Preparation of 2D Periodic Nanopatterned Arrays through Vertical Vibration-Assisted Convective Deposition for Application in Metal-Enhanced Fluorescence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development of the Vertical Vibration-Assisted Blade Coating Set
2.2. Fabrication of 2D Periodic Nanopatterned Arrays
2.3. Characterization of 2D Periodic Nanopatterned Arrays
2.4. Preparation of MEF Substrate
2.5. Investigating the Efficiency of MEF Substrate on Fluorescence Signal Enhacement
3. Results and Discussions
3.1. Effects of Deposition Speed and Deposition Angle on Self-Assembly of PS Colloidal Particles
3.2. Effects of Vibration Frequency and Vibration Amplitude on Self-Assembly of PS Colloidal Particles
3.3. Fluorescence Enhancement Efficiency of the Developed MEF Substrate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Alder, N.N. Fluorescence Spectroscopy and Its Applications in Analysing Biomolecular Processes. Biomol. Bioanal. Tech. Methodol. Appl. 2019, 333–363. [Google Scholar] [CrossRef]
- Jeong, Y.; Kook, Y.-M.; Lee, K.; Koh, W.-G. Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments. Biosens. Bioelectron. 2018, 111, 102–116. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Aslan, K.; Previte, M.J.R.; Geddes, C.D. Metal-Enhanced Excimer (P-type) Fluorescence. Chem. Phys. Lett. 2008, 458, 147–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dragan, A.; Geddes, C. Metal-enhanced fluorescence: The role of quantum yield, Q0, in enhanced fluorescence. Appl. Phys. Lett. 2012, 100, 093115. [Google Scholar] [CrossRef] [Green Version]
- Badshah, M.A.; Koh, N.Y.; Zia, A.W.; Abbas, N.; Zahra, Z.; Saleem, M.W. Recent Developments in Plasmonic Nanostructures for Metal Enhanced Fluorescence-Based Biosensing. Nanomaterials 2020, 10, 1749. [Google Scholar] [CrossRef]
- Sugawa, K.; Tamura, T.; Tahara, H.; Yamaguchi, D.; Akiyama, T.; Otsuki, J.; Kusaka, Y.; Fukuda, N.; Ushijima, H. Metal-Enhanced Fluorescence Platforms Based on Plasmonic Ordered Copper Arrays: Wavelength Dependence of Quenching and Enhancement Effects. ACS Nano 2013, 7, 9997–10010. [Google Scholar] [CrossRef]
- Darvill, D.; Centeno, A.; Xie, F. Plasmonic fluorescence enhancement by metal nanostructures: Shaping the future of bionanotechnology. Phys. Chem. Chem. Phys. 2013, 15, 15709–15726. [Google Scholar] [CrossRef] [PubMed]
- Mei, Z.; Tang, L. Surface-Plasmon-Coupled Fluorescence Enhancement Based on Ordered Gold Nanorod Array Biochip for Ultrasensitive DNA Analysis. Anal. Chem. 2017, 89, 633–639. [Google Scholar] [CrossRef]
- Petryayeva, E.; Krull, U. Localized Surface Plasmon Resonance: Nanostructures, Bioassays and Biosensing—A Review. Anal. Chim. Acta 2011, 706, 8–24. [Google Scholar] [CrossRef]
- Hutter, E.; Fendler, J.H. Exploitation of Localized Surface Plasmon Resonance. Adv. Mater. 2004, 16, 1685–1706. [Google Scholar] [CrossRef]
- Rahaman, M.; Moras, S.; He, L.; Madeira, T.; Zahn, D. Fine Tuning of Localized Surface Plasmon Resonance of Metal Nanostructures from Near-Infrared to Blue prepared by Nanosphere Lithography. J. Appl. Phys. 2020, 128, 233104. [Google Scholar] [CrossRef]
- Sui, N.; Wang, L.; Yan, T.; Liu, F.; Sui, J.; Jiang, Y.; Wan, J.; Liu, M.; Yu, W.W. Selective and sensitive biosensors based on metal-enhanced fluorescence. Sens. Actuators B Chem. 2014, 202, 1148–1153. [Google Scholar] [CrossRef]
- Jung, J.-Y.; Yang, W.-G.; Hong, S.-h.; Kim, G.-H.; Hwang, K.; Chae, W.-S. Amplified fluorescence imaging using photonic Ag nanotip array: A comparative study on surface morphology effects. Appl. Surf. Sci. 2020, 529, 147139. [Google Scholar] [CrossRef]
- Pale, V.; Kauppinen, C.; Selin, J.; Sopanen, M.; Tittonen, I. Fluorescence-enhancing plasmonic silver nanostructures using azopolymer lithography. RSC Adv. 2016, 6, 48129–48136. [Google Scholar] [CrossRef]
- Cinel, N.A.; Cakmakyapan, S.; Butun, S.; Ertas, G.; Ozbay, E. E-Beam lithography designed substrates for surface enhanced Raman spectroscopy. Photonics Nanostruct. Fundam. Appl. 2015, 15, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Aiempanakit, M.; Jearnkulprasert, N.; Panyajirawut, P. Patterning of Nanoparticle Arrays by Self-assembly Lithography. Mater. Today Proc. 2017, 4, 6009–6014. [Google Scholar] [CrossRef]
- Kasani, S.; Curtin, K.; Wu, N. A review of 2D and 3D plasmonic nanostructure array patterns: Fabrication, light management and sensing applications. Nanophotonics 2019, 8, 2065–2089. [Google Scholar] [CrossRef]
- Zhao, X.; Wen, J.; Li, L.; Wang, Y.; Wang, D.; Chen, L.; Zhang, Y.; Du, Y. Architecture design and applications of nanopatterned arrays based on colloidal lithography. J. Appl. Phys. 2019, 126, 141101. [Google Scholar] [CrossRef]
- Sitpathom, N.; Dawes, J.M.; Osotchan, T.; Kumnorkaew, P.; Suwanna, S.; Sinsarp, A.; Muangnapoh, T. Tuning higher order electric field resonances in plasmonic hexagonal arrays by oxygen-plasma treatment. Appl. Phys. B 2021, 127, 71. [Google Scholar] [CrossRef]
- Born, P.; Munoz, A.; Cavelius, C.; Kraus, T. Crystallization Mechanisms in Convective Particle Assembly. Langmuir. 2012, 28, 8300–8308. [Google Scholar] [CrossRef]
- Dimitrov, A.S.; Nagayama, K. Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces. Langmuir 1996, 12, 1303–1311. [Google Scholar] [CrossRef]
- Zhang, C.; Cvetanovic, S.; Pearce, J.M. Fabricating ordered 2-D nano-structured arrays using nanosphere lithography. MethodsX 2017, 4, 229–242. [Google Scholar] [CrossRef]
- Wang, X.; Shi, F.; Gao, X.; Fan, C.; Huang, W.; Feng, X. A sol–gel dip/spin coating method to prepare titanium oxide films. Thin Solid Film. 2013, 548, 34–39. [Google Scholar] [CrossRef]
- Jibowu, T. Nano-spherical lithography for nanopatterning. Front. Nanosci. Nanotechnol. 2016, 2, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Joshi, K.; Muangnapoh, T.; Stever, M.D.; Gilchrist, J.F. Effect of Ionic Strength and Surface Charge on Convective Deposition. Langmuir 2015, 31, 12348–12353. [Google Scholar] [CrossRef]
- Canalejas-Tejero, V.; Ibisate, M.; Golmayo, D.; Blanco, A.; López, C. Qualitative and Quantitative Analysis of Crystallographic Defects Present in 2D Colloidal Sphere Arrays. Langmuir 2012, 28, 161–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muangnapoh, T.; Weldon, A.L.; Gilchrist, J. Enhanced colloidal monolayer assembly via vibration-assisted convective deposition. Appl. Phys. Lett. 2013, 103, 181603. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Duraia, E.-s.M.; Velev, O.D.; Gatabi, J.R.; Beall, G.W. Reduction of defects in self-assembling colloidal monolayer via surface modifiers and periodic mechanical vibration. Surf. Coat. Technol. 2017, 319, 353–358. [Google Scholar] [CrossRef]
- Joshi, K.; Gilchrist, J.F. Effect of added surfactant on convective assembly of monosized microspheres. Appl. Phys. Lett. 2020, 116, 083702. [Google Scholar] [CrossRef]
- Yuan, Z.; Burckel, D.B.; Atanassov, P.; Fan, H. Convective self-assembly to deposit supported ultra-thin mesoporous silica films. J. Mater. Chem. 2006, 16, 4637–4641. [Google Scholar] [CrossRef]
- Pang, Y.; Rong, Z.; Xiao, R.; Wang, S. “Turn on” and label-free core−shell Ag@SiO2 nanoparticles-based metal-enhanced fluorescent (MEF) aptasensor for Hg2+. Sci. Rep. 2015, 5, 9451. [Google Scholar] [CrossRef] [Green Version]
- Ye, B.; Rong, F.; Gu, H.; Xie, Z.; Cheng, Y.; Zhao, Y.; Gu, Z. Bioinspired angle-independent photonic crystal colorimetric sensing. Chem. Commun. 2013, 49, 5331–5333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prevo, B.G.; Velev, O.D. Controlled, Rapid Deposition of Structured Coatings from Micro- and Nanoparticle Suspensions. Langmuir 2004, 20, 2099–2107. [Google Scholar] [CrossRef] [PubMed]
- Kumnorkaew, P.; Ee, Y.-K.; Tansu, N.; Gilchrist, J.F. Investigation of the Deposition of Microsphere Monolayers for Fabrication of Microlens Arrays. Langmuir 2008, 24, 12150–12157. [Google Scholar] [CrossRef] [PubMed]
- Born, P.; Blum, S.; Munoz, A.; Kraus, T. Role of the Meniscus Shape in Large-Area Convective Particle Assembly. Langmuir 2011, 27, 8621–8633. [Google Scholar] [CrossRef]
- Mahynski, N.A.; Panagiotopoulos, A.Z.; Meng, D.; Kumar, S.K. Stabilizing colloidal crystals by leveraging void distributions. Nat. Commun. 2014, 5, 4472. [Google Scholar] [CrossRef] [Green Version]
- Edison, J.R.; Dasgupta, T.; Dijkstra, M. Stabilizing the hexagonal close packed structure of hard spheres with polymers: Phase diagram, structure, and dynamics. J. Chem. Phys. 2016, 145, 054902. [Google Scholar] [CrossRef] [Green Version]
- Seiwert, J.; Pierre, J.; Dollet, B. Coupled vibrations of a meniscus and liquid films. J. Fluid Mech. 2015, 788, 183–208. [Google Scholar] [CrossRef] [Green Version]
- Byun, K.M.; Yoon, S.J.; Kim, D. Effect of surface roughness on the extinction-based localized surface plasmon resonance biosensors. Appl. Opt. 2008, 47, 5886–5892. [Google Scholar] [CrossRef]
- Robeson, J.L.; Tilton, R.D. Effect of concentration quenching on fluorescence recovery after photobleaching measurements. Biophys. J. 1995, 68, 2145–2155. [Google Scholar] [CrossRef] [Green Version]
- Hassan, H.K.; Stepanyants, Y.A. Resonance properties of forced oscillations of particles and gaseous bubbles in a viscous fluid at small Reynolds numbers. Phys. Fluids 2017, 29, 101703. [Google Scholar] [CrossRef]
- Sitpathom, N.; Kumnorkaew, P.; Muangnapoh, T.; Osotchan, T. Optical diffraction of binary-nanoparticle film prepared by convective deposition with vibration assistance. Mater. Today Proc. 2018, 5, 11101–11105. [Google Scholar] [CrossRef]
- Feng, A.L.; You, M.L.; Tian, L.; Singamaneni, S.; Liu, M.; Duan, Z.; Lu, T.J.; Xu, F.; Lin, M. Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers. Sci. Rep. 2015, 5, 7779. [Google Scholar] [CrossRef] [PubMed]
R6G Concentration (M) | Fluorescence Intensity (a.u.) | Enhancement Factor (Fold) | |
---|---|---|---|
Silicon Substrate | MEF Substrate | ||
1 × 10−3 | 573.99 | 2973.94 | 5.19 |
5 × 10−4 | 476.42 | 2750.89 | 5.77 |
1 × 10−4 | 346.27 | 2445.67 | 7.06 |
5 × 10−5 | 273.55 | 2274.48 | 8.31 |
1 × 10−5 | 162.054 | 1917.41 | 13.62 |
5 × 10−6 | 95.072 | 1672.84 | 17.59 |
1 × 10−6 | 47.18 | 1411.94 | 51.22 |
5 × 10−7 | N/A | 1228.38 | N/A |
1 × 10−7 | N/A | 895.32 | N/A |
5 × 10−8 | N/A | 666.29 | N/A |
1 × 10−8 | N/A | 346.12 | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhanasiwawong, K.; Thamaphat, K.; Horprathum, M.; Klamchuen, A.; Phetsahai, A.; Limsuwan, P. Preparation of 2D Periodic Nanopatterned Arrays through Vertical Vibration-Assisted Convective Deposition for Application in Metal-Enhanced Fluorescence. Processes 2022, 10, 202. https://doi.org/10.3390/pr10020202
Dhanasiwawong K, Thamaphat K, Horprathum M, Klamchuen A, Phetsahai A, Limsuwan P. Preparation of 2D Periodic Nanopatterned Arrays through Vertical Vibration-Assisted Convective Deposition for Application in Metal-Enhanced Fluorescence. Processes. 2022; 10(2):202. https://doi.org/10.3390/pr10020202
Chicago/Turabian StyleDhanasiwawong, Kittidhaj, Kheamrutai Thamaphat, Mati Horprathum, Annop Klamchuen, Apiwat Phetsahai, and Pichet Limsuwan. 2022. "Preparation of 2D Periodic Nanopatterned Arrays through Vertical Vibration-Assisted Convective Deposition for Application in Metal-Enhanced Fluorescence" Processes 10, no. 2: 202. https://doi.org/10.3390/pr10020202
APA StyleDhanasiwawong, K., Thamaphat, K., Horprathum, M., Klamchuen, A., Phetsahai, A., & Limsuwan, P. (2022). Preparation of 2D Periodic Nanopatterned Arrays through Vertical Vibration-Assisted Convective Deposition for Application in Metal-Enhanced Fluorescence. Processes, 10(2), 202. https://doi.org/10.3390/pr10020202