Ionic Equilibria in Polytungstate Melts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Electrolytes
2.2. Electrochemical Measurements
2.2.1. Measurement of the Oxygen Function of the Pt Electrode
2.2.2. EMF Measurement
2.3. Density Measurement
2.4. Density Functional Theory (DFT) Calculations
3. Experimental Results
3.1. Electrochemical Measurements
3.2. Density Measurement
4. DFT Calculation
5. Model of Ionic Equilibria
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bartha, L.; Kiss, A.B.; Szalay, T. Chemistry of tungsten oxide bronzes. Int. J. Refract. Met. Hard Mater. 1995, 13, 77–91. [Google Scholar] [CrossRef]
- El-Sayed, A.M.; Mousa, S.M.A. Some properties of sodium tungsten bronzes as a function of sodium concentration. Ind. J. Chem. Technol. 2005, 12, 304–308. [Google Scholar]
- Sano, K.; Nitta, Y.; Ōno, Y. Transition temperature of superconductivity in sodium tungsten bronze—Theoretical study based on first-principles calculations. J. Phys. Soc. Jpn. 2020, 89, 113704. [Google Scholar] [CrossRef]
- Lekshmi, I.C.; Hegde, M.S. Synthesis and electrical properties of cubic NaxWO3 thin films across the metal–insulator transition. Mater. Res. Bull. 2005, 40, 1443–1450. [Google Scholar] [CrossRef] [Green Version]
- Raj, S.; Matsui, H.; Souma, S.; Sato, T.; Takahashi, T.; Chakraborty, A.; Sarma, D.D.; Mahadevan, P.; Oishi, S.; McCarroll, W.H.; et al. Electronic structure of sodium tungsten bronzes NaxWO3 by high-resolution angle-resolved photoemission spectroscopy. Phys. Rev. B 2007, 75, 155116. [Google Scholar] [CrossRef] [Green Version]
- Bikberdina, N.Y.; Boronenko, M.P.; Gulyaev, P.Y.; Yunusov, R.D. Electrophysical properties of oxide bronze NaxWO3. Bull. Yugorsk State Univ. 2017, 3, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Petrov, L.A.; Shishmakov, A.B.; Vakarin, S.V.; Semerikova, O.L.; Melyaeva, A.A.; Mikushina, Y.V.; Zaykov, Y.P.; Chupakhin, O.N. Behavior of nanosized tungsten oxide bronzes produced by high-temperature electrolysis in model processes of desulfurization of petroleum products. Russ. J. Inorgan. Chem. 2014, 59, 7–10. [Google Scholar] [CrossRef]
- Vakarin, S.V.; Melyaeva, A.A.; Semerikova, O.L.; Kondratuk, V.S.; Pankratov, A.A.; Plaksin, S.V.; Porotnikova, N.M.; Zaykov, Y.P.; Petrov, L.A.; Mikushina, Y.V.; et al. Catalase activity of coarse grained and nanosized oxide tungsten bronzes obtained by electrolysis of molten salts. Russ. Chem. Bull. 2011, 60, 1985–1988. [Google Scholar] [CrossRef]
- Semerikova, O.L.; Vakarin, S.V.; Kosov, A.V.; Plaksin, S.V.; Pankratov, A.A.; Grishenkova, O.V.; Zaykov, Y.P.; Shishmakov, A.B.; Mikushina, Y.V.; Petrov, L.A. Electrochemical synthesis of nanohybrid systems based on copper and the oxide tungsten bronzes. J. Electrochem. Soc. 2019, 166, D792–D797. [Google Scholar] [CrossRef]
- Wu, C.-M.; Naseem, S.; Chou, M.-H.; Wang, J.-H.; Jian, Y.-Q. Recent advances in tungsten-oxide-based materials and their applications. Front. Mater. 2019, 6, 49. [Google Scholar] [CrossRef] [Green Version]
- Yi, L.; Zhao, W.; Huang, Y.; Wu, X.; Wang, J.; Zhang, G. Tungsten bronze Cs0.33WO3 nanorods modified by molybdenum for improved photocatalytic CO2 reduction directly from air. Sci. China Mater. 2020, 63, 2206–2214. [Google Scholar] [CrossRef]
- Wang, L.; Zhan, J.; Fan, W.; Cui, G.; Sun, H.; Zhuo, L.; Zhao, X.; Tang, B. Microcrystalline sodium tungsten bronze nanowire bundles as efficient visible light-responsive photocatalysts. Chem. Commun. 2010, 46, 8833–8835. [Google Scholar] [CrossRef]
- Zimmer, A.; Gilliot, M.; Tresse, M.; Broch, L.; Tillous, K.E.; Boulanger, C.; Stein, N.; Horwat., D. Coloration mechanism of electrochromic NaxWO3 thin films. Opt. Lett. 2019, 44, 1104–1107. [Google Scholar] [CrossRef]
- Tegg, L.; Cuskelly, D.; Keast, V.J. The sodium tungsten bronzes as plasmonic materials: Fabrication, calculation and characterization. Mater. Res. Express 2017, 4, 065703. [Google Scholar] [CrossRef]
- Jie, S.; Guo, X.; Ouyang, Z. Tumor ablation using novel photothermal NaxWO3 nanoparticles against breast cancer osteolytic bone metastasis. Int. J. Nanomed. 2019, 14, 7353–7362. [Google Scholar] [CrossRef] [Green Version]
- Azimirad, R.; Khademi, A.; Akhavan, J.; Moshfegh, A.Z. Growth of Na0.3WO3 nanorods for the field emission application. J. Phys. D Appl. Phys. 2009, 42, 205405. [Google Scholar] [CrossRef]
- Wu, P.J.; Brahma, S.; Lu, H.H.; Huang, J.L. Synthesis of cesium tungsten bronze by a solution-based chemical route and the NIR shielding properties of cesium tungsten bronze thin films. Appl. Phys. A 2020, 126, 98. [Google Scholar] [CrossRef]
- Kaliev, K.A.; Baraboshkin, A.N. Electrocrystallization of transition metal oxide bronzes from molten salts. In Oxide Bronzes; Spitsyn, V.I., Ed.; Nauka: Moscow, Russia, 1982; pp. 137–175. [Google Scholar]
- Vakarin, S.V. Oriented Growth of Tungsten Bronzes at the Melts Electrolysis; UB RAS: Ekaterinburg, Russia, 2005. (In Russian) [Google Scholar]
- Kosov, A.V.; Semerikova, O.L.; Vakarin, S.V.; Grishenkova, O.V.; Trofimov, A.A.; Leonova, A.M.; Leonova, N.M.; Zaikov, Y.P. Photovoltaic response of silicon wafers treated in the K2WO4-Na2WO4-WO3 melt. J. Electrochem. Soc. 2021, 168, 126503. [Google Scholar] [CrossRef]
- Kosov, A.V.; Semerikova, O.L.; Vakarin, S.V.; Zaykov, Y.P. Electrochemical behavior of the nickel/oxide tungsten bronze system at cyclic potential sweep. Russ. Metall. 2019, 2019, 803–808. [Google Scholar] [CrossRef]
- Kosov, A.V.; Semerikova, O.L.; Vakarin, S.V.; Pankratov, A.A.; Plaksin, S.V.; Korzun, I.V.; Akashev, L.A.; Zaykov, Y.P. Electrochemical synthesis of tetragonal oxide tungsten bronze nanofilms on platinum. Russ. Metall. 2017, 2017, 152–157. [Google Scholar] [CrossRef]
- Kosov, A.V.; Semerikova, O.L.; Vakarin, S.V.; Pankratov, A.A.; Plaksin, S.V.; Zaykov, Y.P. Formation of nanocrystalline tetragonal oxide tungsten bronzes on platinum. Russ. Metall. 2017, 2017, 158–162. [Google Scholar] [CrossRef]
- Vakarin, S.V.; Semerikova, O.L.; Kosov, A.B.; Pankratov, A.A.; Plaksin, S.V.; Korzun, I.V.; Akashev, L.A.; Zaikov, Y.P. Electrochemical deposition of nanocrystalline tungsten bronze films on platinum. Int. J. Adv. Res. 2015, 3, 691–700. [Google Scholar]
- Shurdumov, B.K. On the mechanism of the formation of oxide tungsten bronzes of alkali metals during the electrolysis of high-viscosity melts of tungstate phosphate systems. Izvestiya Vuzov Khimiya Khimicheskaya Tekhnologiya 2001, 44, 152–155. (In Russian) [Google Scholar]
- Khubolov, B.M. Electrocrystallization of thin films of sodium—Tungsten bronzes. In Physical and Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials; Tver State University: Tver, Russia, 2020; pp. 213–221. [Google Scholar]
- Khubolov, B.M. Electrochemical synthesis of oxide tungsten bronze powders. In Physical and Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials; Tver State University: Tver, Russia, 2020; pp. 738–745. [Google Scholar]
- Drobasheva, T.I.; Snezhkov, V.I. Electrocrystallization and properties of alkali-metal tungsten and molybdenum bronzes. Inorg. Mater. 1998, 34, 1162–1165. [Google Scholar]
- Okada, K.; Miyake, M.; Iwai, S.; Ohno, H.; Furukawa, K. Structural analysis of molten Na2WO4. J. Chem. Soc. Faraday Trans. 2 1978, 74, 1141–1148. [Google Scholar] [CrossRef]
- Miyake, M.; Okada, K.; Iwai, S.; Ohno, H.; Furukawa, K. Structural analysis of molten Na2W2O7. J. Chem. Soc. Faraday Trans. 2 1978, 74, 1880–1884. [Google Scholar] [CrossRef]
- Voron’ko, Y.K.; Sobol’, A.A. Influence of cations on the vibrational spectra and structure of [WO4] complexes in molten tungstates. Inorg. Mater. 2005, 41, 420–428. [Google Scholar] [CrossRef]
- Voronko, Y.K.; Sobol, A.A.; Shukshin, V.E. Raman scattering study of molten alkali-metal molybdates and tungstates rich in basic oxides. Inorg. Mater. 2014, 50, 837–843. [Google Scholar] [CrossRef]
- Wang, J.; You, J.; Wang, M.; Lu, L.; Wan, S.; Sobol, A.A. In-situ studies on the micro-structure evolution of A2W2O7 (A = Li, Na, K) during melting by high temperature Raman spectroscopy and density functional theory. Spectrochim. Acta A 2017, 185, 188–196. [Google Scholar] [CrossRef]
- Wang, J.; You, J.L.; Sobol, A.A.; Lu, L.M.; Wang, M.; Wu, J.; Lv, X.M.; Wan, S.M. In-situ high temperature Raman spectroscopic study on the structural evolution of Na2W2O7 from the crystalline to molten states. J. Raman Spectrosc. 2017, 48, 298–304. [Google Scholar] [CrossRef]
- Wang, J.; You, J.L.; Wang, Y.Y.; Wang, M.; Jun, W.U. In-situ Raman spectroscopic study of the molten tungstates in Li2O-WO3 binary system. Chin. J. Light Scatt. 2016, 28, 149–152. [Google Scholar]
- Gunzi, K.; Kohsaka, S.; Yokokawa, T.E.m.f. measurements of molten oxide mixtures IV. Sodium oxide + molybdenum trioxide. J. Chem. Thermodyn. 1979, 11, 553–557. [Google Scholar] [CrossRef]
- Khvatov, A.Y.; Baraboshkin, A.N.; Tarasova, K.P. Study of the ionic composition of a tungstate melt by the EMF method. Elektrokhimiya 1985, 21, 1657–1660. (In Russian) [Google Scholar]
- Afonichkin, V.K.; Leontiev, V.N.; Komarov, V.E. Equilibrium electrode potentials of tungsten in melts of the Na2WO4–WO3 system. Elektrokhimiya 1993, 29, 341–347. (In Russian) [Google Scholar]
- Smirnov, M.; Stepanov, V. Density and surface tension of molten alkali halides and their binary mixtures. Electrochim. Acta 1982, 27, 1551–1563. [Google Scholar] [CrossRef]
- Khudorozhkova, A.O.; Isakov, A.V.; Kataev, A.A.; Red’kin, A.A.; Zaikov, Y.P. Density of KF–KCl–KI melts. Russ. Metall. 2020, 2020, 918–924. [Google Scholar] [CrossRef]
- Soler, J.M.; Artacho, E.; Gale, J.D.; Garcia, A.; Junquera, J.; Ordejon, P.; Sanchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 2002, 14, 2745–2779. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Nose, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef]
- Bychin, V.P.; Antonov, A.A. Some physical and chemical properties of the Na2WO4–WO3. In Chemistry and Technology of Molybdenum and Tungsten. In Proceedings of the III All-Union Meeting, North Caucasus Mining and Metallurgical Institute, Ordzhonikidze, USSR, 7 October 1977; pp. 63–64. (In Russian). [Google Scholar]
T, K | k0, mol2cm−6 | k1 | k2 | k3 |
---|---|---|---|---|
983 | 9.82 × 10−33 | 8.40 × 103 | 3.05 × 101 | 1.77 × 10−13 |
1023 | 1.09 × 10−28 | 4.32 × 102 | 1.65 | 3.45 × 10−11 |
1073 | 4.64 × 10−24 | 1.44 × 101 | 5.82 × 10−2 | 1.44 × 10−8 |
WO3 Mole Fraction (ν) | Concentrations of Ions (cm−3) | ||||||
---|---|---|---|---|---|---|---|
O2− | Na+ | ||||||
983 K | |||||||
0 | 2.57 × 106 | 7.82 × 1021 | 3.29 × 1015 | 1.65 × 105 | 2.71 × 10−7 | 3.29 × 1015 | 1.56 × 1022 |
0.1 | 2.72 × 1017 | 6.52 × 1021 | 8.15 × 1020 | 1.21 × 1016 | 5.90 × 109 | 9.25 × 109 | 1.47 × 1022 |
0.2 | 2.42 × 1018 | 5.17 × 1021 | 1.72 × 1021 | 6.77 × 1016 | 8.77 × 1010 | 2.76 × 109 | 1.38 × 1022 |
0.3 | 1.64 × 1019 | 3.70 × 1021 | 2.70 × 1021 | 2.35 × 1017 | 6.71 × 1011 | 8.96 × 108 | 1.28 × 1022 |
0.4 | 1.22 × 1020 | 2.30 × 1021 | 3.62 × 1021 | 6.79 × 1017 | 4.17 × 1012 | 2.59 × 108 | 1.16 × 1022 |
1023 K | |||||||
0 | 1.47 × 108 | 7.76 × 1021 | 4.55 × 1016 | 6.19 × 108 | 5.11 | 4.55 × 1016 | 1.55 × 1022 |
0.1 | 8.02 × 1016 | 6.46 × 1021 | 8.06 × 1020 | 2.33 × 1017 | 4.10 × 1013 | 1.78 × 1012 | 1.45 × 1022 |
0.2 | 7.19 × 1017 | 5.10 × 1021 | 1.69 × 1021 | 1.30 × 1018 | 6.10 × 1014 | 5.29 × 1011 | 1.36 × 1022 |
0.3 | 5.04 × 1018 | 3.61 × 1021 | 2.67 × 1021 | 4.59 × 1018 | 4.78 × 1015 | 1.68 × 1011 | 1.26 × 1022 |
0.4 | 5.06 × 1019 | 2.06 × 1021 | 3.66 × 1021 | 1.51 × 1019 | 3.76 × 1016 | 4.01 × 1010 | 1.14 × 1022 |
0.5 | 3.73 × 1020 | 1.16 × 1021 | 4.17 × 1021 | 3.48 × 1019 | 1.77 × 1017 | 1.1 × 1010 | 9.96 × 1021 |
1073 K | |||||||
0 | 1.52 × 1010 | 7.68 × 1021 | 9.21 × 1017 | 7.68 × 1012 | 1.10 × 109 | 9.21 × 1017 | 1.54 × 1022 |
0.1 | 1.90 × 1016 | 6.37 × 1021 | 7.80 × 1020 | 6.62 × 1018 | 9.65 × 1017 | 7.51 × 1014 | 1.43 × 1022 |
0.2 | 1.53 × 1017 | 5.07 × 1021 | 1.57 × 1021 | 3.36 × 1019 | 1.24 × 1019 | 2.36 × 1014 | 1.34 × 1022 |
0.3 | 7.77 × 1017 | 3.76 × 1021 | 2.25 × 1021 | 9.38 × 1019 | 6.72 × 1019 | 9.02 × 1013 | 1.23 × 1022 |
0.4 | 3.46 × 1018 | 2.53 × 1021 | 2.63 × 1021 | 1.90 × 1020 | 2.35 × 1020 | 3.51 × 1013 | 1.12 × 1022 |
0.5 | 1.51 × 1019 | 1.50 × 1021 | 2.52 × 1021 | 2.92 × 1020 | 5.84 × 1020 | 1.30 × 1013 | 9.77 × 1021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosov, A.V.; Semerikova, O.L.; Vakarin, S.V.; Grishenkova, O.V.; Vorob’ev, A.S.; Khudorozhkova, A.O.; Zaikov, Y.P. Ionic Equilibria in Polytungstate Melts. Processes 2022, 10, 2658. https://doi.org/10.3390/pr10122658
Kosov AV, Semerikova OL, Vakarin SV, Grishenkova OV, Vorob’ev AS, Khudorozhkova AO, Zaikov YP. Ionic Equilibria in Polytungstate Melts. Processes. 2022; 10(12):2658. https://doi.org/10.3390/pr10122658
Chicago/Turabian StyleKosov, Alexander V., Olga L. Semerikova, Sergey V. Vakarin, Olga V. Grishenkova, Alexey S. Vorob’ev, Anastasia O. Khudorozhkova, and Yury P. Zaikov. 2022. "Ionic Equilibria in Polytungstate Melts" Processes 10, no. 12: 2658. https://doi.org/10.3390/pr10122658
APA StyleKosov, A. V., Semerikova, O. L., Vakarin, S. V., Grishenkova, O. V., Vorob’ev, A. S., Khudorozhkova, A. O., & Zaikov, Y. P. (2022). Ionic Equilibria in Polytungstate Melts. Processes, 10(12), 2658. https://doi.org/10.3390/pr10122658