Optimization of Grinding Process of Sunflower Meal for Obtaining Protein-Enriched Fractions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Processing
2.2.1. Two-Stage Grinding of SFM
2.2.2. Fractionation of SFM
2.3. Laboratory Analysis and Responsive Variables
2.3.1. Physical Analysis
2.3.2. Grinding Energy Consumption
2.3.3. Chemical Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. SFM Properties
3.2. Fractionation Results
3.2.1. Influence of the Grinding Parameters on the Protein Content
3.2.2. Influence of the Grinding Parameters on the Fraction Yield
3.2.3. Influence of the Grinding Parameters on the Grinding Energy Consumption
3.2.4. Comparison of the Results with the Previous Research
3.3. Optimization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ezeh, A.C.; Bongaarts, J.; Mberu, B. Global population trends and policy options. Lancet 2012, 380, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Pojić, M.; Mišan, A.; Tiwari, B. Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends Food Sci. Technol. 2018, 75, 93–104. [Google Scholar] [CrossRef]
- Senkoylu, N.; Dale, N. Sunflower meal in poultry diets: A review. Worlds. Poult. Sci. J. 1999, 55, 169–174. [Google Scholar] [CrossRef]
- Đorđević, N.; Dinić, B. Proizvodnja Smeša Koncentrata za Životinje; Institut za Krmno Bilje: Kruševac, Serbia, 2011. [Google Scholar]
- Dozier, W.A.; Hess, J.B.; El-Shemy, H. Soybean meal quality and analytical techniques. In Soybean and Nutrition; El-Shemy, H., Ed.; IntechOpen: Auburn, AL, USA, 2011; pp. 111–124. [Google Scholar]
- Draganov, L.K. Process for Preparing High Protein Sunflower Meal Fraction. European Patent EP 2848128 A1, 15 March 2017. [Google Scholar]
- Taelman, S.E.; De Meester, S.; Van Dijk, W.; Da Silva, V.; Dewulf, J. Environmental sustainability analysis of a protein-rich livestock feed ingredient in the Netherlands: Microalgae production versus soybean import. Resour. Conserv. Recycl. 2015, 101, 61–72. [Google Scholar] [CrossRef]
- Mushtaq, T.; Sarwar, M.; Ahmad, G.; Nisa, M.U.; Jamil, A. The influence of exogenous multienzyme preparation and graded levels of digestible lysine in sunflower meal-based diets on the performance of young broiler chicks two weeks posthatching. Poult. Sci. 2006, 85, 2180–2185. [Google Scholar] [CrossRef]
- Lomascolo, A.; Uzan-Boukhris, E.; Sigoillot, J.C.; Fine, F. Rapeseed and sunflower meal: A review on biotechnology status and challenges. Appl. Microbiol. Biotechnol. 2012, 95, 1105–1114. [Google Scholar] [CrossRef]
- Ramachandran, S.; Singh, S.K.; Larroche, C.; Soccol, C.R.; Pandey, A. Oil cakes and their biotechnological applications-A review. Bioresour. Technol. 2007, 98, 2000–2009. [Google Scholar] [CrossRef]
- Murru, M.; Calvo, C.L.; Sunflower Protein Enrichment. Methods and potential applications. OC Oilseeds Fats Crop. Lipids 2020, 27, 17. [Google Scholar] [CrossRef]
- Ivanova, P.; Chalova, V.; Koleva, L.; Pishtizski, I.; Perifanova-Nemska, M. Optimization of protein extraction from sunflower meal produced in Bulgaria. Bulg. J. Agric. Sci. 2012, 18, 153–160. [Google Scholar]
- Mérida, S.N.; Tomás-Vidal, A.; Martínez-Llorens, S.; Jover Cerdá, M. Sunflower meal as a partial substitute in juvenile sharpsnout sea bream (Diplodus puntazzo) diets: Amino acid retention, gut and liver histology. Aquaculture 2010, 298, 275–281. [Google Scholar] [CrossRef]
- Gonzalez-Perez, S.; Vereijken, J.M. Sunflower proteins: Overview of their physicochemical, structural and functional properties. J. Sci. Food Agric. 2007, 87, 2173–2191. [Google Scholar] [CrossRef]
- Canibe, N.; Pedrosa, M.M.; Robredo, L.M.; Knudsen, K.E.B. Chemical composition, digestibility and protein quality of 12 sunflower (Helianthus annuus L) cultivars. J. Sci. Food Agric. 1999, 79, 1775–1782. [Google Scholar] [CrossRef]
- Stake, P.E.; Owens, M.J.; Schingoethe, D.J. Rapeseed, Sunflower, and Soybean Meal Supplementation of Calf Rations. J. Dairy Sci. 1973, 56, 783–788. [Google Scholar] [CrossRef]
- Lardy, G.P.; Anderson, V. Canola and sunflower meal in beef cattle diets. Vet. Clin. North Am. Food Anim. Pract. 2002, 18, 327–338. [Google Scholar] [CrossRef]
- Jabbar, M.A.; Marghazani, I.B. Effect of replacing cotton seed cake with sunflower meal on milk yield and milk composition in lactating nili-ravi buffaloes. JAPS J. Anim. Plant Sci. 2009, 19, 6–9. [Google Scholar]
- Raza, S.; Ashraf, M.; Pasha, T.N.; Latif, F. Effect of enzyme supplementation of broiler diets containing varying level of sunflower meal and crude fiber. Pakistan J. Bot. 2009, 41, 2543–2550. [Google Scholar]
- Lević, J.; Sredanović, S. Suncokretova Sačma, Monografija; Institute of Food Technology in Novi Sad: Novi Sad, Serbia, 2012. [Google Scholar]
- Rommi, K.; Holopainen, U.; Pohjola, S.; Hakala, T.K.; Lantto, R.; Poutanen, K.; Nordlund, E. Impact of particle size reduction and carbohydrate-hydrolyzing enzyme treatment on protein recovery from rapeseed (Brassica rapa L.) press cake. Food Bioprocess Technol. 2015, 8, 2392–2399. [Google Scholar] [CrossRef]
- Kachrimanidou, V.; Kopsahelis, N.; Alexandri, M.; Strati, A.; Gardeli, C.; Papanikolaou, S.; Komaitis, M.; Kookos, I.K.; Koutinas, A.A. Integrated sunflower-based biorefinery for the production of antioxidants, protein isolate and poly(3-hydroxybutyrate). Ind. Crop. Prod. 2015, 71, 106–113. [Google Scholar] [CrossRef]
- Erdaw, M.M.; Bhuiyan, M.M.; Iji, P.A. Enhancing the nutritional value of soybeans for poultry through supplementation with new-generation feed enzymes. World’s Poult. Sci. J. 2016, 72, 307–322. [Google Scholar] [CrossRef]
- Lovatto, N.M.; Goulart, F.R.; Loureiro, B.B.; Speroni, C.S.; Bender, A.B.B.; Giacomini, S.J.; Radünz Neto, J.; Da Silva, L.P. Crambe (Crambe abyssinica) and sunflower (Helianthus annuus) protein concentrates: Production methods and nutritional properties for use in fish feed. An. Acad. Bras. Cienc. 2017, 89, 2495–2504. [Google Scholar] [CrossRef] [Green Version]
- Schutyser, M.A.I.; Van der Goot, A.J. The potential of dry fractionation processes for sustainable plant protein production. Trends Food Sci. Technol. 2011, 22, 154–164. [Google Scholar] [CrossRef]
- Arrutia, F.; Binner, E.; Williams, P.; Waldron, K.W. Oilseeds beyond oil: Press cakes and meals supplying global protein requirements. Trends Food Sci. Technol. 2020, 100, 88–102. [Google Scholar] [CrossRef]
- Wang, N.; Maximiuk, L. Effect of air classification processing variables on yield, composition, and certain antinutrients of air-classified fractions from field peas by response surface methodology. J. Food Process. Preserv. 2019, 43, e13999. [Google Scholar] [CrossRef]
- Xing, Q.; de Wit, M.; Kyriakopoulou, K.; Boom, R.M.; Schutyser, M.A.I. Protein enrichment of defatted soybean flour by fine milling and electrostatic separation. Innov. Food Sci. Emerg. Technol. 2018, 50, 42–49. [Google Scholar] [CrossRef]
- Xing, Q.; Utami, D.P.; Demattey, M.B.; Kyriakopoulou, K.; de Wit, M.; Boom, R.M.; Schutyser, M.A.I. A two-step air classification and electrostatic separation process for protein enrichment of starch-containing legumes. Innov. Food Sci. Emerg. Technol. 2020, 66, 102480. [Google Scholar] [CrossRef]
- Lević, J.; Delić, I.; Ivić, M.; Rac, M.; Stefanović, S. Removal of cellulose from sunflower meal by fractionation. J. Am. Oil Chem. Soc. 1992, 69, 890–893. [Google Scholar] [CrossRef]
- Laudadio, V.; Bastoni, E.; Introna, M.; Tufarelli, V. Production of low-fiber sunflower (Helianthus annuus L.) meal by micronization and air classification processes. CYTA J. Food. 2013, 11, 398–403. [Google Scholar] [CrossRef]
- Banjac, V.; Pezo, L.; Pezo, M.; Vukmirović, Đ.; Čolović, D.; Fišteš, A.; Čolović, R. Optimization of the classification process in the zigzag air classifier for obtaining a high protein sunflower meal–Chemometric and CFD approach. Adv. Powder Technol. 2017, 28, 1069–1078. [Google Scholar] [CrossRef]
- Vidosavljević, S.; Bojanić, N.; Stojkov, V.; Čolović, R.; Đuragić, O.; Fišteš, A.; Banjac, V. Comparison of two dry fractionation processes for protein enrichment of sunflower meal. Food Feed Res. 2019, 46, 209–217. [Google Scholar] [CrossRef]
- Scanlon, M.G.; Dexter, J.E.; Bilideris, C.G. Particle-size related physical properties of flour produced by smooth roll reduction of hard red spring wheat farina. Cereal Chem. 1988, 65, 486–492. [Google Scholar]
- ISO 2591-1; Test Sieving-Part 1: Methods Using Test Sieves of Woven Wire Cloth and Perforated Metal Plate. International Organization for Standardization: Geneva, Switzerland, 1988.
- Vukmirović, Đ.; Lević, J.; Fišteš, A.; Čolović, R.; Brlek, T.; Čolović, D.; Djuragić, O. Influence of grinding method and grinding intensity of corn on mill energy consumption and pellet quality. Hem. Ind. 2016, 70, 67–72. [Google Scholar] [CrossRef] [Green Version]
- ISO 6496; Animal Feeding Stuffs-Determination of Moisture and Other Volatile Matter Content. International Organization for Standardization: Geneva, Switzerland, 2001.
- ISO 6492; Animal Feeding Stuffs—Determination of Fat Content. International Standards Organization: Geneva, Switzerland, 2001.
- ISO 5984; Animal Feeding Stuffs—Determination of Crude Ash. International Organization for Standardization: Geneva, Switzerland, 2013.
- ISO 5983-1; Animal Feeding Stuffs-Determination of Nitrogen Content and Calculation of Crude Protein Content-Part 1: Kjeldahl Method (ISO 5983-1:2005). International Organization for Standardization: Geneva, Switzerland, 2010.
- AOCS. Official Methods and Recommended Practices of the AOCS; Official Method Ba 6-a05; The American Oil Chemists Society: Champaigns, IL, USA, 2005. [Google Scholar]
- Myers, R.; Montgomery, D.; Anderson-Cook, C. Response Surface Methodology: Process and Product Optimization Using Designed Experiments; Wiley: New York, NY, USA, 2009. [Google Scholar]
- TIBCO Software Inc. Data Science Workbench; Version 14; Statistica 14; TIBCO Software Inc.: Palo Alto, CA, USA, 2020; Available online: http://tibco.com (accessed on 25 August 2022).
- Anderson, M.J.; Whitcomb, P.J. DoE Simplified: Practical Tools for Effective Experimentation; Productivity Press: New York, NY, USA, 2007. [Google Scholar]
- Official Gazette of Republic of Serbia. Regulation on Animal Feed Quality: 4/2010, 113/2012, 27/2014, 25/2015, 39/2016, 54/2017. 2010. Available online: https://www.pravno-informacioni-sistem.rs/SlGlasnikPortal/eli/rep/sgrs/ministarstva/pravilnik/2010/4/10/reg (accessed on 7 November 2022).
- Vukmirović, Đ. Influence of Grinding and Pelleting Parameters on Granulation and Physical Characteristics of Pelleted Animal Feed. Ph.D Thesis, University of Novi Sad, Novi Sad, Serbia, 2015. (In Serbian). [Google Scholar]
- Haque, E. Application of size reduction theory to roller mill design and operation. Cereal Foods World 1991, 36, 368–375. [Google Scholar]
- Fang, C.; Campbell, G.M. Effect of roll fluting disposition and roll gap on breakage of wheat kernels during first-break roller milling. Cereal Chem. 2002, 79, 518–522. [Google Scholar] [CrossRef] [Green Version]
- Perry, R.H.; Chilton, C.H. Chemical Engineers’ Handbook; McGraw Hill: New York, NY, USA, 1973. [Google Scholar]
- Scanlon, M.G.; Dexter, J.E. Effect of Smooth Roll Grinding Conditions on Reduction of Hard Red Spring Wheat Farina. Cereal Chem. 1986, 63, 431–435. [Google Scholar]
- Fišteš, A.; Rakić, D.; Vukmirović, Đ.; Bojanić, N. The possibilities of wheat roller milling optimization using the response surface methodology. J. Process. Energy Agric. 2017, 21, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Bojanić, N.; Fišteš, A.; Rakić, D.; Kolar, S.; Ćurić, B.; Petrović, J. Study on the effects of smooth roll grinding conditions on reduction of wheat middlings using response surface methodology. J. Food Sci. Technol. 2021, 58, 1430–1440. [Google Scholar] [CrossRef]
- Vukmirović, Đ.; Fišteš, A.; Lević, J.; Čolović, R.; Rakić, D.; Brlek, T.; Banjac, V. Possibilities for preservation of coarse particles in pelleting process to improve feed quality characteristics. J. Anim. Physiol. Anim. Nutr. 2017, 101, 857–867. [Google Scholar] [CrossRef]
- Banjac, V.; Čolović, R.; Vukmirović, Đ.; Sredanović, S.; Čolović, D.; Lević, J.; Teodosin, S. Protein enrichment of sunflower meal by air classification. Food Feed Res. 2013, 40, 77–83. [Google Scholar]
- Laguna, O.; Barakat, A.; Alhamada, H.; Durand, E.; Baréa, B.; Fine, F.; Villeneuve, P.; Citeau, M.; Dauguet, S.; Lecomte, J. Production of proteins and phenolic compounds enriched fractions from rapeseed and sunflower meals by dry fractionation processes. Ind. Crop. Prod. 2018, 118, 160–172. [Google Scholar] [CrossRef]
Chemical Content | (%) |
---|---|
Crude protein | 36.06 * |
Crude fiber | 23.66 * |
Crude fat | 1.04 * |
Crude ash | 7.13 * |
Moisture | 7.69 |
Bulk Density (kg/m3) | GMD (µm) | D70 (µm) | |
---|---|---|---|
Starting SFM | 467.90 ± 5.94 c | 1193.97 ± 52.79 c | 3275.42 ± 278.32 b |
SOD 6 mm | 419.93 ± 3.45 a | 718.02 ± 26.44 b | 1133.12 ± 34.56 a |
SOD 4 mm | 440.93 ± 3.45 b | 586.81 ± 2.46 a | 956.85 ± 11.73 a |
SOD 2 mm | 471.37 ± 3.52 c | 477.55 ± 0.75 a | 765.63 ± 2.96 a |
Run | A:SOD (mm) | B:Roll Gap (mm) | C:Feed Rate (kg/cm min) | D:Roll Speed (rpm) | R1: Protein Content (%dm) | R2: Fraction Yield (%) | R3: Grinding Energy Consumption (Wh/kg) |
---|---|---|---|---|---|---|---|
1 | 2 | 0.15 | 0.25 | 600 | 43.45 | 82.24 | 11.69 |
2 | 2 | 0.25 | 0.1 | 600 | 44.46 | 76.79 | 7.81 |
3 | 4 | 0.2 | 0.175 | 600 | 44.09 | 71.96 | 7.85 |
4 | 2 | 0.15 | 0.25 | 400 | 43.17 | 76.52 | 12.57 |
5 | 2 | 0.15 | 0.1 | 400 | 43.57 | 81.87 | 11.80 |
6 | 6 | 0.25 | 0.1 | 600 | 45.15 | 68.81 | 6.67 |
7 | 2 | 0.25 | 0.25 | 400 | 48.06 | 77.22 | 8.15 |
8 | 6 | 0.15 | 0.1 | 400 | 44.46 | 75.16 | 11.41 |
9 | 4 | 0.2 | 0.175 | 500 | 46.06 | 74.90 | 8.62 |
10 | 6 | 0.25 | 0.1 | 400 | 46.83 | 70.40 | 6.44 |
11 | 6 | 0.15 | 0.1 | 600 | 46.55 | 74.35 | 13.30 |
12 | 4 | 0.2 | 0.175 | 500 | 43.72 | 71.80 | 8.85 |
13 | 4 | 0.2 | 0.1 | 500 | 43.99 | 74.74 | 8.88 |
14 | 2 | 0.2 | 0.175 | 500 | 42.70 | 79.38 | 10.28 |
15 | 2 | 0.25 | 0.25 | 600 | 44.51 | 76.82 | 8.93 |
16 | 4 | 0.15 | 0.175 | 500 | 44.64 | 75.69 | 11.29 |
17 | 6 | 0.25 | 0.25 | 400 | 46.31 | 64.62 | 8.57 |
18 | 2 | 0.25 | 0.1 | 400 | 41.86 | 80.12 | 7.80 |
19 | 4 | 0.2 | 0.25 | 500 | 44.40 | 73.60 | 9.55 |
20 | 6 | 0.25 | 0.25 | 600 | 47.24 | 65.60 | 8.46 |
21 | 4 | 0.2 | 0.175 | 400 | 45.12 | 74.43 | 8.83 |
22 | 6 | 0.15 | 0.25 | 600 | 45.48 | 71.10 | 12.16 |
23 | 4 | 0.25 | 0.175 | 500 | 44.21 | 73.41 | 7.76 |
24 | 2 | 0.15 | 0.1 | 600 | 41.23 | 79.16 | 13.03 |
25 | 6 | 0.15 | 0.25 | 400 | 45.84 | 68.90 | 11.67 |
26 | 4 | 0.2 | 0.175 | 500 | 45.38 | 72.47 | 9.48 |
27 | 6 | 0.2 | 0.175 | 500 | 44.29 | 72.13 | 10.00 |
28 | 4 | 0.2 | 0.175 | 500 | 44.12 | 71.67 | 10.03 |
Responses | |||
---|---|---|---|
R1 | R2 | R3 | |
Intercept | |||
β0 | 44.352331 | 73.65 | 9.16 |
Linear | |||
β1A | 1.0632151 * | −4.39 * | −0.1875 |
β2B | 0.5686975 * | −1.73 * | −2.13 * |
β3C | 0.5746007 * | −1.38 * | 0.2555 |
β4D | −0.1708265 | −0.1324 | 0.1471 |
Interaction | |||
β12AB | −0.2666086 | −0.7034 * | −0.1252 |
β13AC | −0.3870726 | −0.8348 * | 0.1325 |
β14AD | 0.2491054 | / | / |
β23BC | 0.3558515 | / | 0.4273 * |
β24BD | / | −0.5457 | / |
β34CD | / | 1.06 * | −0.192 |
Quadratic | |||
β11A2 | / | 1.66 * | 1.09 * |
β22B2 | / | / | 0.4756 |
β33C2 | / | / | / |
β44D2 | 0.5013295 | −0.8988 | −0.7102 * |
LoF | 0.5178 | 0.7522 | 0.7137 |
R2 | 0.6286 | 0.947192537 | 0.95 |
References | Type of Grinding Device | Dry Fractionation Technique | Starting SFM Protein Content (%) | Improved SFM Protein Content (%) | Relative Protein Enrichment (%) | Fraction Yield (%) |
---|---|---|---|---|---|---|
Lević et al. (1992) [30] | No grinding | Centrifugal screening with rotor | 37.5 | 43.8 | 16.8 | 43.3 |
Draganov (2015) [6] | Hammer mill/Roll mill | Sieving | 37.5 | 50 | 33.4 | 68.0 |
Vidosavljević et al. (2019) [33] | Hammer mill | 38 | 48.8 | 28.4 | 51.2 | |
Laudadio et al. (2013) [31] | KMX 300 micronizer | Air classification | 34 | 40 | 17.6 | 87.9 |
Banjac et al. (2013) [54] | Conical mill | 35.9 | 40.0 | 11.1 | 52.5 | |
Banjac et al. (2017) [32] | Hammer mill | 35.9 | 50.9 | 41.4 | 11.5 | |
Laguna et al. (2018) [55] | SM 300 knife mill and UPZ 100 impact and shear mill | 31.3 | 52.4 | 67.4 | 22 | |
31.3 | 51.2 | 63.6 | 30 | |||
Vidosavljević et al. (2019) [33] | Hammer mill | 38 | 42.9 | 12.8 | 56.4 | |
Laguna et al. (2018) [55] | SM 300 knife mill and UPZ 100 impact and shear mill | Electrostatic separation | 31.3 | 61.7 | 97.1 | 18 |
31.3 | 53.3 | 70.3 | 32 | |||
Murru and Calvo (2020) [11] | Hammer mill/Roll mill/Disc mill | Gravity separation | 36.5 | 43 | 17.8 | 65 |
Grinding Phase | Input Factors | Target | Lower Limit | Upper Limit | |||
---|---|---|---|---|---|---|---|
Hammer mill | A: SOD (mm) | in range | 2 | 6 | |||
Roll mill | B: Roll gap (mm) | in range | 0.15 | 0.25 | |||
C: Feed rate (kg/cm min) | in range | 0.1 | 0.25 | ||||
D: Roll speed (rpm) | in range | 400 | 600 | ||||
Responses | Importance | Target | Lower limit | Upper limit | |||
R1: Protein content (%dm) | 5 | ≥45.5 | 41.23 | 48.06 | |||
R2: Flour yield (%) | 3 | Maximize | 64.62 | 82.24 | |||
R3: Grinding energy consumption (Wh/kg) | 3 | Minimize | 6.44 | 13.30 | |||
Optimization result: | |||||||
Input factors | Responses | Desirability (%) | |||||
A | B | C | D | R1 | R2 | R3 | 0.741 |
2 | 0.25 | 0.2 | 400 | 45.5 | 77.899 | 8.307 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidosavljević, S.; Bojanić, N.; Ilić, P.; Rakić, D.; Đuragić, O.; Banjac, V.; Fišteš, A. Optimization of Grinding Process of Sunflower Meal for Obtaining Protein-Enriched Fractions. Processes 2022, 10, 2704. https://doi.org/10.3390/pr10122704
Vidosavljević S, Bojanić N, Ilić P, Rakić D, Đuragić O, Banjac V, Fišteš A. Optimization of Grinding Process of Sunflower Meal for Obtaining Protein-Enriched Fractions. Processes. 2022; 10(12):2704. https://doi.org/10.3390/pr10122704
Chicago/Turabian StyleVidosavljević, Strahinja, Nemanja Bojanić, Petar Ilić, Dušan Rakić, Olivera Đuragić, Vojislav Banjac, and Aleksandar Fišteš. 2022. "Optimization of Grinding Process of Sunflower Meal for Obtaining Protein-Enriched Fractions" Processes 10, no. 12: 2704. https://doi.org/10.3390/pr10122704
APA StyleVidosavljević, S., Bojanić, N., Ilić, P., Rakić, D., Đuragić, O., Banjac, V., & Fišteš, A. (2022). Optimization of Grinding Process of Sunflower Meal for Obtaining Protein-Enriched Fractions. Processes, 10(12), 2704. https://doi.org/10.3390/pr10122704