Structural Analysis and Optimization of Heavy Vehicle Chassis Using Aluminium P100/6061 Al and Al GA 7-230 MMC
Abstract
:1. Introduction
2. Materials and Methods
Simulation Environment and Modelling
3. Result and Discussion
3.1. Equivalent Stress
3.2. Total Deformation
3.3. Surface Response
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chandra, M.R.; Sreenivasulu, S.; Hussain, S.A. Modeling and structural analysis of heavy vehicle chassis made of polymeric composite material by three different cross sections. Int. J. Mod. Eng. Res. 2012, 2, 2594–2600. [Google Scholar]
- Kang, M.; Park, J.; Sohn, S.S.; Ahn, D.H.; Kim, H.S.; Cho, W.T.; Chin, K.G.; Lee, S. Dynamic tensile behavior of twinning-induced plasticity/low-carbon (TWIP/LC) steel clad sheets bonded by hot rolling. Mater. Sci. Eng. A 2017, 700, 387–396. [Google Scholar] [CrossRef]
- Vijayan, S.N.; Sendhilkumar, S.; Kiran Babu, K.M. Design and analysis of automotive chassis considering cross design and analysis of automotive chassis considering cross-section and material. Int. J. Curr. Res. 2015, 7, 15697–15701. [Google Scholar]
- Cavazzuti, M.; Splendi, L. Structural optimization of automotive chassis: Theory, set up, design. In Proceedings of the Problemes inverses, Controle et Optimisation de Formes, Pairs, France, 2–4 April 2012. [Google Scholar]
- Chiandussi, G.; Gaviglio, I.; Ibba, A. Topology optimisation of an automotive component without final volume constraint specification. Adv. Eng. Softw. 2004, 35, 609–617. [Google Scholar] [CrossRef]
- Pedersen, C. Crashworthiness design of transient frame structures using topology optimization. Comput. Methods Appl. Mech. Eng. 2004, 193, 653–678. [Google Scholar] [CrossRef]
- Duddeck, F. Multidisciplinary optimization of car bodies. Struct. Multidiscip. Optim. 2008, 35, 375–389. [Google Scholar] [CrossRef]
- Nalawade, K.G.; Sabu, A.; Baskar, P. Dynamic (Vibrational) and static structural analysis of ladder frame. Int. J. Eng. Trends Technol. 2014, 11, 93–98. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, P.; Jabbar, A.; Khan, M.M. Structural analysis of a heavy vehicle chassis made of different alloys by different cross sections. Int. J. Eng. Res. Technol. 2014, 3, 1778–1785. [Google Scholar]
- Singh, A.; Soni, V.; Singh, A. Structural Analysis of Ladder Chassis for Higher Strength. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.433.2230&rep=rep1&type=pdf (accessed on 28 September 2021).
- Singh, A.; Tripathi, A.; Tiwari, A.; Upadhyay, N.; Lal, S. Design and analysis of chassis frame. Int. J. Res. Eng. 2016, 3, 31–34. [Google Scholar]
- Tidke, N.; Burande, D.H. Analysis of HCV Chassis using FEA. Int. Eng. Res. J. 2017, 1–5, Special Edition PGCON-MECH-2017. Available online: http://www.ierjournal.org/pupload/mechpgcon2017/Analysis%20of%20HCV%20Chassis%20using%20FEA.pdf (accessed on 28 September 2021).
- Haag, M.G.; Haag, L.C. Chapter 7—The shooting of motor vehicles. In Shooting Incident Reconstruction, 3rd ed.; Haag, M.G., Haag, L.C., Eds.; Academic Press: San Diego, CA, USA, 2021; pp. 137–153. ISBN 978-0-12-819397-6. [Google Scholar]
- Sharma, P.K.; Parekh, N.J.; Nayak, D. Optimization and stress analysis of chassis in TATA turbo truck SE1613. Int. J. Eng. Adv. Technol. 2014, 3, 182–187. [Google Scholar]
- Dabade, U.A.; Bhedasgaonkar, R.C. Casting defect analysis using design of experiments (DoE) and computer aided casting simulation technique. Procedia CIRP 2013, 7, 616–621. [Google Scholar] [CrossRef] [Green Version]
- Hsu, W.H.; Chao, C.K.; Hsu, H.C.; Lin, J.; Hsu, C.C. Parametric study on the interface pullout strength of the vertebral body replacement cage using FEM-based Taguchi methods. Med. Eng. Phys. 2009, 31, 287–294. [Google Scholar] [CrossRef]
- De Oliveira, F.C.G.; Borges, J.A.F. Design and optimization of a space frame chassis. SAE Tech. Pap. 2008. [Google Scholar] [CrossRef]
- Rawal, S. Metal-matrix composites for space applications. Jom 2001, 53, 14–17. [Google Scholar] [CrossRef]
- Jamaati, R.; Toroghinejad, M.R.; Edris, H.; Salmani, M.R. Comparison of microparticles and nanoparticles effects on the microstructure and mechanical properties of steel-based composite and nanocomposite fabricated via accumulative roll bonding process. Mater. Des. 2014, 56, 359–367. [Google Scholar] [CrossRef]
- Wang, W.; Xu, R.; Hao, Y.; Wang, Q.; Yu, L.; Che, Q.; Cai, J.; Wang, K.; Ma, Z. Corrosion fatigue behavior of friction stir processed interstitial free steel. J. Mater. Sci. Technol. 2018, 34, 148–156. [Google Scholar] [CrossRef]
- Gao, X.; Jiang, Z.; Wei, D.; Jiao, S.; Chen, D.; Xu, J.; Zhang, X.; Gong, D. Effects of temperature and strain rate on microstructure and mechanical properties of high chromium cast iron/low carbon steel bimetal prepared by hot diffusion-compression bonding. Mater. Des. 2014, 63, 650–657. [Google Scholar] [CrossRef] [Green Version]
- Sinha, N.; Kumar, K. Optimization of volumetric composition and cross-section of carbon reinforced epoxy based polymeric composite tubes in spaceframe chassis. Mater. Today Proc. 2019, 18, 3812–3820. [Google Scholar] [CrossRef]
- Karl, U.; Kainer, U. Metal Matrix Composites: Custom-Made Materials for Automotive and Aerospace Engineering; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2006; ISBN 9783527313600. [Google Scholar]
- Rohatgi, P.K.; Xiang, C.; Gupta, N. 4.11 Aqueous Corrosion of Metal Matrix Composites. In Comprehensive Composite Materials II; Beaumont, P.W.R., Zweben, C.H., Eds.; Elsevier: Oxford, UK, 2018; pp. 287–312. ISBN 978-0-08-100534-7. [Google Scholar]
- Reddy, A.C. Metal Matrix Composites—Their Properties and Applications. Available online: https://jntuhceh.ac.in/web/tutorials/faculty/1674_composites.pdf (accessed on 28 September 2021).
- Monika, S. Finite element analysis of truck chassis frame. Int. Res. J. Eng. Technol. 2015, 02, 1949–1956. [Google Scholar]
- Ait-Amir, B.; Pougnet, P.; El Hami, A. 6-Meta-Model Development. Available online: https://www.elsevier.com/books/embedded-mechatronic-systems-2/el-hami/978-1-78548-190-1 (accessed on 28 September 2021).
- Agarwal, A.; Molwane, O.B.; Marumo, R. Design Optimization of Knuckle Stub Using Response Surface Optimization. In Advances in Lightweight Materials and Structures; Praveen Kumar, A., Dirgantara, T., Krishna, P.V., Eds.; Springer: Singapore, 2020; pp. 155–164. ISBN 978-981-15-7827-4. [Google Scholar]
- Nardone, V.C.; Strife, J.R. Mechanical behaviour of [0, ±60]s P100/6061 Al composites. J. Mater. Sci. 1988, 23, 194–200. [Google Scholar] [CrossRef]
Name | Value |
---|---|
Cross_member1 | 65 mm |
Cross_member2 | 65 mm |
Cross_member3 | 65 mm |
Material Name | Density (gm/cm3) | Young’s Modulus (GPa) | Thermal Conductivity (W/m-k) |
---|---|---|---|
St52E | 7.8 | 200 | 60.5 |
Al GA 7-230 [20,25] | 2.45 | 88.7 | 190 |
P100/6061 Al [29] | 2.5 | 320 | 320 |
A | B | C | D | E | F | G |
---|---|---|---|---|---|---|
Name | P5—Cross-Member 1 (mm) | P6—Cross-Member 2 (mm) | P7—Cross-Member 3 (mm) | P3—Equivalent Stress Maximum (MPa) | P4—Total Deformation Max. (mm) | P8—Solid Mass (kg) |
P5 | P6 | P7 | P3 | P4 | P8 | |
1 | 65.5 | 65.5 | 65.5 | 3270.478 | 202.466738 | 68.7045384 |
2 | 63 | 63 | 65.5 | 3499.406 | 202.67538 | 67.5464884 |
3 | 68 | 63 | 65.5 | 3472.204 | 202.526488 | 68.7045384 |
4 | 63 | 68 | 65.5 | 3464.303 | 202.444037 | 68.7045384 |
5 | 68 | 68 | 65.5 | 3473.26 | 202.312705 | 69.8625884 |
6 | 63 | 65.5 | 63 | 3275.898 | 204.139412 | 67.5464884 |
7 | 68 | 65.5 | 63 | 3490.198 | 203.892985 | 68.7045384 |
8 | 63 | 65.5 | 68 | 3451.131 | 201.360615 | 68.7045384 |
9 | 68 | 65.5 | 68 | 3512.722 | 201.283343 | 69.8625884 |
10 | 65.5 | 63 | 63 | 3517.039 | 204.106203 | 67.5464884 |
11 | 65.5 | 68 | 63 | 3359.961 | 203.972406 | 68.7045384 |
12 | 65.5 | 63 | 68 | 3502.709 | 201.402274 | 68.7045384 |
13 | 65.5 | 68 | 68 | 3353.099 | 201.228573 | 69.8625884 |
Name | P5—Cross-Member 1 (mm) | P6—Cross-Member 2 (mm) | P7—Cross-Member 3 (mm) | P3—Equivalent Stress Maximum (MPa) | P4—Total Deformation Max. (mm) | P8—Solid Mass (kg) |
---|---|---|---|---|---|---|
P5 | P6 | P7 | P3 | P4 | P8 | |
1 | 65 | 65 | 65 | 3277.613 | 783.3441 | 66.98998 |
2 | 58.5 | 58.5 | 65 | 3274.815 | 784.9496 | 64.03927 |
3 | 71.5 | 58.5 | 65 | 3519.975 | 783.1232 | 66.98998 |
4 | 58.5 | 71.5 | 65 | 3521.078 | 783.1772 | 66.98998 |
5 | 71.5 | 71.5 | 65 | 3505.584 | 781.5273 | 69.94069 |
6 | 58.5 | 65 | 58.5 | 3499.14 | 773.6743 | 64.03927 |
7 | 71.5 | 65 | 58.5 | 3454.272 | 780.4577 | 66.98998 |
8 | 58.5 | 65 | 71.5 | 3220.407 | 769.2351 | 66.98998 |
9 | 71.5 | 65 | 71.5 | 3224.268 | 767.5724 | 69.94069 |
10 | 65 | 58.5 | 58.5 | 3483.746 | 775.6358 | 64.03927 |
11 | 65 | 71.5 | 58.5 | 3236.77 | 773.3496 | 66.98998 |
12 | 65 | 58.5 | 71.5 | 3288.515 | 768.7441 | 66.98998 |
13 | 65 | 71.5 | 71.5 | 3417.045 | 767.1379 | 69.94069 |
A | B | C | |
---|---|---|---|
1 | Name | Calculated Min. | Calculated Max. |
2 | P3—Equivalent Stress Maximum (MPa) | 3270.5 | 3517 |
3 | P4—Total Deformation Maximum (mm) | 201.22 | 204.21 |
4 | P8—Sold Mass (Kg) | 66.967 | 70.442 |
A | B | C | |
---|---|---|---|
1 | Name | Calculated Min. | Calculated Max. |
2 | P3—Equivalent Stress Maximum (MPa) | 3207.3 | 3531.8 |
3 | P4—Total Deformation Maximum (mm) | 766.85 | 784.97 |
4 | P8—Sold Mass (Kg) | 62.564 | 71.416 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarwal, A.; Mthembu, L. Structural Analysis and Optimization of Heavy Vehicle Chassis Using Aluminium P100/6061 Al and Al GA 7-230 MMC. Processes 2022, 10, 320. https://doi.org/10.3390/pr10020320
Agarwal A, Mthembu L. Structural Analysis and Optimization of Heavy Vehicle Chassis Using Aluminium P100/6061 Al and Al GA 7-230 MMC. Processes. 2022; 10(2):320. https://doi.org/10.3390/pr10020320
Chicago/Turabian StyleAgarwal, Abhishek, and Linda Mthembu. 2022. "Structural Analysis and Optimization of Heavy Vehicle Chassis Using Aluminium P100/6061 Al and Al GA 7-230 MMC" Processes 10, no. 2: 320. https://doi.org/10.3390/pr10020320
APA StyleAgarwal, A., & Mthembu, L. (2022). Structural Analysis and Optimization of Heavy Vehicle Chassis Using Aluminium P100/6061 Al and Al GA 7-230 MMC. Processes, 10(2), 320. https://doi.org/10.3390/pr10020320