil Health. In Soil Health and Environmental Sustainability; Springer: Cham, Switzerland, 2015; pp. 489–502. [Google Scholar]
- Jain, R.M.; Mody, K.; Joshi, N.; Mishra, A.; Jha, B. Effect of unconventional carbon sources on biosurfactant production and its application in bioremediation. Int. J. Biol. Macromol. 2013, 62, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Makkar, R.S.; Cameotra, S.S. Biosurfactant production by microorganisms on unconventional carbon sources. J. Surfactants Deterg. 1999, 2, 237–241. [Google Scholar] [CrossRef]
- Boxley, C.J.; Pemberton, J.E.; Maier, R.M. Rhamnolipids and related biosurfactants for cosmetics. Inform 2015, 26, 207. [Google Scholar]
- Banat, I.M.; Makkar, R.S.; Cameotra, S.S. Potential commercial applications of microbial surfactants. Appl. Microbiol. Biotechnol. 2000, 53, 495–508. [Google Scholar] [CrossRef]
- Franzetti, A.; Gandolfi, I.; Fracchia, L.; Van Hamme, J.; Gkorezis, P.; Marchant, R.; Banat, I. Biosurfactant Use in Heavy Metal Removal from Industrial Effluents and Contaminated Sites. Biosurfactants 2014, 159, 361–370. [Google Scholar] [CrossRef]
- Manga, E.B.; Celik, P.A.; Cabuk, A.; Banat, I.M. Biosurfactants: Opportunities for the development of a sustainable future. Curr. Opin. Colloid Interface Sci. 2021, 56, 101514. [Google Scholar] [CrossRef]
- Mgbechidinma, C.L.; Akan, O.D.; Zhang, C.; Huang, M.; Linus, N.; Zhu, H.; Wakil, S.M. Integration of green economy concepts for sustainable biosurfactant production—A review. Bioresour. Technol. 2022, 364, 128021. [Google Scholar] [CrossRef]
- Debnath, B.; Sardar, M.; Gharami, S.; Das, A. Application of biosurfactants in the food industry: Supply chain and green economy perspectives. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Academic Press: Cambridge, MA, USA, 2019; pp. 633–647. [Google Scholar]
- Makkar, R.; Cameotra, S. An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl. Microbiol. Biotechnol. 2002, 58, 428–434. [Google Scholar]
- Nitschke, M.; Costa, S.G.V.A.O.; Haddad, R.; Gonçalves, L.A.G.; Eberlin, M.N.; Contiero, J. Oil Wastes as Unconventional Substrates for Rhamnolipid Biosurfactant Production by Pseudomonas aeruginosa LBI. Biotechnol. Prog. 2005, 21, 1562–1566. [Google Scholar] [CrossRef] [Green Version]
- Rehn, H.J.; Reiff, I. Mechanisms and occurrence of microbial oxidation of long-chain alkanes. Adv. Biochem. Eng. 1981, 19, 175–216. [Google Scholar]
- Rahman, P.K.; Gakpe, E. Production, Characterisation and Applications of Biosurfactants—Review. Biotechnol. 2008, 7, 360–370. [Google Scholar] [CrossRef]
- Rosenberg, E.; Ron, E.Z. High- and low-molecular-mass microbial surfactants. Appl. Microbiol. Biotechnol. 1999, 52, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Malkapuram, S.T.; Sharma, V.; Gumfekar, S.P.; Sonawane, S.; Sonawane, S.; Boczkaj, G.; Seepana, M.M. A review on recent advances in the application of biosurfactants in wastewater treatment. Sustain. Energy Technol. Assess. 2021, 48, 101576. [Google Scholar] [CrossRef]
- Hommel, R.K. Formation and physiological role of biosurfactants produced by hydrocarbon-utilizing microorganisms. Physiol. Biodegrad. Microorg. 1997, 1, 107–119. [Google Scholar] [CrossRef]
- Karlapudi, A.P.; Venkateswarulu, T.; Tammineedi, J.; Kanumuri, L.; Ravuru, B.K.; Dirisala, V.R.; Kodali, V.P. Role of biosurfactants in bioremediation of oil pollution—A review. Petroleum 2018, 4, 241–249. [Google Scholar] [CrossRef]
- Kashif, A.; Rehman, R.; Fuwad, A.; Shahid, M.K.; Dayarathne, H.N.P.; Jamal, A.; Aftab, M.N.; Mainali, B.; Choi, Y. Current advances in the classification, production, properties and applications of microbial biosurfactants—A critical review. Adv. Colloid Interface Sci. 2022, 306, 102718. [Google Scholar] [CrossRef]
- Mouafo, T.H.; Mbawala, A.; Ndjouenkeu, R. Effect of different carbon sources on biosurfactants’ production by three strains of Lactobacillus spp. BioMed Res. Int. 2018, 2018, 5034783. [Google Scholar] [CrossRef] [Green Version]
- Campos, J.M.; Stamford, T.L.M.; Sarubbo, L.A.; De Luna, J.M.; Rufino, R.D.; Banat, I. Microbial biosurfactants as additives for food industries. Biotechnol. Prog. 2013, 29, 1097–1108. [Google Scholar] [CrossRef]
- Stoimenova, E.; Vasileva-Tonkova, E.; Sotirova, A.; Galabova, D.; Lalchev, Z. Evaluation of Different Carbon Sources for Growth and Biosurfactant Production by Pseudomonas fluorescens Isolated from Wastewaters. Zeitschrift für Naturforschung C 2009, 64, 96–102. [Google Scholar] [CrossRef]
- Pereira, J.F.; Gudiña, E.J.; Costa, R.; Vitorino, R.; Teixeira, J.A.; Coutinho, J.A.; Rodrigues, L.R. Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel 2013, 111, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Moldes, A.; Rodríguez-López, L.; Rincón-Fontán, M.; López-Prieto, A.; Vecino, X.; Cruz, J. Synthetic and Bio-Derived Surfactants Versus Microbial Biosurfactants in the Cosmetic Industry: An Overview. Int. J. Mol. Sci. 2021, 22, 2371. [Google Scholar] [CrossRef]
- Banat, I.M.; Franzetti, A.; Gandolfi, I.; Bestetti, G.; Martinotti, M.G.; Fracchia, L.; Smyth, T.J.; Marchant, R. Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol. 2010, 87, 427–444. [Google Scholar] [PubMed]
- Markande, A.R.; Patel, D.; Varjani, S. A review on biosurfactants: Properties, applications and current developments. Bioresour. Technol. 2021, 330, 124963. [Google Scholar] [CrossRef]
- Rivera, D.; Urbina, M.M.; López, V.E.L.Y. Advances on research in the use of agro-industrial waste in biosurfactant production. World J. Microbiol. Biotechnol. 2019, 35, 155. [Google Scholar] [CrossRef] [PubMed]
- Jezierska, S.; Claus, S.; Van Bogaert, I. Yeast glycolipid biosurfactants. FEBS Lett. 2017, 592, 1312–1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rath, S.; Srivastava, R.K. Biosurfactants Production and Their Commercial Importance. Environ. Agric. Microbiol. 2021, 197–218. [Google Scholar] [CrossRef]
- Lakatos, E.; Yong, G.; Szilagyi, A.; Clinci, D.; Georgescu, L.; Iticescu, C.; Cioca, L.-I. Conceptualizing Core Aspects on Circular Economy in Cities. Sustainability 2021, 13, 7549. [Google Scholar] [CrossRef]
- Szilagyi, A.; Cioca, L.-I.; Bacali, L.; Lakatos, E.-S.; Birgovan, A.-L. Consumers in the Circular Economy: A Path Analysis of the Underlying Factors of Purchasing Behaviour. Int. J. Environ. Res. Public Health 2022, 19, 11333. [Google Scholar] [CrossRef]
- Pacurariu, R.L.; Vatca, S.D.; Lakatos, E.S.; Bacali, L.; Vlad, M. A Critical Review of EU Key Indicators for the Transition to the Circular Economy. Int. J. Environ. Res. Public Health 2021, 18, 8840. [Google Scholar] [CrossRef] [PubMed]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.; Hultink, E.J. The Circular Economy–A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, S.S.; Koul, Y.; Varjani, S.; Pandey, A.; Ngo, H.H.; Chang, J.-S.; Wong, J.W.C.; Bui, X.-T. A critical review on various feedstocks as sustainable substrates for biosurfactants production: A way towards cleaner production. Microb. Cell Factories 2021, 20, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Akbari, S.; Abdurahman, N.H.; Yunus, R.M.; Fayaz, F.; Alara, O.R. Biosurfactants—A new frontier for social and environmental safety: A mini review. Biotechnol. Res. Innov. 2018, 2, 81–90. [Google Scholar] [CrossRef]
- Reiling, H.; Thanei-Wyss, U.; Guerra-Santos, L.H.; Hirt, R.; Käppeli, O.; Fiechter, A. Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa. Appl. Environ. Microbiol. 1986, 51, 985–989. [Google Scholar] [CrossRef] [Green Version]
- Velenturf, A.P.; Purnell, P. Principles for a sustainable circular economy. Sustain. Prod. Consum. 2021, 27, 1437–1457. [Google Scholar] [CrossRef]
- Kee, S.H.; Ganeson, K.; Rashid, N.F.M.; Yatim, A.F.M.; Vigneswari, S.; Amirul, A.-A.A.; Ramakrishna, S.; Bhubalan, K. A review on biorefining of palm oil and sugar cane agro-industrial residues by bacteria into commercially viable bioplastics and biosurfactants. Fuel 2022, 321, 124039. [Google Scholar] [CrossRef]
- Sarubbo, L.A.; Maria da Gloria, C.S.; Durval, I.J.B.; Bezerra, K.G.O.; Ribeiro, B.G.; Silva, I.A.; Twigg, M.S.; Banat, I.M. Biosurfactants: Production, properties, applications, trends, and general perspectives. Biochem. Eng. J. 2022, 181, 108377. [Google Scholar] [CrossRef]
- El-Malek, F.A.; Rofeal, M.; Zabed, H.M.; Nizami, A.-S.; Rehan, M.; Qi, X. Microorganism-mediated algal biomass processing for clean products manufacturing: Current status, challenges and future outlook. Fuel 2021, 311, 122612. [Google Scholar] [CrossRef]
- Sharma, P.; Gaur, V.K.; Gupta, S.; Varjani, S.; Pandey, A.; Gnansounou, E.; You, S.; Ngo, H.H.; Wong, J.W. Trends in mitigation of industrial waste: Global health hazards, environmental implications and waste derived economy for environmental sustainability. Sci. Total. Environ. 2021, 811, 152357. [Google Scholar] [CrossRef]
- Janek, T.; Gudiña, E.; Połomska, X.; Biniarz, P.; Jama, D.; Rodrigues, L.; Rymowicz, W.; Lazar, Z. Sustainable Surfactin Production by Bacillus subtilis Using Crude Glycerol from Different Wastes. Molecules 2021, 26, 3488. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Subramanian, K.; Wang, H.; Roelants, S.L.; To, M.H.; Soetaert, W.; Kaur, G.; Lin, C.S.K.; Chopra, S.S. Guiding environmental sustainability of emerging bioconversion technology for waste-derived sophorolipid production by adopting a dynamic life cycle assessment (dLCA) approach. Environ. Pollut. 2020, 269, 116101. [Google Scholar] [CrossRef]
- Vladu, M.-G.S.; Lakatos, E.S.; Ene, N.; Dalanaj, N.M.; Popa, O.; Babeanu, N. The Potential Applications of Bacillus sp. And Pseudomonas sp. Strains with Antimicrobial Activity against Phytopathogens, in Waste Oils and the Bioremediation of Hydrocarbons. Catalysts 2019, 9, 959. [Google Scholar] [CrossRef]
- Jiménez-Peñalver, P.; Koh, A.; Gross, R.; Gea, T.; Font, X. Biosurfactants from Waste: Structures and Interfacial Properties of Sophorolipids Produced from a Residual Oil Cake. J. Surfactants Deterg. 2019, 23, 481–486. [Google Scholar] [CrossRef]
- Ferronato, N.; Rada, E.C.; Gorritty Portillo, M.A.; Cioca, L.I.; Ragazzi, M.; Torretta, V. Introduction of the circular economy within developing regions: A comparative analysis of advantages and opportunities for waste valorization. J. Environ. Manag. 2019, 230, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Hollenbach, R.; Delavault, A.; Gebhardt, L.; Soergel, H.; Muhle-Goll, C.; Ochsenreither, K.; Syldatk, C. Lipase-Mediated Mechanoenzymatic Synthesis of Sugar Esters in Dissolved Unconventional and Neat Reaction Systems. ACS Sustain. Chem. Eng. 2022, 10, 10192–10202. [Google Scholar] [CrossRef]
- Martínez, M.; Rodríguez, A.; Gea, T.; Font, X. A Simplified Techno-Economic Analysis for Sophorolipid Production in a Solid-State Fermentation Process. Energies 2022, 15, 4077. [Google Scholar] [CrossRef]
- Kachrimanidou, V.; Alimpoumpa, D.; Papadaki, A.; Lappa, I.; Alexopoulos, K.; Kopsahelis, N. Cheese whey utilization for biosurfactant production: Evaluation of bioprocessing strategies using novel Lactobacillus strains. Biomass- Convers. Biorefinery 2022, 12, 4621–4635. [Google Scholar] [CrossRef]
- Kachrimanidou, V.; Papadaki, A.; Lappa, I.; Papastergiou, S.; Kleisiari, D.; Kopsahelis, N. Biosurfactant Production from Lactobacilli: An Insight on the Interpretation of Prevailing Assessment Methods. Appl. Biochem. Biotechnol. 2021, 194, 882–900. [Google Scholar] [CrossRef]
- Hu, X.; Subramanian, K.; Wang, H.; Roelants, S.L.; Soetaert, W.; Kaur, G.; Lin, C.S.K.; Chopra, S.S. Bioconversion of Food Waste to produce Industrial-scale Sophorolipid Syrup and Crystals: Dynamic Life Cycle Assessment (dLCA) of Emerging Biotechnologies. Bioresour. Technol. 2021, 337, 125474. [Google Scholar] [CrossRef]
- Martínez-Arcos, A.; Moldes, A.B.; Vecino, X. Adding value to secondary streams of corn wet milling industry. CyTA—J. Food 2021, 19, 675–681. [Google Scholar] [CrossRef]
- Sadhukhan, J.; Dugmore, T.I.; Matharu, A.; Martinez-Hernandez, E.; Aburto, J.; Rahman, P.K.; Lynch, J. Perspectives on “game changer” global challenges for sustainable 21st century: Plant-based diet, unavoidable food waste biorefining, and circular economy. Sustainability 2020, 12, 1976. [Google Scholar] [CrossRef] [Green Version]
- Khodavirdipour, A.; Chamanrokh, P.; Alikhani, M.Y.; Alikhani, M.S. Potential of Bacillus subtilis Against SARS-CoV-2–A Sustainable Drug Development Perspective. Front. Microbiol. 2022, 13, 718786. [Google Scholar] [CrossRef] [PubMed]
- Vieira, I.M.M.; Santos, B.L.P.; Ruzene, D.S.; Silva, D.P. An overview of current research and developments in biosurfactants. J. Ind. Eng. Chem. 2021, 100, 1–18. [Google Scholar] [CrossRef]
- Castelein, M.; Verbruggen, F.; Van Renterghem, L.; Spooren, J.; Yurramendi, L.; Du Laing, G.; Boon, N.; Soetaert, W.; Hennebel, T.; Roelants, S.; et al. Bioleaching of metals from secondary materials using glycolipid biosurfactants. Miner. Eng. 2021, 163, 106665. [Google Scholar] [CrossRef]
- Drakontis, C.E.; Amin, S. Design of sustainable lip gloss formulation with biosurfactants and silica particles. Int. J. Cosmet. Sci. 2020, 42, 573–580. [Google Scholar] [CrossRef]
- Lu, Y.; Zhu, Y.; Xu, Z.; Liu, Q. Pseudo-Gemini Biosurfactants with CO2 Switchability for Enhanced Oil Recovery (EOR). Tenside Surfactants Deterg. 2019, 56, 407–416. [Google Scholar] [CrossRef]
- Dreja, M.; Vockenroth, I.; Plath, N. Biosurfactants—Exotic Specialties or Ready for Application? Tenside Surfactants Deterg. 2012, 49, 10–17. [Google Scholar] [CrossRef]
- Zhang, Y.; Placek, T.L.; Jahan, R.; Alexandridis, P.; Tsianou, M. Rhamnolipid Micellization and Adsorption Properties. Int. J. Mol. Sci. 2022, 23, 11090. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Formicola, F.; Sbaffoni, S.; Franzetti, A.; Vaccari, M. Insights into rhamnolipid amendment towards enhancing microbial electrochemical treatment of petroleum hydrocarbon contaminated soil. Chemosphere 2022, 307, 136126. [Google Scholar] [CrossRef]
- Duquet, F.; Nada, A.A.; Rivallin, M.; Rouessac, F.; Villeneuve-Faure, C.; Roualdes, S. Influence of Bio-Based Surfactants on TiO2 Thin Films as Photoanodes for Electro-Photocatalysis. Catalysts 2021, 11, 1228. [Google Scholar] [CrossRef]
- Sonnabend, M.; Aubin, S.; Schmidt, A.; Leimenstoll, M. Sophorolipid-Based Oligomers as Polyol Components for Polyurethane Systems. Polymers 2021, 13, 2001. [Google Scholar] [CrossRef] [PubMed]
- Chebbi, A.; Franzetti, A.; Castro, F.D.; Tovar, F.H.G.; Tazzari, M.; Sbaffoni, S.; Vaccari, M. Potentials of Winery and Olive Oil Residues for the Production of Rhamnolipids and Other Biosurfactants: A Step towards Achieving a Circular Economy Model. Waste Biomass- Valoriz. 2021, 12, 4733–4743. [Google Scholar] [CrossRef]
- Hrůzová, K.; Patel, A.; Masák, J.; Maťátková, O.; Rova, U.; Christakopoulos, P.; Matsakas, L. A novel approach for the production of green biosurfactant from Pseudomonas aeruginosa using renewable forest biomass. Sci. Total. Environ. 2019, 711, 135099. [Google Scholar] [CrossRef] [PubMed]
- Franzetti, A.; Gandolfi, I.; Raimondi, C.; Bestetti, G.; Banat, I.M.; Smyth, T.J.; Papacchini, M.; Cavallo, M.; Fracchia, L. Environmental fate, toxicity, characteristics and potential applications of novel bioemulsifiers produced by Variovorax paradoxus 7bCT5. Bioresour. Technol. 2012, 108, 245–251. [Google Scholar] [CrossRef]
- Eurostat. Eurostat Data on Total Waste Generation. 2022. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics (accessed on 10 November 2022).
- Satpute, S.K.; Płaza, G.A.; Banpurkar, A.G. Biosurfactants’ Production from Renewable Natural Resources: Example of Innovativeand Smart Technology in Circular Bioeconomy. Manag. Syst. Prod. Eng. 2017, 25, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Patil, Y.; Rale, V. Biosurfactant production: Emerging trends and promising strategies. J. Appl. Microbiol. 2018, 126, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Makkar, R.S.; Cameotra, S.S.; Banat, I.M. Advances in utilization of renewable substrates for biosurfactant production. AMB Express 2011, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Chakrabarty, A. Genetically-manipulated microorganisms and their products in the oil service industries. Trends Biotechnol. 1985, 3, 32–39. [Google Scholar] [CrossRef]
- Mulligan, C.N. Environmental applications for biosurfactants. Environ. Pollut. 2005, 133, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Gayathiri, E.; Prakash, P.; Karmegam, N.; Varjani, S.; Awasthi, M.K.; Ravindran, B. Biosurfactants: Potential and Eco-Friendly Material for Sustainable Agriculture and Environmental Safety—A Review. Agronomy 2022, 12, 662. [Google Scholar] [CrossRef]
- Cecconet, D.; Capodaglio, A.G. Sewage Sludge Biorefinery for Circular Economy. Sustainability 2022, 14, 14841. [Google Scholar] [CrossRef]
- Wang, H.; Roelants, S.L.; To, M.H.; Patria, R.D.; Kaur, G.; Lau, N.S.; Lau, C.Y.; NA Van Bogaert, I.; Soetaert, W.; Lin, C.S. Starmerella bombicola: Recent advances on sophorolipid production and prospects of waste stream utilization. J. Chem. Technol. Biotechnol. 2018, 94, 999–1007. [Google Scholar] [CrossRef]
- Quraishi, M.; Bhatia, S.; Pandit, S.; Gupta, P.; Rangarajan, V.; Lahiri, D.; Varjani, S.; Mehariya, S.; Yang, Y.-H. Exploiting Microbes in the Petroleum Field: Analyzing the Credibility of Microbial Enhanced Oil Recovery (MEOR). Energies 2021, 14, 4684. [Google Scholar] [CrossRef]
- Pacwa-Płociniczak, M.; Płaza, G.A.; Piotrowska-Seget, Z.; Cameotra, S.S. Environmental Applications of Biosurfactants: Recent Advances. Int. J. Mol. Sci. 2011, 12, 633–654. [Google Scholar] [CrossRef]
- Eras-Muñoz, E.; Farré, A.; Sánchez, A.; Font, X.; Gea, T. Microbial biosurfactants: A review of recent environmental applications. Bioengineered 2022, 13, 12365–12391. [Google Scholar] [CrossRef]
- Yaashikaa, P.; Kumar, P.S.; Saravanan, A.; Varjani, S.; Ramamurthy, R. Bioconversion of municipal solid waste into bio-based products: A review on valorisation and sustainable approach for circular bioeconomy. Sci. Total. Environ. 2020, 748, 141312. [Google Scholar] [CrossRef]
- Twigg, M.S.; Tripathi, L.; Zompra, A.; Salek, K.; Irorere, V.U.; Gutierrez, T.; Spyroulias, G.A.; Marchant, R.; Banat, I.M. Identification and characterisation of short chain rhamnolipid production in a previously uninvestigated, non-pathogenic marine pseudomonad. Appl. Microbiol. Biotechnol. 2018, 102, 8537–8549. [Google Scholar] [CrossRef]
Comparison Criteria | Surfactant (Petrochemical Origin) | Biosurfactant (Microbial Origin) |
---|---|---|
Costs | Low, suitable as enhanced oil recovery (EOR) [24], which needs significant volumes of low-priced surfactants | High productions cost, suitable for low volume and high costs products (cosmetics industry) [25] |
Environmental impact | High toxicity Low biodegradability Low environmental compatibility | Low toxicity, High biodegradability, High environmental compatibility |
Industrial applicability | Used in a variety of products requiring very high volume of surfactants domestic and industrial applications [26] | Not yet widely employed in industrial production because they require expensive substrates with relatively poor productivities, limiting their commercial usage |
Biosurfactant Contribution | Circular Economy Principle | Source |
---|---|---|
Waste stream-derived production | Closing the loop To coexist in a sustainable manner, society and the biophysical environment must both be seen as open systems. Resources should be removed and restored to the ecosystem at rates that are below the Earth’s ability to replenish and absorb them [38]. | [39,40,41,42] |
Eliminate waste and pollution In a circular economy, waste must be regarded as a design defect of our consumption system. A requirement for any design in a circular economy is that the materials re-enter the economy after being used, thus converting the take-make-waste system from linear to circular. | [43,44,45,46] | |
Combating food waste | Maintaining resource value within the system Shifting away from producer-driven consumerism and replacing it with provisioning systems that enable responsible, demand-driven resource use in addition to increasing sharing, service, and experience-based consumption [47]. | [48,49,50,51,52,53,54] |
Increasing water resource efficiency | Reduce and decouple resource use Reinforce resource sufficiency, efficiency and dematerialization through policies and actions that disconnect wellbeing from unsustainable resource use. | [55,56,57,58,59,60] |
Soil bioremeditation Boosting soil health | Regenerate nature Instead of perpetually deteriorating nature, we must use practices that allow nature to repair soils, increase biodiversity, and replenish biological materials in the earth. | [61,62,63,64,65,66,67] |
Type of Biosurfactant | Potential Circular Economy-Focused Application in the Industry | Sources |
---|---|---|
Glycolipids | Enhancing microbial electrochemical treatment of petroleum hydrocarbon contaminated soil through rhamnolipids | [62] |
Crude microbial bioremediation of offshore marine oil | [45,59] | |
Merging industrial waste streams or by-products to sophorolipids fermentation has mutually beneficial effects as these inputs are abundantly available, and using waste streams for sophorolipid production improves recycling and reusing, achieving effective waste management | [77] | |
Treatment of heavy metal contaminated wastewater | [8,57] | |
Efficient recovery of residual oil from intensive exploited reservoirs | [78] | |
Enhancing the bioavailability of hydrocarbons through trehalolipids | [79] | |
Lipopetides | Lipopetides act as bioremediation agents for soils, surface water, groundwater, and waste streams contaminated with hydrophobic organic compounds, such as metals and polycyclic aromatic hydrocarbons, hence they are linked to an improvement in soil quality, which is essential for the development of crops. | [43,40] |
Crude oil remediation by bioelectrokinetic technique | [8,40] | |
Treatment of heavy metal contaminated soil | [71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakatos, E.S.; Cioca, L.I.; Szilagyi, A.; Vladu, M.G.; Stoica, R.M.; Moscovici, M. A Systematic Review on Biosurfactants Contribution to the Transition to a Circular Economy. Processes 2022, 10, 2647. https://doi.org/10.3390/pr10122647
Lakatos ES, Cioca LI, Szilagyi A, Vladu MG, Stoica RM, Moscovici M. A Systematic Review on Biosurfactants Contribution to the Transition to a Circular Economy. Processes. 2022; 10(12):2647. https://doi.org/10.3390/pr10122647
Chicago/Turabian StyleLakatos, Elena Simina, Lucian Ionel Cioca, Andrea Szilagyi, Mariana Gratiela Vladu, Roxana Mădălina Stoica, and Misu Moscovici. 2022. "A Systematic Review on Biosurfactants Contribution to the Transition to a Circular Economy" Processes 10, no. 12: 2647. https://doi.org/10.3390/pr10122647
APA StyleLakatos, E. S., Cioca, L. I., Szilagyi, A., Vladu, M. G., Stoica, R. M., & Moscovici, M. (2022). A Systematic Review on Biosurfactants Contribution to the Transition to a Circular Economy. Processes, 10(12), 2647. https://doi.org/10.3390/pr10122647