Utilization of Aerobic Compression Composting Technology on Raw Mushroom Waste for Bioenergy Pellets Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials, Composting and Pelletization
2.2. Physicochemical Analysis
2.2.1. Pellet Density and FESEM Analysis
2.2.2. CHNS and FTIR Analysis
2.2.3. Proximate Analysis, Thermal Gravimetric and Calorific Value Analysis
2.2.4. Compression Strength, Mechanical Durability and Wettability Index
3. Results and Discussion
3.1. Characterization of Raw Materials and Pellets
3.2. Combustion Characteristics
3.3. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khalil, M.; Berawi, M.A.; Heryanto, R.; Rizalie, A. Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia. Renew. Sustain. Energy Rev. 2019, 105, 323–331. [Google Scholar] [CrossRef]
- Abdeshahian, P.; Lim, J.S.; Ho, W.S.; Hashim, H.; Lee, C.T. Potential of biogas production from farm animal waste in Malaysia. Renew. Sustain. Energy Rev. 2016, 60, 714–723. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Shetti, N.P.; Reddy, K.R.; Aminabhavi, T.M. Sustainable energy from waste organic matters via efficient microbial processes. ScTEn 2020, 722, 137927. [Google Scholar] [CrossRef]
- Dhanya, B.S.; Mishra, A.; Chandel, A.K.; Verma, M.L. Development of sustainable approaches for converting the organic waste to bioenergy. ScTEn 2020, 723, 138109. [Google Scholar] [CrossRef]
- Iqbal, M.W.; Kang, Y. Waste-to-energy supply chain management with energy feasibility condition. J. Clean. Prod. 2021, 291, 125231. [Google Scholar] [CrossRef]
- Chia, W.Y.; Chew, K.W.; Le, C.F.; Lam, S.S.; Chee, C.S.C.; Ooi, M.S.L.; Show, P.L. Sustainable utilization of biowaste compost for renewable energy and soil amendments. Environ. Pollut. 2020, 267, 115662. [Google Scholar] [CrossRef]
- Jeong, K.-H.; Lee, D.-j.; Lee, D.-H.; Lee, S.-H. Combustion characteristics of cow manure pellet as a solid fuel source. J. Korea Org. Resour. Recycl. Assoc. 2019, 27, 31–40. [Google Scholar] [CrossRef]
- Sardarmehni, M.; Levis, J.W.; Barlaz, M.A. What Is the Best End Use for Compost Derived from the Organic Fraction of Municipal Solid Waste? Environ. Sci. Technol. 2021, 55, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Díaz, M.J.; Ruiz-Montoya, M.; Palma, A.; de-Paz, M.-V. Thermogravimetry Applicability in Compost and Composting Research: A Review. Appl. Sci. 2021, 11, 1692. [Google Scholar] [CrossRef]
- Sweeten, J.M.; Heflin, K.; Annamalai, K.; Auvermann, B.W.; McCollum, F.T.; Parker, D.B. Combustion-Fuel Properties of Manure or Compost from Paved vs. Un-Paved Cattle Feedlots. In Proceedings of the 2006 ASAE Annual Meeting, Portland, OR, USA, 9–12 July 2006; p. 1. [Google Scholar]
- Troy, S.M.; Nolan, T.; Leahy, J.J.; Lawlor, P.G.; Healy, M.G.; Kwapinski, W. Effect of sawdust addition and composting of feedstock on renewable energy and biochar production from pyrolysis of anaerobically digested pig manure. Biomass Bioenergy 2013, 49, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Skanderova, K.; Malat’ák, J.; Bradna, J.J. Energy use of compost pellets for small combustion plants. Agron. Res. 2015, 13, 413–419. [Google Scholar]
- Malaťák, J.; Bradna, J.; Velebil, J. Combustion of briquettes from oversize fraction of compost from wood waste and other biomass residues. Agron. Res. 2016, 14, 525–532. [Google Scholar]
- Kopeć, M.; Gondek, K.; Mierzwa-Hersztek, M.; Zaleski, T. Effect of the composting process on physical and energetic changes in compost. Acta Agrophys. 2016, 23, 607–619. [Google Scholar]
- Yeo, J.; Oh, J.-I.; Cheung, H.H.L.; Lee, P.K.H.; An, A.K. Smart Food Waste Recycling Bin (S-FRB) to turn food waste into green energy resources. J. Environ. Manag. 2019, 234, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Doña-Grimaldi, V.M.; Palma, A.; Ruiz-Montoya, M.; Morales, E.; Díaz, M.J. Energetic valorization of MSW compost valorization by selecting the maturity conditions. J. Environ. Manag. 2019, 238, 153–158. [Google Scholar] [CrossRef]
- Vandecasteele, B.; Boogaerts, C.; Vandaele, E. Combining woody biomass for combustion with green waste composting: Effect of removal of woody biomass on compost quality. Waste Manag. 2016, 58, 169–180. [Google Scholar] [CrossRef]
- Malaťák, J.; Bradna, J.; Velebil, J.; Gendek, A.; Ivanova, T. Evaluation of dried compost for energy use via co-combustion with wood. Agron. Res. 2018, 16, 157–166. [Google Scholar] [CrossRef]
- Wang, C.-Y. A Review on the Potential Reuse of Functional Polysaccharides Extracted from the By-Products of Mushroom Processing. Food Bioprocess Technol. 2020, 13, 217–228. [Google Scholar] [CrossRef]
- Chou, W.-T.; Sheih, I.-C.; Fang, T.J. The Applications of Polysaccharides from Various Mushroom Wastes as Prebiotics in Different Systems. J. Food Sci. 2013, 78, M1041–M1048. [Google Scholar] [CrossRef]
- Li, S.; Wang, A.; Liu, L.; Tian, G.; Wei, S.; Xu, F. Evaluation of nutritional values of shiitake mushroom (Lentinus edodes) stipes. J. Food Meas. Charact. 2018, 12, 2012–2019. [Google Scholar] [CrossRef]
- Heleno, S.A.; Prieto, M.A.; Barros, L.; Rodrigues, A.; Barreiro, M.F.; Ferreira, I.C. Optimization of microwave-assisted extraction of ergosterol from Agaricus bisporus L. by-products using response surface methodology. Food Bioprod. Process. 2016, 100, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.; Abdullah, N.; Shuib, A.S.; Abdul Razak, S. Influence of raw polysaccharide extract from mushroom stalk waste on growth and pH perturbation induced-stress in Nile tilapia, Oreochromis niloticus. Aquaculture 2017, 468, 60–70. [Google Scholar] [CrossRef]
- Zou, H.; Evrendilek, F.; Liu, J.; Buyukada, M. Combustion behaviors of pileus and stipe parts of Lentinus edodes using thermogravimetric-mass spectrometry and Fourier transform infrared spectroscopy analyses: Thermal conversion, kinetic, thermodynamic, gas emission and optimization analyses. Bioresour. Technol. 2019, 288, 121481. [Google Scholar] [CrossRef] [PubMed]
- Bernal, M.P.; Sommer, S.G.; Chadwick, D.; Qing, C.; Guoxue, L.; Michel, F.C. Chapter Three—Current Approaches and Future Trends in Compost Quality Criteria for Agronomic, Environmental, and Human Health Benefits. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2017; Volume 144, pp. 143–233. [Google Scholar]
- ASTM E1756-08; Standard Test Method for Determination of Total Solids in Biomass. ASTM International: West Conshohocken, PA, USA, 2015.
- Cai, J.; He, Y.; Yu, X.; Banks, S.W.; Yang, Y.; Zhang, X.; Yu, Y.; Liu, R.; Bridgwater, A.V. Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renew. Sustain. Energy Rev. 2017, 76, 309–322. [Google Scholar] [CrossRef] [Green Version]
- Chew, K.W.; Chia, S.R.; Yap, Y.J.; Ling, T.C.; Tao, Y.; Show, P.L. Densification of food waste compost: Effects of moisture content and dairy powder waste additives on pellet quality. Process Saf. Environ. Prot. 2018, 116, 780–786. [Google Scholar] [CrossRef]
- Azargohar, R.; Soleimani, M.; Nosran, S.; Bond, T.; Karunakaran, C.; Dalai, A.K.; Tabil, L.G. Thermo-physical characterization of torrefied fuel pellet from co-pelletization of canola hulls and meal. Ind. Crops Prod. 2019, 128, 424–435. [Google Scholar] [CrossRef]
- Zajonc, O.; Frydrych, J.; Jezerska, L. Pelletization of Compost for Energy Utilization. IERI Procedia 2014, 8, 2–10. [Google Scholar] [CrossRef] [Green Version]
- Finimundy, T.C.; Dillon, A.J.P.; Henriques, J.A.P.; Ely, M.R. A review on general nutritional compounds and pharmacological properties of the Lentinula edodes mushroom. Food Nutr. Sci. 2014, 5, 1095–1105. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Xie, B.; Khan, R.; Shen, G. The changes in carbon, nitrogen components and humic substances during organic-inorganic aerobic co-composting. Bioresour. Technol. 2019, 271, 228–235. [Google Scholar] [CrossRef]
- Chalk, P.M.; Inácio, C.T.; Chen, D. An overview of contemporary advances in the usage of 15N natural abundance (δ15N) as a tracer of agro-ecosystem N cycle processes that impact the environment. Agric. Ecosyst. Environ. 2019, 283, 106570. [Google Scholar] [CrossRef]
- Wang, X.; Zhai, M.; Wang, Z.; Dong, P.; Lv, W.; Liu, R. Carbonization and combustion characteristics of palm fiber. Fuel 2018, 227, 21–26. [Google Scholar] [CrossRef]
- Akratos, C.S.; Tekerlekopoulou, A.G.; Vasiliadou, I.A.; Vayenas, D.V. Chapter 8—Cocomposting of olive mill waste for the production of soil amendments. In Olive Mill Waste; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 161–182. [Google Scholar]
- Xiang, Y.; Jun, Q.; Zhen, L.; Yaning, L.; Anlong, Z.; Yingkun, S. Research on the infrared spectroscopy of spent mushroom compost. Nat. Envir. Pollut. Technol. 2016, 15, 701. [Google Scholar]
- Parmar, R.; Kumar, D. Studyof chemical composition in wild edible mushroom Pleurotus cornucopiae (Paulet) from Himachal Pradesh, India by using Fourier transforms infrared spectrometry (FTIR), Gas chromatography-mass spectrometry (GCMS) and X-ray fluorescence (XRF). Biol. Forum Int. J. 2015, 7, 1057–1066. [Google Scholar]
- Li, X.; Pang, Y.; Zhang, R. Compositional changes of cottonseed hull substrate during P. ostreatus growth and the effects on the feeding value of the spent substrate. Bioresour. Technol. 2001, 80, 157–161. [Google Scholar] [CrossRef]
- Grube, M.; Lin, J.G.; Lee, P.H.; Kokorevicha, S. Evaluation of sewage sludge-based compost by FT-IR spectroscopy. Geoderma 2006, 130, 324–333. [Google Scholar] [CrossRef]
- Singh, B.; Avci, U.; Eichler Inwood, S.E.; Grimson, M.J.; Landgraf, J.; Mohnen, D.; Sørensen, I.; Wilkerson, C.G.; Willats, W.G.T.; Haigler, C.H. A specialized outer layer of the primary cell wall joins elongating cotton fibers into tissue-like bundles. Plant Physiol. 2009, 150, 684–699. [Google Scholar] [CrossRef] [Green Version]
- Abidi, N.; Cabrales, L.; Haigler, C.H. Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohydr. Polym. 2014, 100, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Lou, Z.; Sun, Y.; Zhou, X.; Baig, S.A.; Hu, B.; Xu, X. Composition variability of spent mushroom substrates during continuous cultivation, composting process and their effects on mineral nitrogen transformation in soil. Geoderma 2017, 307, 30–37. [Google Scholar] [CrossRef]
- Ahmad, M.S.; Mehmood, M.A.; Liu, C.-G.; Tawab, A.; Bai, F.-W.; Sakdaronnarong, C.; Xu, J.; Rahimuddin, S.A.; Gull, M. Bioenergy potential of Wolffia arrhiza appraised through pyrolysis, kinetics, thermodynamics parameters and TG-FTIR-MS study of the evolved gases. Bioresour. Technol. 2018, 253, 297–303. [Google Scholar] [CrossRef]
- Pua, F.-L.; Subari, M.S.; Ean, L.-W.; Krishnan, S.G. Characterization of biomass fuel pellets made from Malaysia tea waste and oil palm empty fruit bunch. Mater. Today. Proc. 2020, 31, 187–190. [Google Scholar] [CrossRef]
- Gao, L.; Volpe, M.; Lucian, M.; Fiori, L.; Goldfarb, J.L. Does hydrothermal carbonization as a biomass pretreatment reduce fuel segregation of coal-biomass blends during oxidation? Energy Convers. Manag. 2019, 181, 93–104. [Google Scholar] [CrossRef]
- Wang, T.; Li, Y.; Zhang, J.; Zhao, J.; Liu, Y.; Sun, L.; Liu, B.; Mao, H.; Lin, Y.; Li, W.; et al. Evaluation of the potential of pelletized biomass from different municipal solid wastes for use as solid fuel. Waste Manag. 2018, 74, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Tumuluru, J.S. Effect of process variables on the density and durability of the pellets made from high moisture corn stover. Biosys. Eng. 2014, 119, 44–57. [Google Scholar] [CrossRef] [Green Version]
- Emadi, B.; Iroba, K.L.; Tabil, L.G. Effect of polymer plastic binder on mechanical, storage and combustion characteristics of torrefied and pelletized herbaceous biomass. ApEn 2017, 198, 312–319. [Google Scholar] [CrossRef]
- Pradhan, P.; Mahajani, S.M.; Arora, A. Pilot scale production of fuel pellets from waste biomass leaves: Effect of milling size on pelletization process and pellet quality. Fuel 2021, 285, 119145. [Google Scholar] [CrossRef]
- Qin, Y.; Zhao, Z.; Wiltowski, T.; Aloqaili, M.; Liang, Y. Investigation of Co-Gasification Reactivity of Torrefied Jatropha Seed Cake with Illinois# 6 Coal Char. BioResources 2016, 11, 7624–7636. [Google Scholar]
- Nobre, C.; Gonçalves, M.; Mendes, B.; Vilarinho, C.; Teixeira, J. Torrefaction Effects on Composition and Quality of Biomass Wastes Pellets. In Proceedings of the 3rd International Conference on Wastes: Solutions, Treatments and Opportunities, Viana Do Castelo, Portugal, 14–16 September 2015; pp. 171–176. [Google Scholar]
- Jia, G. Combustion Characteristics and Kinetic Analysis of Biomass Pellet Fuel Using Thermogravimetric Analysis. Processes 2021, 9, 868. [Google Scholar] [CrossRef]
- Waqas, M.; Almeelbi, T.; Nizami, A.-S. Resource recovery of food waste through continuous thermophilic in-vessel composting. Environ. Sci. Pollut. Res. 2018, 25, 5212–5222. [Google Scholar] [CrossRef]
- Ungureanu, N.; Vladut, V.; Voicu, G.; Dinca, M.-N.; Zăbavă, B.-Ș. Influence of biomass moisture content on pellet properties—Review. Eng. Rural. Dev. 2018, 17, 1876–1883. [Google Scholar] [CrossRef]
- Sharma, H.B.; Dubey, B.K. Binderless fuel pellets from hydrothermal carbonization of municipal yard waste: Effect of severity factor on the hydrochar pellets properties. J. Clean. Prod. 2020, 277, 124295. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, X.e.; Fei, B.; Jiang, Z.; Cai, Z.; Yu, Y. The properties of pellets from mixing bamboo and rice straw. Renew. Energy 2013, 55, 1–5. [Google Scholar] [CrossRef]
- Zafari, A.; Kianmehr, M.H. Factors affecting mechanical properties of biomass pellet from compost. Environ. Technol. 2014, 35, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Ayilara, M.S.; Olanrewaju, O.S.; Babalola, O.O.; Odeyemi, O. Waste Management through Composting: Challenges and Potentials. Sustainability 2020, 12, 4456. [Google Scholar] [CrossRef]
- Malakahmad, A.; Idrus, N.B.; Abualqumboz, M.S.; Yavari, S.; Kutty, S.R.M. In-vessel co-composting of yard waste and food waste: An approach for sustainable waste management in Cameron Highlands, Malaysia. Int. J. Recyl. Org. Waste Agric. 2017, 6, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Abasalizadeh, H.; Fathi Gerdelidani, A.; Khalaj, S.; Jalili Aramesh, S. Evaluation of environmental performance of the Starclean composter machine in converting the wet wastes into compost. J. Environ. Sci. Technol. 2017. [Google Scholar]
Ultimate Analysis (%) | Raw Mushroom Waste | B1 | B2 | B3 | B4 | B5 |
---|---|---|---|---|---|---|
Carbon | 36.44 | 42.91 | 41.46 | 42.30 | 41.67 | 42.09 |
Hydrogen | 6.83 | 6.46 | 6.53 | 6.54 | 6.54 | 6.54 |
Nitrogen | 5.36 | 3.96 | 3.94 | 4.04 | 4.02 | 4.09 |
Sulphur | 0.37 | 0.26 | 0.27 | 0.26 | 0.26 | 0.25 |
C/N ratio | 6.80 | 10.84 | 10.52 | 10.47 | 10.37 | 10.29 |
Sample | Moisture (%) | Volatile Matter (%) | Fixed Carbon (%) | Ash (%) | GCV (MJ/kg) | Mass Density (kg/m3) | Energy Density (GJ/m3) |
---|---|---|---|---|---|---|---|
Raw mushroom waste | 9.81 | 74.02 | 13.83 | 2.10 | 14.07 | - | - |
B1 | 5.47 | 64.52 | 21.78 | 8.18 | 18.85 | 1055.46 | 19.90 |
B2 | 6.06 | 73.92 | 15.18 | 4.94 | 19.08 | 1076.70 | 20.54 |
B3 | 2.64 | 65.01 | 23.82 | 8.58 | 18.90 | 1099.71 | 20.78 |
B4 | 5.06 | 62.61 | 25.76 | 6.43 | 18.83 | 1107.67 | 20.86 |
B5 | 3.33 | 75.42 | 13.50 | 7.17 | 18.76 | 1130.37 | 21.21 |
Sample | Moisture Content before Pelletization (%wt) | Impact Resistance (%) | Maximum Compressive Force (N) | Tensile Strength (MPa) | Wettability Index (%) |
---|---|---|---|---|---|
B1 | 29.62 ± 1.06 | 99.90 ± 0.09 | 266.27 | 1.56 | 7.93 |
B2 | 27.88 ± 0.89 | 99.91 ± 0.08 | 255.73 | 1.50 | 8.65 |
B3 | 26.46 ± 0.59 | 99.84 ± 0.11 | 258.68 | 1.52 | 8.94 |
B4 | 25.22 ± 0.70 | 99.90 ± 0.03 | 302.62 | 1.77 | 10.77 |
B5 | 24.34 ± 0.73 | 99.94 ± 0.04 | 280.84 | 1.65 | 13.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chia, W.Y.; Chew, K.W.; Le, C.F.; Chee, C.S.C.; Ooi, M.S.L.; Show, P.L. Utilization of Aerobic Compression Composting Technology on Raw Mushroom Waste for Bioenergy Pellets Production. Processes 2022, 10, 463. https://doi.org/10.3390/pr10030463
Chia WY, Chew KW, Le CF, Chee CSC, Ooi MSL, Show PL. Utilization of Aerobic Compression Composting Technology on Raw Mushroom Waste for Bioenergy Pellets Production. Processes. 2022; 10(3):463. https://doi.org/10.3390/pr10030463
Chicago/Turabian StyleChia, Wen Yi, Kit Wayne Chew, Cheng Foh Le, Chelsea Siew Chyi Chee, Mae See Luan Ooi, and Pau Loke Show. 2022. "Utilization of Aerobic Compression Composting Technology on Raw Mushroom Waste for Bioenergy Pellets Production" Processes 10, no. 3: 463. https://doi.org/10.3390/pr10030463
APA StyleChia, W. Y., Chew, K. W., Le, C. F., Chee, C. S. C., Ooi, M. S. L., & Show, P. L. (2022). Utilization of Aerobic Compression Composting Technology on Raw Mushroom Waste for Bioenergy Pellets Production. Processes, 10(3), 463. https://doi.org/10.3390/pr10030463