Carotenoids Recovery Enhancement by Supercritical CO2 Extraction from Tomato Using Seed Oils as Modifiers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Standards
2.2. Plant Material
2.3. Soxhlet Extraction (SE)
2.4. Maceration (M)
2.5. Supercritical CO2 Extraction (SFE)
2.6. GC–MS Analysis of Vegetable Oils
2.7. UV–VIS Analysis of the Extracts
2.8. Antioxidant Activity of the Extracts
2.9. Statistical Analysis
2.10. Design of Experiments
3. Results and Discussion
3.1. Extraction of Carotenoids with Vegetable Oils
3.2. Extraction of Carotenoids with Supercritical CO2 and Seed Oils as Modifiers
3.2.1. Modifiers’ Effects on Extraction Yield
3.2.2. Modifiers’ Effect on Extracts’ Compositions
3.3. Optimal Parameters for SFE Extraction with Seed Oils as Modifiers
3.4. Quality of Products
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szabo, K.; Teleky, B.-E.; Ranga, F.; Roman, I.; Khaoula, H.; Boudaya, E.; Ltaief, A.B.; Aouani, W.; Thiamrat, M.; Vodnar, D.C. Carotenoid Recovery from Tomato Processing By-Products through Green Chemistry. Molecules 2022, 27, 3771. [Google Scholar] [CrossRef] [PubMed]
- Potillo-Lopez, R.; Morales-Contreras, B.; Lozano-Guzman, E.; Basilio-Heredia, J.; Muy-Rangel, M.D.; Ochoa-Martinez, L.A.; Rosas-Flores, W.; Moraes-Castro, J. Vegetable oils as green solvents for carotenoid extraction from pumpkin (Cucurbita argyrosperma Huber) byproducts: Optimization of extraction parameters. J. Food Sci. 2021, 86, 3122–3136. [Google Scholar] [CrossRef] [PubMed]
- Szabo, K.; Dulf, F.V.; Teleky, B.-E.; Eleni, P.; Boukouvalas, C.; Krokida, M.; Kapsalis, N.; Rusu, A.V.; Socol, C.T.; Vodnar, D.C. Evaluation of the Bioactive Compounds Found in Tomato Seed Oil and Tomato Peels Influenced by Industrial Heat Treatments. Foods 2021, 10, 110. [Google Scholar] [CrossRef] [PubMed]
- Kehili, M.; Sayadi, S.; Frikha, F.; Zammel, A.; Allouche, N. Optimization of lycopene extraction from tomato peels industrial by-product using maceration in refined olive oil. Food Bioprod. Process. 2019, 117, 321–328. [Google Scholar] [CrossRef]
- Squillace, P.; Adani, F.; Scaglia, B. Supercritical CO2 extraction of tomato pomace: Evaluation of the solubility of lycopene in tomato oil as limiting factor of the process performance. Food Chem. 2020, 315, 126–224. [Google Scholar] [CrossRef]
- Kultys, E.; Kurek, M.A. Green Extraction of Carotenoids from Fruit and Vegetable Byproducts: A Review. Molecules 2022, 27, 518. [Google Scholar] [CrossRef]
- Saldana, M.A.D.; Temelli, F.; Guigard, S.E.; Tomberli, B.; Gray, C.G. Apparent solubility of lycopene and b-carotene in supercritical CO2, CO2 + ethanol and CO2 + canola oil using dynamic extraction of tomatoes. J. Food Eng. 2010, 99, 1–8. [Google Scholar] [CrossRef]
- Vasapollo, G.; Longo, L.; Rescio, L.; Ciurlia, L. Innovative supercritical CO2 extraction of lycopene from tomato in the presence of vegetable oil as co-solvent. J. Supercrit. Fluids 2004, 29, 87–96. [Google Scholar] [CrossRef]
- Aniceto, J.P.S.; Rodrigues, V.H.; Portugal, I.; Silva, C.M. Valorization of Tomato Residues by Supercritical Fluid Extraction. Processes 2022, 10, 28. [Google Scholar] [CrossRef]
- Pellicano, T.M.; Sicari, V.; Loizzo, M.R.; Leporini, M.; Falco, T.; Poiana, M. Optimizing the supercritical fluid extraction process of bioactive compounds from processed tomato skin by-products. Food Sci. Technol. 2020, 40, 692–697. [Google Scholar] [CrossRef]
- Dominguez, R.; Gullon, P.; Pateiro, M.; Munekata, P.E.S.; Zhang, W.; Lorenzo, J.M. Tomato as Potential Source of Natural Additives for Meat Industry. A Review. Antioxidants 2020, 9, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machmudah, S.; Zakaria; Winardi, S.; Sasaki, M.; Goto, M.; Kusumoto, N.; Hayakawa, K. Lycopene extraction from tomato peel by-product containing tomato seed using supercritical carbon dioxide. J. Food Eng. 2012, 108, 290–296. [Google Scholar] [CrossRef]
- Sovova, H.; Stateva, R.P. New developments in the modelling of carotenoids extraction from microalgae with supercritical CO2. J. Supercrit. Fluids 2019, 148, 93–103. [Google Scholar] [CrossRef]
- Saini, R.K.; Moon, S.H.; Keum, Y.S. An updated review on use of tomato pomace and crustacean processing waste to recover commercially vital carotenoids. Food Res. Int. 2018, 108, 516–529. [Google Scholar] [CrossRef] [PubMed]
- Rizk, E.M.; El-Kady, A.T.; El-Bialy, A.R. Charactrization of carotenoids (lyco-red) extracted from tomato peels and its uses as natural colorants and antioxidants of ice cream. Ann. Agric. Sci. 2014, 59, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Hatami, T.; Meireles, M.A.A.; Ciftici, O.N. Supercritical carbon dioxide extraction of lycopene from tomato processing by-products: Mathematical modelling and optimization. J. Food Eng. 2018, 241, 18–25. [Google Scholar] [CrossRef]
- Longo, C.; Leo, L.; Leone, A. Carotenoids, Fatty Acid Composition and Heat Stability of Supercritical Carbon Dioxide-Extracted-Oleoresins. Int. J. Mol. Sci. 2012, 13, 4233–4254. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, Y.; Honda, M.; Higashiura, T.; Fukaya, T.; Machmudah, S.; Wahyudiono; Kanda, H.; Goto, M. Rapid and Selective Concentration of Lycopene Z-isomers from Tomato Pulp by Supercritical CO2 with Co-solvents. Solvent Extr. Res. Dev. Jpn. 2018, 25, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Barros, H.D.F.Q.; Grimaldi, R.; Cabral, F.A. Lycopene-rich avocado oil obtained by simultaneous supercritical extraction from avocado pulp and tomato pomace. J. Supercrit. Fluids 2017, 120, 1–6. [Google Scholar] [CrossRef]
- Porretta, S. Tomato Chemistry, Industrial Processing and Product Development; Royal Society of Chemistry: Cambridge, UK, 2019. [Google Scholar]
- Popescu, M.; Iancu, P.; Plesu, V.; Todasca, M.C.; Isopencu, G.O.; Bildea, C.S. Valuable Natural Antioxidant Products Recovered from Tomatoes by Green Extraction. Molecules 2022, 27, 4191. [Google Scholar] [CrossRef]
- Grijo, D.R.; Piva, G.K.; Osorio, I.V.; Cardozo-Filho, L. Hemp (Cannabis sativa L.) seed oil extraction with pressurized n-propane and supercritical carbon dioxide. J. Supercrit. Fluids 2019, 143, 268–274. [Google Scholar] [CrossRef]
- Kostic, M.D.; Jokovic, N.M.; Stamenkovic, O.S.; Rajkovic, K.M.; Milic, P.S.; Veljkovic, V.B. Optimization of hempseed oil extraction by n-hexane. Ind. Crops Prod. 2013, 48, 133–143. [Google Scholar] [CrossRef]
- Devi, V.; Khanam, S. Comparative study of different extraction processes for hemp (Cannabis sativa) seed oil considering physical, chemical and industrial-scale economic aspects. J. Clean. Prod. 2019, 207, 645–657. [Google Scholar] [CrossRef]
- Da Porto, C.; Voinobich, D.; Decorti, D.; Natolino, A. Response surface optimization of hemp seed (Cannabis sativa L.) oil yield and oxidation stability by supercritical carbon dioxide extraction. J. Supercrit. Fluids 2012, 68, 45–51. [Google Scholar] [CrossRef]
- Belayneh, H.D.; Wehling, R.L.; Cahoon, E.; Ciftici, O.N. Extraction of omega-3-rich oil from Camelina sativa seed using supercritical carbon dioxide. J. Supercrit. Fluids 2015, 104, 153–159. [Google Scholar] [CrossRef]
- Moslavac, T.; Jovic, S.; Subaric, D.; Aladic, K.; Vukoja, J.; Prce, N. Pressing and supercritical CO2 extraction of Camelina sativa oil. Ind. Crops Prod. 2014, 54, 122–129. [Google Scholar] [CrossRef]
- Popa, A.-L.; Jurcoane, S.; Dumitriu, B. Camelina sativa oil—A review. Sci. Bulletin. Ser. F Biotechnol. 2017, 11, 233–238. [Google Scholar]
- Li, Y.; Watkins, B.A. Analysis of Fatty Acids in Food Lipids. In Current Protocols in Food Analytical Chemistry; Whitaker, J., Ed.; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Iancu, P.; Stefan, N.G.; Plesu, V.; Toma, A.; Stepan, E. Advanced high vacuum techniques for ω-3 polyunsaturated fatty acids esters concentration. Rev. Chim. 2015, 66, 911–917. [Google Scholar]
- Popescu, M.; Iancu, P.; Plesu, V.; Bildea, C.S.; Todasca, M.C. Different spectrophotometric methods for simultaneous quantification of lycopene and β-carotene from a binary mixture. LWT-Food Sci. Technol. 2022, 160, 113238. [Google Scholar] [CrossRef]
- Konieczka, P.; Namiesnik, J. Quality Assurance and Quality Control in the Analytical Chemical Laboratory: A Practical Approach; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Lawson, J.; Erjavec, J. Basic Experimental Strategies and Data Analysis for Science and Engineering; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Tirado-Kulieva, V.A.; Sanchez-Chero, M.; Villegasyarleque, M.; Aguilar, G.F.V.; Carrion-Barco, G.; Santa Cruz, A.G.Y.; Sanchez-Chero, J. An Overview on the Use of Response Surface Methodology to Model and Optimize Extraction Processes in the Food Industry. Curr. Res. Nutr. Food Sci. 2021, 9, 745–754. [Google Scholar] [CrossRef]
- Aladic, K.; Jovic, S.; Moslavac, T.; Tomas, S.; Vidovic, S.; Vladic, J.; Subaric, D. Cold Pressing and Supercritical CO2 Extraction of Hemp (Cannabis sativa) Seed Oil. Chem. Biochem. Eng. Q. 2014, 28, 481–490. [Google Scholar] [CrossRef]
- Mieliauskaite, D.; Viskelis, P.; Noreika, R.-K.; Viskelis, J. Lycopene Solubility and Its Extraction from Tomatoes and Their By-Products. In Proceedings of the CIGR Section VI International Symposium on Food Processing, Monitoring Technology in Bioprocesses and Food Quality Management, Potsdam, Germany, 31 August–2 September 2009. [Google Scholar]
- Kunthakudee, N.; Sunsandee, N.; Chutvirasakul, B.; Ramakul, P. Extraction of lycopene from tomato with environmentally benign solvents: Box-Behnken design and optimization. Chem. Eng. Commun. 2019, 207, 574–583. [Google Scholar] [CrossRef]
- Borel, P.; Grolier, P.; Armand, M.; Partier, A.; Lafont, H.; Lairon, D.; Azais-Braesco, V. Carotenoids in biological emulsions: Solubility, surface-to-core distribution, and release from lipid droplets. J. Lipid Res. 1996, 37, 250–261. [Google Scholar] [CrossRef]
- Pawliszyn, J. Comprehensive Sampling and Sample Preparation: Analytical Techniques for Scientists, 1st ed.; Academic Press: Waterloo, ON, Canada, 2012. [Google Scholar]
- Kehili, M.; Kammlott, M.; Choura, S.; Zammel, A.; Zetzl, C.; Smirnova, I.; Allouche, N.; Sayadi, S. Supercritical CO2 extraction and antioxidant activity of lycopene and -carotene-enriched oleoresin from tomato (Lycopersicum esculentum L.) peels by-product of a Tunisian industry. Food Bioprod. Process. 2017, 102, 340–349. [Google Scholar] [CrossRef]
- Vallecilla-Yepez, L.; Ciftici, O.N. Increasing cis-lycopene content of the oleoresin from tomato processing byproducts using supercritical carbon dioxide. LWT-Food Sci. Technol. 2018, 95, 354–360. [Google Scholar] [CrossRef]
Independent Variables (Factors) | Symbol | Range of Coded Levels of Variables | ||
---|---|---|---|---|
Low | Medium | High | ||
−1 | 0 | +1 | ||
Extraction pressure/(bar) | X1 | 350 | 400 | 450 |
Seed type | X2 | TSM | CSM | HSM |
CO2 flow rate/(kg/h) | X3 | 9 | 11 | 13 |
Dependent Variables (Responses) | Symbol |
---|---|
SFE-A yield/(g/100 g dried sample) | Y1 |
SFE-B yield/(g/100 g dried sample) | Y2 |
SFE-A carotenoids/(mg/100 g extract) | Y3 |
SFE-B lycopene/(mg/100 g extract) | Y4 |
Extract ID | Extraction Method * | Extraction Solvent * | Extraction Parameters | Extraction Yield ** |
---|---|---|---|---|
TSO | SE | AH | msample = 25 Vsolvent = 250 | 19.17 ± 0.21 |
CSO | 41.85 ± 0.16 | |||
HSO | 30.85 ± 0.29 |
Fatty Acid Profile | Composition * | ||
---|---|---|---|
TSO | CSO | HSO | |
Palmitic acid (C16:0) | 15.06 ± 0.03 a | 6.42 ± 0.05 b | 6.43 ± 0.02 c |
Stearic acid (C18:0) | 6.36 ± 0.09 a | 2.32 ± 0.04 b | 3.40 ± 0.03 c |
Oleic acid (C18:1ω9) | 23.52 ± 0.22 a | 18.70 ± 0.09 b | 16.59 ± 0.06 c |
Linoleic acid (C18:2ω6) | 55.06 ± 0.17 a | 19.29 ± 0.10 b | 55.93 ± 0.10 c |
Linolenic acid (C18:3ω6) | - | - | 2.37 ± 0.03 c |
Linolenic acid (C18:3ω3) | - | 33.90 ± 0.07 b | 13.25 ± 0.03 c |
Arachidic acid (C20:0) | - | - | 1.04 ± 0.01 c |
Gondoic acid (C20:1ω9) | - | 17.22 ± 0.06 b | 1.00 ± 0.02 c |
Erucic acid (C22:1ω9) | - | 2.17 ± 0.04 b | - |
SFA | 21.42 | 8.74 | 10.87 |
MUFA | 23.52 | 38.08 | 17.59 |
PUFA | 55.06 | 53.19 | 71.54 |
Extract ID | Extraction Method * | Extraction Solvent * | Lycopene Content ** | β-Carotene Content ** |
---|---|---|---|---|
TSO | SE | AH | 3.26 ± 0.05 | 2.63 ± 0.07 |
CSO | SE | AH | 0.08 ± 0.01 | 0.50 ± 0.03 |
HSO | SE | AH | 0.11 ± 0.01 | 5.95 ± 0.08 |
TSO-TS | M | TSO | 11.35 ± 0.06 | 1.42 ± 0.03 |
CSO-TS | M | CSO | 8.94 ± 0.07 | 1.15 ± 0.05 |
HSO-TS | M | HSO | 8.42 ± 0.25 | 1.48 ± 0.03 |
Extract ID | Extraction Method | Extraction Solvent | Lycopene Content * | β-Carotene Content * |
---|---|---|---|---|
TSM-TS-SFE-A | SFE | scCO2 | 43.81 ± 0.40 a | 159.73 ± 1.31 a |
CSM-TS-SFE-A | SFE | scCO2 | 71.35 ± 0.24 a | 139.70 ± 0.79 a |
HSM-TS-SFE-A | SFE | scCO2 | 61.79 ± 0.14 a | 101.35 ± 0.23 a |
TSM-TS-SFE-B | SFE | scCO2 | 1212.68 ± 0.69 b | 133.78 ± 0.76 a |
CSM-TS-SFE-B | SFE | scCO2 | 1073.94 ± 3.45 a | 93.52 ± 8.49 c |
HSM-TS-SFE-B | SFE | scCO2 | 947.92 ± 4.36 a | 123.41 ± 2.11 a |
Run | Independent Variables | Dependent Variables * | |||||
---|---|---|---|---|---|---|---|
X1 | X2 | X3 | Y1 | Y2 | Y3 | Y4 | |
Extraction Pressure | Seeds Type | CO2 Flow Rate | SFE-A Yield | SFE-B Yield | SFE-A Carotenoids | SFE-B Lycopene | |
1 | −1 | −1 | 0 | 2.97 | 0.22 | 147.82 | 814.97 |
2 | +1 | −1 | 0 | 5.67 | 0.93 | 203.54 | 1212.68 |
3 | −1 | +1 | 0 | 4.76 | 0.75 | 86.17 | 659.17 |
4 | +1 | +1 | 0 | 7.36 | 1.82 | 163.14 | 947.92 |
5 | −1 | 0 | −1 | 4.32 | 0.73 | 98.57 | 756.22 |
6 | +1 | 0 | −1 | 8.08 | 1.90 | 198.58 | 1055.26 |
7 | −1 | 0 | +1 | 5.95 | 1.39 | 115.66 | 819.64 |
8 | +1 | 0 | +1 | 9.14 | 2.81 | 206.15 | 1167.62 |
9 | 0 | −1 | −1 | 3.43 | 0.30 | 172.34 | 956.10 |
10 | 0 | +1 | −1 | 5.27 | 1.09 | 138.35 | 739.99 |
11 | 0 | −1 | +1 | 4.56 | 0.53 | 189.80 | 1059.35 |
12 | 0 | +1 | +1 | 6.46 | 1.30 | 142.11 | 831.25 |
13 | 0 | 0 | 0 | 7.10 | 1.55 | 160.59 | 920.59 |
14 | 0 | 0 | 0 | 6.62 | 1.74 | 163.01 | 918.46 |
15 | 0 | 0 | 0 | 7.04 | 1.77 | 158.63 | 916.21 |
Statistical Data | Y1 = SFE-A Yield | Y2 = SFE-B Yield | Y3 = SFE-A Carotenoids | Y4 = SFE-B Lycopene |
---|---|---|---|---|
β0 (Intercept) | 6.893 | 1.688 | 160.690 | 918.419 |
β1 (X1) | 1.531 | 0.547 | 40.398 | 166.686 |
β2 (X2) | 0.902 | 0.373 | −22.978 | −108.097 |
β3 (X3) | 0.626 | 0.252 | 5.735 | 46.287 |
β4 (X1X2) | * | * | 5.312 | −27.241 |
β5(X2X3) | * | * | * | * |
β6 (X1X3) | * | * | * | 12.235 |
β7 (X12) | * | * | −8.237 | 21.640 |
β8 (X22) | −1.832 | −0.830 | * | −31.374 |
β9 (X32) | * | * | * | 9.627 |
df Lack of fit | 8 | 3 | 7 | 4 |
p-value Lack of fit | 0.565 | 0.154 | 0.056 | 0.053 |
df Pure error | 2 | 2 | 2 | 2 |
Pure Error | 0.068 | 0.014 | 4.830 | 4.793 |
R2 | 0.983 | 0.961 | 0.968 | 0.999 |
Adjusted R2 | 0.976 | 0.889 | 0.950 | 0.998 |
Predicted R2 | 0.942 | 0.861 | 0.922 | 0.985 |
Extract ID * | Extraction Yield ** | Carotenoid Content ** | SFE-A PUFA Content ** | Antioxidant Activity ** | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
SFE-A | SFE-B | SFE-A | SFE-B | C18:2ω6 | C18:3ω3 | SFE-A | SFE-B | ||
CSM-TS | 9.05 ± 1.02 | 2.61 ±0.16 | 203.59 ± 13.12 | 1172.32 ± 15.98 | 19.29 ± 0.10 | 33.90 ± 0.07 | 50.16 ± 4.19 | 71.23 ± 5.03 | this study |
TS | 4.38 ± 0.86 | 0.30 ± 0.03 | 198.36 ± 15.45 | 916.50 ± 16.47 | 55.59 ± 0.12 | - | 49.65 ± 4.21 | 58.85 ± 4.09 | [21] |
TP | 8.95 ± 1.07 | 1.85 ± 0.11 | 404.08 ± 26.04 | 1016.94 ± 12.03 | 55.59 ± 0.12 | - | 38.41 ± 3.04 | 67.02 ± 5.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popescu, M.; Iancu, P.; Plesu, V.; Bildea, C.S. Carotenoids Recovery Enhancement by Supercritical CO2 Extraction from Tomato Using Seed Oils as Modifiers. Processes 2022, 10, 2656. https://doi.org/10.3390/pr10122656
Popescu M, Iancu P, Plesu V, Bildea CS. Carotenoids Recovery Enhancement by Supercritical CO2 Extraction from Tomato Using Seed Oils as Modifiers. Processes. 2022; 10(12):2656. https://doi.org/10.3390/pr10122656
Chicago/Turabian StylePopescu, Mihaela, Petrica Iancu, Valentin Plesu, and Costin Sorin Bildea. 2022. "Carotenoids Recovery Enhancement by Supercritical CO2 Extraction from Tomato Using Seed Oils as Modifiers" Processes 10, no. 12: 2656. https://doi.org/10.3390/pr10122656
APA StylePopescu, M., Iancu, P., Plesu, V., & Bildea, C. S. (2022). Carotenoids Recovery Enhancement by Supercritical CO2 Extraction from Tomato Using Seed Oils as Modifiers. Processes, 10(12), 2656. https://doi.org/10.3390/pr10122656