Purposely Development of the Adaptive Potential of Activated Sludge from Municipal Wastewater Treatment Plant Focused on the Treatment of Landfill Leachate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Chemical and Technological Analyzes
2.3. Microbiological Analyzes
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaza, S.; Yao, L.C.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- European Parliament and the Council of the European Union. Directive 2008/122/EC of the European Parliament and of the Council. Fundam. Texts Eur. Priv. Law 2020, 3–30. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, EU Biodiversity Strategy for 2030, European Commission. J. Chem. Inf. Model. 2020, 53, 1689–1699. [Google Scholar]
- Zhang, F.; Peng, Y.; Wang, Z.; Jiang, H.; Ren, S.; Qiu, J. New Insights into Co-Treatment of Mature Landfill Leachate with Municipal Sewage via Integrated Partial Nitrification, Anammox and Denitratation. J. Hazard. Mater. 2021, 415, 125506. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Li, Y.; Li, Y. Effects of Leachate Recirculation Quantity and Aeration on Leachate Quality and Municipal Solid Waste Stabilization in Semi-Aerobic Landfills. Environ. Technol. Innov. 2021, 21, 101353. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhao, Y.; Zhu, Y.; Zhang, M.; Yu, Y.; Guo, Y.; Zhou, T. Efficient Treatment of Mature Landfill Leachate with a Novel Composite Biological Trickle Reactor Developed Using Refractory Domestic Waste and Aged Refuse. J. Clean. Prod. 2021, 305, 127194. [Google Scholar] [CrossRef]
- Li, R.; Li, L.; Zhang, Z.; Chen, H.; McKenna, A.M.; Chen, G.; Tang, Y. Speciation and Conversion of Carbon and Nitrogen in Young Landfill Leachate during Anaerobic Biological Pretreatment. Waste Manag. 2020, 106, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Przydatek, G. The Analysis of the Possibility of Using Biological Tests for Assessment of Toxicity of Leachate from an Active Municipal Landfill. Environ. Toxicol. Pharmacol. 2019, 67, 94–101. [Google Scholar] [CrossRef]
- Renou, S.; Givaudan, J.G.; Poulain, S.; Dirassouyan, F.; Moulin, P. Landfill Leachate Treatment: Review and Opportunity. J. Hazard. Mater. 2008, 150, 468–493. [Google Scholar] [CrossRef]
- Heang, N.H.; Chiemchaisri, C.; Chiemchaisri, W.; Shoda, M. Treatment of Municipal Landfill Leachate at Different Stabilization Stages in Two-Stage Membrane Bioreactor Bioaugmented with Alcaligenes Faecalis No. 4. Bioresour. Technol. Rep. 2020, 11, 100528. [Google Scholar] [CrossRef]
- Baun, A.; Ledin, A.; Reitzel, L.A.; Bjerg, P.L.; Christensen, T.H. Xenobiotic Organic Compounds in Leachates from Ten Danish MSW Landfills—Chemical Analysis and Toxicity Tests. Water Res. 2004, 38, 3845–3858. [Google Scholar] [CrossRef]
- Salam, M.; Nilza, N. Hazardous Components of Landfill Leachates and Its Bioremediation. In Soil Contamination—Threats and Sustainable Solutions; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Vaverková, M.D.; Elbl, J.; Koda, E.; Adamcová, D.; Bilgin, A.; Lukas, V.; Podlasek, A.; Kintl, A.; Wdowska, M.; Brtnický, M.; et al. Chemical Composition and Hazardous Effects of Leachate from the Active Municipal Solid Waste Landfill Surrounded by Farmlands. Sustainability 2020, 12, 4531. [Google Scholar] [CrossRef]
- Baderna, D.; Caloni, F.; Benfenati, E. Investigating Landfill Leachate Toxicity in Vitro: A Review of Cell Models and Endpoints. Environ. Int. 2019, 122, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Elmaadawy, K.; Liu, B.; Hu, J.; Hou, H.; Yang, J. Performance Evaluation of Microbial Fuel Cell for Landfill Leachate Treatment: Research Updates and Synergistic Effects of Hybrid Systems. J. Environ. Sci. 2020, 96, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Scandelai, A.P.J.; Sloboda Rigobello, E.; de Oliveira, B.L.C.; Tavares, C.R.G. Identification of Organic Compounds in Landfill Leachate Treated by Advanced Oxidation Processes. Environ. Technol. 2019, 40, 730–741. [Google Scholar] [CrossRef]
- Torretta, V.; Ferronato, N.; Katsoyiannis, I.; Tolkou, A.; Airoldi, M. Novel and Conventional Technologies for Landfill Leachates Treatment: A Review. Sustainability 2016, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Miao, L.; Yang, G.; Tao, T.; Peng, Y. Recent Advances in Nitrogen Removal from Landfill Leachate Using Biological Treatments—A Review. J. Environ. Manag. 2019, 235, 178–185. [Google Scholar] [CrossRef]
- Tsui, T.-H.; Wu, H.; Song, B.; Liu, S.-S.; Bhardwaj, A.; Wong, J.W.C. Food Waste Leachate Treatment Using an Upflow Anaerobic Sludge Bed (UASB): Effect of Conductive Material Dosage under Low and High Organic Loads. Bioresour. Technol. 2020, 304, 122738. [Google Scholar] [CrossRef]
- Pirsaheb, M.; Hossaini, H.; Amini, J. Evaluation of a Zeolite/Anaerobic Buffled Reactor Hybrid System for Treatment of Low Bio-Degradable Effluents. Mater. Sci. Eng. C 2019, 104, 109943. [Google Scholar] [CrossRef]
- Hashemi, H.; Ebrahimi, A.; Mokhtari, M.; Jasemizad, T. Removal of PAHs and Heavy Metals in Composting Leachate Using the Anaerobic Migrating Blanket Reactor (AMBR) Process. Desalin. Water Treat. 2016, 57, 24960–24969. [Google Scholar] [CrossRef]
- Roy, D.; Drogui, P.; Tyagi, R.D.; Landry, D.; Rahni, M. MBR Treatment of Leachates Originating from Waste Management Facilities: A Reference Study of the Design Parameters for Efficient Treatment. J. Environ. Manag. 2020, 259, 110057. [Google Scholar] [CrossRef]
- Mirghorayshi, M.; Zinatizadeh, A.A.; van Loosdrecht, M. Simultaneous Biodegradability Enhancement and High-Efficient Nitrogen Removal in an Innovative Single Stage Anaerobic/Anoxic/Aerobic Hybrid Airlift Bioreactor (HALBR) for Composting Leachate Treatment: Process Modeling and Optimization. Chem. Eng. J. 2021, 407, 127019. [Google Scholar] [CrossRef]
- Lanzetta, A.; Mattioli, D.; Di Capua, F.; Sabia, G.; Petta, L.; Esposito, G.; Andreottola, G.; Gatti, G.; Merz, W.; Langone, M. Anammox-Based Processes for Mature Leachate Treatment in SBR: A Modelling Study. Processes 2021, 9, 1443. [Google Scholar] [CrossRef]
- Ferraz, F.M.; Bruni, A.T.; Povinelli, J.; Vieira, E.M. Leachate/Domestic Wastewater Aerobic Co-Treatment: A Pilot-Scale Study Using Multivariate Analysis. J. Environ. Manag. 2016, 166, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Boonnorat, J.; Kanyatrakul, A.; Prakhongsak, A.; Ketbubpha, K.; Phattarapattamawong, S.; Treesubsuntorn, C.; Panichnumsin, P. Biotoxicity of Landfill Leachate Effluent Treated by Two-Stage Acclimatized Sludge AS System and Antioxidant Enzyme Activity in Cyprinus Carpio. Chemosphere 2021, 263, 128332. [Google Scholar] [CrossRef]
- Yuan, Q.; Jia, H.; Poveda, M. Study on the Effect of Landfill Leachate on Nutrient Removal from Municipal Wastewater. J. Environ. Sci. 2016, 43, 153–158. [Google Scholar] [CrossRef]
- Campos, R.; Ferraz, F.M.; Vieira, E.M.; Povinelli, J. Aerobic Co-Treatment of Landfill Leachate and Domestic Wastewater—Are Slowly Biodegradable Organics Removed or Simply Diluted? Water Sci. Technol. 2014, 70, 1941–1947. [Google Scholar] [CrossRef]
- Ren, Y.; Ferraz, F.; Lashkarizadeh, M.; Yuan, Q. Comparing Young Landfill Leachate Treatment Efficiency and Process Stability Using Aerobic Granular Sludge and Suspended Growth Activated Sludge. J. Water Process Eng. 2017, 17, 161–167. [Google Scholar] [CrossRef]
- Montusiewicz, A.; Bis, M.; Pasieczna-Patkowska, S.; Majerek, D. Mature Landfill Leachate Utilization Using a Cost-Effective Hybrid Method. Waste Manag. 2018, 76, 652–662. [Google Scholar] [CrossRef]
- Xie, B.; Xiong, S.; Liang, S.; Hu, C.; Zhang, X.; Lu, J. Performance and Bacterial Compositions of Aged Refuse Reactors Treating Mature Landfill Leachate. Bioresour. Technol. 2012, 103, 71–77. [Google Scholar] [CrossRef]
- Topalova, Y.; Todorova, Y.; Schneider, I.; Yotinov, I.; Stefanova, V. Detoxification Potential and Rehabilitation of Activated Sludge after Shock Loading of Sofia’s Wastewater Treatment Plant ‘Kubratovo’ with Mazut. Water Sci. Technol. 2018, 78, 588–601. [Google Scholar] [CrossRef] [Green Version]
- Ağdağ, O.N.; Sponza, D.T. Anaerobic/Aerobic Treatment of Municipal Landfill Leachate in Sequential Two-Stage up-Flow Anaerobic Sludge Blanket Reactor (UASB)/Completely Stirred Tank Reactor (CSTR) Systems. Process Biochem. 2005, 40, 895–902. [Google Scholar] [CrossRef]
- Azad Pashaki, S.G.; Khojastehpour, M.; Ebrahimi-Nik, M.; Rohani, A. Treatment of Municipal Landfill Leachate: Optimization of Organic Loading Rate in a Two-Stage CSTR Followed by Aerobic Degradation. Renew. Energy 2021, 163, 1210–1221. [Google Scholar] [CrossRef]
- Eaton, A.D.; Clesceri, L.S.; Rice, E.W.; Greenberg, A.E. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Itzhaki, R.F.; Gill, D.M. A Micro-Biuret Method for Estimating Proteins. Anal. Biochem. 1964, 9, 401–410. [Google Scholar] [CrossRef]
- Lyubomirova, V.; Djingova, R. Determination of Macroelements in Potable Waters with Cell-Based Inductively-Coupled Plasma Mass Spectrometry. Spectrosc. Eur. 2020, 32, 3–6. [Google Scholar]
- Kuznetzov, S.I.; Dubinina, G.A. Methods for Investigation of Waters Microorganisms; Academy of Sciences of the USSR: Moskow, Russia, 1989. [Google Scholar]
- Gerardi, M.H. Microscopic Examination of the Activated Sludge Process; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Sladka, A.; Sladeček, V. A Guide of Organisms from Waste Water Plants; Vyz. Ustav Vodohosp.: Praha, Czech Republic, 1985. [Google Scholar]
- FOISSNER, W.; BERGER, H. A User-Friendly Guide to the Ciliates (Protozoa, Ciliophora) Commonly Used by Hydrobiologists as Bioindicators in Rivers, Lakes, and Waste Waters, with Notes on Their Ecology. Freshw. Biol. 1996, 35, 375–482. [Google Scholar] [CrossRef]
- Madoni, P. A Sludge Biotic Index (SBI) for the Evaluation of the Biological Performance of Activated Sludge Plants Based on the Microfauna Analysis. Water Res. 1994, 28, 67–75. [Google Scholar] [CrossRef]
- Nielsen, P.H.; Daims, H.; Lemmer, H.; Arslan-Alaton, I.; Olmez-Hanci, T. FISH Handbook for Biological Wastewater Treatment: Identification and Quantification of Microorganisms in Activated Sludge and Biofilms by FISH; IWA Publishing: London, UK, 2009. [Google Scholar]
- Amann, R.; Ludwig, W.; Schleifer, K.-H. Phylogenetic Identification and in Situ Detection of Individual Microbial Cells without Cultivation. Microbiol. Rev. 1995, 59, 143–169. [Google Scholar] [CrossRef]
- Friedrich, U.; Van Langenhove, H.; Altendorf, K.; Lipski, A. Microbial Community and Physicochemical Analysis of an Industrial Waste Gas Biofilter and Design of 16S RRNA-Targeting Oligonucleotide Probes. Environ. Microbiol. 2003, 5, 183–201. [Google Scholar] [CrossRef]
- Rabus, R.; Wilkes, H.; Schramm, A.; Harms, G.; Behrends, A.; Amann, R.; Widdel, F. Anaerobic Utilization of Alkylbenzenes and N-Alkanes from Crude Oil in an Enrichment Culture of Denitrifying Bacteria Affiliating with the Beta-Subclass of Proteobacteria. Environ. Microbiol. 1999, 1, 145–157. [Google Scholar] [CrossRef]
- Schleifer, K.-H.; Amann, R.; Ludwig, W.; Rothemund, C.; Springer, N.; Dorn, S. Nucleic Acid Probes for the Identification and In-Situ Detection of Pseudomonads. In Pseudomonas: Molecular Biology and Biotechnology; Galli, E., Silver, S., Witholt, B., Federation of European Microbiological Societies, Eds.; FEMS Symposium; American Society for Microbiology: Washington, DC, USA, 1992. [Google Scholar]
- Amann, R.I.; Binder, B.J.; Olson, R.J.; Chisholm, S.W.; Devereux, R.; Stahl, D.A. Combination of 16S RRNA-Targeted Oligonucleotide Probes with Flow Cytometry for Analyzing Mixed Microbial Populations. Appl. Environ. Microbiol. 1990, 56, 1919–1925. [Google Scholar] [CrossRef] [Green Version]
- Daims, H.; Brühl, A.; Amann, R.; Schleifer, K.-H.; Wagner, M. The Domain-Specific Probe EUB338 Is Insufficient for the Detection of All Bacteria: Development and Evaluation of a More Comprehensive Probe Set. Syst. Appl. Microbiol. 1999, 22, 434–444. [Google Scholar] [CrossRef]
- Wallner, G.; Amann, R.; Beisker, W. Optimizing Fluorescent in Situ Hybridization with RRNA-Targeted Oligonucleotide Probes for Flow Cytometric Identification of Microorganisms. Cytometry 1993, 14, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Daims, H.; Lücker, S.; Wagner, M. Daime, a Novel Image Analysis Program for Microbial Ecology and Biofilm Research. Environ. Microbiol. 2006, 8, 200–213. [Google Scholar] [CrossRef] [PubMed]
- Gerardi, M.H. Wastewater Bacteria; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Bitton, G.; Malek, A.; Zullo, L.C.; Daoutidis, P. Modeling and dynamic optimization of microalgae cultivation in outdoor open ponds. Ind. Eng. Chem. Res. 2016, 55, 3327–3337. [Google Scholar] [CrossRef] [Green Version]
- Topalova, Y. Biological Control and Management of Wastewater Treatment; Pensoft: Sofia, Bulgaria, 2009. [Google Scholar]
- Kozuharov, D.; Topalova, J.; Dimkov, R.; Jordanova, N. Biodiversity Response of Micro- and Metafauna in Activated Sludge towards Toxic Effect of ONP and PCP. Biotechnol. Biotechnol. Equip. 1999, 13, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Topalova, Y.; Dimkov, R.; Manolov, R. Influence of Aryl—Containing Xenobiotics Concentration on the Oxygenase Enzyme Activities. Biotechnol. Biotechnol. Equip. 1994, 8, 62–67. [Google Scholar] [CrossRef]
- Belouhova, M.; Schneider, I.; Chakarov, S.; Ivanova, I.; Topalova, Y. Microbial Community Development of Biofilm in Amaranth Decolourization Technology Analysed by FISH. Biotechnol. Biotechnol. Equip. 2014, 28. [Google Scholar] [CrossRef]
- Verma, S.; Bhargava, R.; Pruthi, V. Oily Sludge Degradation by Bacteria from Ankleshwar, India. Int. Biodeterior. Biodegrad. 2006, 57, 207–213. [Google Scholar] [CrossRef]
- Chougule, A.S.; Jadhav, S.B.; Jadhav, J.P. Microbial Degradation and Detoxification of Synthetic Dye Mixture by Pseudomonas sp. SUK 1. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2014, 84, 1059–1068. [Google Scholar] [CrossRef]
- Ramadass, K.; Megharaj, M.; Venkateswarlu, K.; Naidu, R. Bioavailability of Weathered Hydrocarbons in Engine Oil-Contaminated Soil: Impact of Bioaugmentation Mediated by Pseudomonas spp. on Bioremediation. Sci. Total Environ. 2018, 636, 968–974. [Google Scholar] [CrossRef]
- Li, J.; Wu, C.; Chen, S.; Lu, Q.; Shim, H.; Huang, X.; Jia, C.; Wang, S. Enriching Indigenous Microbial Consortia as a Promising Strategy for Xenobiotics’ Cleanup. J. Clean. Prod. 2020, 261, 121234. [Google Scholar] [CrossRef]
- Alhefeiti, M.A.; Athamneh, K.; Vijayan, R.; Ashraf, S.S. Bioremediation of Various Aromatic and Emerging Pollutants by Bacillus Cereus Sp. Isolated from Petroleum Sludge. Water Sci. Technol. 2021, 83, 1535–1547. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Du, Q.; Peng, H.; Zhang, Y.; Bi, Y.; Shi, Y.; Xu, Y.; Liu, T. Optimization of Biochemical Oxygen Demand to Total Nitrogen Ratio for Treating Landfill Leachate in a Single-Stage Partial Nitrification-Denitrification System. J. Clean. Prod. 2020, 266, 121809. [Google Scholar] [CrossRef]
- Michalska, J.; Piński, A.; Żur, J.; Mrozik, A. Selecting Bacteria Candidates for the Bioaugmentation of Activated Sludge to Improve the Aerobic Treatment of Landfill Leachate. Water 2020, 12, 140. [Google Scholar] [CrossRef] [Green Version]
- Jiang, N.; Huang, L.; Huang, M.; Cai, T.; Song, J.; Zheng, S.; Guo, J.; Kong, Z.; Chen, L. Electricity Generation and Pollutants Removal of Landfill Leachate by Osmotic Microbial Fuel Cells with Different Forward Osmosis Membranes. Sustain. Environ. Res. 2021, 31, 22. [Google Scholar] [CrossRef]
- Boonnorat, J.; Chiemchaisri, C.; Chiemchaisri, W.; Yamamoto, K. Microbial Adaptation to Biodegrade Toxic Organic Micro-Pollutants in Membrane Bioreactor Using Different Sludge Sources. Bioresour. Technol. 2014, 165, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Thomas, F.; Corre, E.; Cébron, A. Stable Isotope Probing and Metagenomics Highlight the Effect of Plants on Uncultured Phenanthrene-Degrading Bacterial Consortium in Polluted Soil. ISME J. 2019, 13, 1814–1830. [Google Scholar] [CrossRef] [Green Version]
- Forss, J.; Lindh, M.V.; Pinhassi, J.; Welander, U. Microbial Biotreatment of Actual Textile Wastewater in a Continuous Sequential Rice Husk Biofilter and the Microbial Community Involved. PLoS ONE 2017, 12, e0170562. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Qu, Y.; Zhang, X.; Liu, Z.; Li, H.; Zhang, Z.; Wang, J.; Shen, W.; Zhou, J. Systematic Investigation and Microbial Community Profile of Indole Degradation Processes in Two Aerobic Activated Sludge Systems. Sci. Rep. 2015, 5, 17674. [Google Scholar] [CrossRef]
- Huang, L.; Li, X.; Cai, T.; Huang, M. Electrochemical Performance and Community Structure in Three Microbial Fuel Cells Treating Landfill Leachate. Process Saf. Environ. Prot. 2018, 113, 378–387. [Google Scholar] [CrossRef]
- Sun, F.; Sun, B.; Li, Q.; Deng, X.; Hu, J.; Wu, W. Pilot-Scale Nitrogen Removal from Leachate by Ex Situ Nitrification and in Situ Denitrification in a Landfill Bioreactor. Chemosphere 2014, 101, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Mieczkowski, D.; Cydzik-Kwiatkowska, A.; Rusanowska, P.; Świątczak, P. Temperature-Induced Changes in Treatment Efficiency and Microbial Structure of Aerobic Granules Treating Landfill Leachate. World J. Microbiol. Biotechnol. 2016, 32, 91. [Google Scholar] [CrossRef] [PubMed]
- Remmas, N.; Melidis, P.; Katsioupi, E.; Ntougias, S. Effects of High Organic Load on AmoA and NirS Gene Diversity of an Intermittently Aerated and Fed Membrane Bioreactor Treating Landfill Leachate. Bioresour. Technol. 2016, 220, 557–565. [Google Scholar] [CrossRef] [PubMed]
Concentration in Recent Landfill Leachate (Age < Five Years) | Concentration in Old Landfill Leachate (Age > Five Years) | |
---|---|---|
pH | 6.5 | >7.5 |
COD, mg O2/L | >10,000 (20,000 ÷ 40,000) | <4000 |
BOD5, mg/L | >5000 (10,000 ÷ 20,000) | <1000 |
BOD5/COD | >0.3 | <0.1 |
TOC, mg/L | 1500 ÷ 15,000 | 100 ÷ 1000 |
Organic compounds | 80% volatile fatty acids | humic and fulvic acids |
Total Nitrogen, mg/L | 200–10,000 | 200–1000 |
C/N ratio | >1.8 | 1 |
Microbiological Parameter | Nutrient Media | Manufacturer | Incubation |
---|---|---|---|
Aerobic heterotrophs (AeH) | Nutrient agar | HiMedia | 24 h, 28 °C, aerobic |
p. Pseudomonas (Ps.) | Glutamate Starch Pseudomonas Agar | HiMedia | 24 h, 28 °C |
p. Acinetobacter (Ac.) | Sellers Differential Agar | HiMedia | 24 h, 28 °C |
Target Group | Probe | Sequence | Reference |
---|---|---|---|
Alcaligenes spp. | ALBO577 | CCG AAC CGC CTG CGC AC | [45] |
cluster Azoarcus-Thauera | AT1458 | GAA TCT CAC CGT GGT AAG CGC | [46] |
Pseudomonas spp. | Ps | GCT GGC CTA GCC TTC | [47] |
Domain Bacteria (EUB mix) | EUB338 | GCT GCC TCC CGT AGG AGT | [48] |
EUB338 II | GCA GCC ACC CGT AGG TGT | [49] | |
EUB338 III | GCT GCC ACC CGT AGG TGT | [49] | |
Non-specific | NON-EUB | ACT CCT ACG GGA GGC AGC | [50] |
Sample | Low Molecular Weight Amines | Aromatic Amines | Short-Chain Monovalent Alcohols | Polyhydric Alcohols | Phenols | Aldehydes | Ketones |
---|---|---|---|---|---|---|---|
Influent first treatment cycle | + | + | + | + | + | + | + |
Effluent first treatment cycle | + | - | - | - | + * | - | + * |
Influent last treatment cycle | + | + * | + * | + * | + * | + | + |
Effluent last treatment cycle | + | - | + * | - | + * | + * | +* |
Conversion of SBI Values into Four Quality Classes | ||
---|---|---|
SBI Value | Class | Estimation |
8–10 | I | Very well colonized and stable sludge; excellent biological activity; very good performance. |
6–7 | II | Well colonized and stable sludge; biological activity on decrease; good performance. |
4–5 | III | Insufficient biological purification in the aeration tank; mediocre performance. |
0–3 | IV | Poor biological purification in the aeration tank; low performance. |
Azoarcus-Thauera Cluster | g. Alcaligenes | g. Pseudomonas | |
---|---|---|---|
Hour 0 | 3.25% ± 0.21% | 0.69% ± 0.12% | 5.37% ± 1.29% |
Day 7 | 4.58% ± 0.43% | 0.60% ± 0.17% | 5.20% ± 0.20% |
Day 14 | 4.64% ± 0.25% | 1.31% ± 0.01% | 13.24% ± 3.15% |
Day 21 | 2.61% ± 0.79% | 2.77% ± 0.48% | 8.66% ± 0.00% |
Mean | 3.77% ± 0.42% | 1.34% ± 0.19% | 8.12% ± 1.16% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belouhova, M.; Yotinov, I.; Schneider, I.; Dinova, N.; Todorova, Y.; Lyubomirova, V.; Mihaylova, V.; Daskalova, E.; Lincheva, S.; Topalova, Y. Purposely Development of the Adaptive Potential of Activated Sludge from Municipal Wastewater Treatment Plant Focused on the Treatment of Landfill Leachate. Processes 2022, 10, 460. https://doi.org/10.3390/pr10030460
Belouhova M, Yotinov I, Schneider I, Dinova N, Todorova Y, Lyubomirova V, Mihaylova V, Daskalova E, Lincheva S, Topalova Y. Purposely Development of the Adaptive Potential of Activated Sludge from Municipal Wastewater Treatment Plant Focused on the Treatment of Landfill Leachate. Processes. 2022; 10(3):460. https://doi.org/10.3390/pr10030460
Chicago/Turabian StyleBelouhova, Mihaela, Ivaylo Yotinov, Irina Schneider, Nora Dinova, Yovana Todorova, Valentina Lyubomirova, Veronika Mihaylova, Elmira Daskalova, Stilyana Lincheva, and Yana Topalova. 2022. "Purposely Development of the Adaptive Potential of Activated Sludge from Municipal Wastewater Treatment Plant Focused on the Treatment of Landfill Leachate" Processes 10, no. 3: 460. https://doi.org/10.3390/pr10030460
APA StyleBelouhova, M., Yotinov, I., Schneider, I., Dinova, N., Todorova, Y., Lyubomirova, V., Mihaylova, V., Daskalova, E., Lincheva, S., & Topalova, Y. (2022). Purposely Development of the Adaptive Potential of Activated Sludge from Municipal Wastewater Treatment Plant Focused on the Treatment of Landfill Leachate. Processes, 10(3), 460. https://doi.org/10.3390/pr10030460