A Simple and Effective Modeling Method for 3D Porous Irregular Structures
Abstract
:1. Introduction
- (i)
- We propose a novel modeling method for irregular 3D porous structures based on the FEM and thermodynamic analysis.
- (ii)
- We build up 3D porous structures for both intricate convex and concave structures by combining adjacent Voronoi cells.
- (iii)
- We implementat a prototype system which performs kinds of modeling experiments and shows the effectiveness of the proposed method.
2. Related Work
3. A Simple and Effective Modeling Method for 3D Irregular Structures
3.1. Problems of Existing Methods
Algorithm 1: Porous Structure Modeling Method. |
3.2. Voronoi Tessellation
3.3. Isosurface Extraction
3.4. Concave Porous Structures
4. Modeling Experiments
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, Z.; Nguang, S.K.; Kong, D.-X. Advances in Modelling, Monitoring, and Control for Complex Industrial Systems. Complexity 2019, 2019, 2975083. [Google Scholar] [CrossRef]
- Liu, W. Progress in additive manufacturing on complex structures and high-performance materials. J. Mech. Eng. 2019, 55, 128–151. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, Z.; Zhou, Y.; Guo, Y. A novel complex network-based modeling method for heterogeneous product design. Clust. Comput. 2019, 22, 7861–7872. [Google Scholar] [CrossRef]
- Kim, S.-H.; Nack, J.; Hansoo, K. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility. Nature 2015, 518, 77–79. [Google Scholar] [CrossRef]
- Sigmund, O. Systematic design of metamaterials by topology optimization. In Proceedings of the IUTAM Symposium on Modelling Nanomaterials and Nanosystems, Aalborg, Denmark, 19–22 May 2009. [Google Scholar] [CrossRef]
- Gupta, V. CAD modeling and rapid manufacturing of heterogeneous objects: A review. Int. J. Tech. Res. Appl. 2014, 3, 30–35. [Google Scholar]
- Li, B.; Fu, J.; Feng, J.; Shang, C.; Lin, Z. Review of heterogeneous material objects modeling in additive manufacturing. Vis. Comput. Ind. Biomed. 2020, 3, 1–18. [Google Scholar] [CrossRef]
- Dichen, L.I. Additive Manufacturing: Integrated Fabrication of Macro/Microstructures. J. Mech. Eng. 2013, 49, 129. [Google Scholar] [CrossRef]
- Denghui, Z.; Guo, Y.; Zhao, Z.; Zhou, Y. Co-authorship Networks in Additive Manufacturing Studies Based on Social Network Analysis. Br. J. Appl. Sci. Technol. 2016, 15, 1–6. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M. Additive Manufacturing Applications in Industry 4.0: A Review. J. Ind. Integr. Manag. 2019, 4, 1930001. [Google Scholar] [CrossRef]
- Nagarajan, B.; Hu, Z.; Song, X.; Zhai, W.; Wei, J. Development of Micro Selective Laser Melting: The State of the Art and Future Perspectives. Engineering 2019, 5, 702–720. [Google Scholar] [CrossRef]
- Gao, L.; Shen, W.; Li, X. New Trends in Intelligent Manufacturing. Engineering 2019, 5, 619–620. [Google Scholar] [CrossRef]
- Gao, Z.; Kong, D.; Gao, C. Modeling and Control of Complex Dynamic Systems: Applied Mathematical Aspects. J. Appl. Math. 2012, 2012, 869792. [Google Scholar] [CrossRef] [Green Version]
- Rosen, D.W. Thoughts on Design for Intelligent Manufacturing. Engineering 2019, 5, 609–614. [Google Scholar] [CrossRef]
- Wang, L. From Intelligence Science to Intelligent Manufacturing. Engineering 2019, 5, 615–618. [Google Scholar] [CrossRef]
- Wang, W.; Wang, T.Y.; Yang, Z.; Liu, L.; Tong, X.; Tong, W.; Deng, J.; Chen, F.; Liu, X. Cost-effective printing of 3D objects with skin-frame structures. ACM Trans. Graph. (TOG) 2013, 32, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Koeppe, A.; Padilla, C.A.H.; Voshage, M.; Schleifenbaum, J.H.; Markert, B. Efficient numerical modeling of 3D-printed lattice-cell structures using neural networks. Manuf. Lett. 2018, 15, 147–150. [Google Scholar] [CrossRef]
- Martínez, J.; Dumas, J.; Lefebvre, S. Procedural voronoi foams for additive manufacturing. ACM Trans. Graph. 2016, 35, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.G.; Xu, W.P.; Wang, W.M.; Yang, Z.W.; Liu, X.P. Survey on geometric computing in 3D printing. Chin. J. Comput. 2015, 38, 1243–1267. [Google Scholar] [CrossRef]
- Andrews, J.; Jin, H.; Sequin, C. Interactive Inverse 3D Modeling. Comput.-Aided Des. Appl. 2013, 9, 881–900. [Google Scholar] [CrossRef]
- Kou, X.Y.; Tan, S.T. Heterogeneous object modeling: A review. Comput. Aided Des. 2007, 39, 284–301. [Google Scholar] [CrossRef]
- Compton, B.G.; Lewis, J.A. 3D-printing of lightweight cellular composites. Adv. Mater. 2014, 26, 5930–5935. [Google Scholar] [CrossRef] [PubMed]
- Gan, Z.; Li, H.; Wolff, S.J.; Bennett, J.L.; Hyatt, G.; Wagner, G.J.; Cao, J.; Liu, W.K. Data-Driven Microstructure and Microhardness Design in Additive Manufacturing Using a Self-Organizing Map. Engineering 2019, 5, 730–735. [Google Scholar] [CrossRef]
- Lu, H.Z.L.; Wei, A.S.Y.; Fan, Q.; Chen, X.; Savoye, Y.; Tu, C.; Cohen-Or, D.; Chen, B. Build-to-last: Strength to weight 3D printed objects. ACM Trans. Graph. (Proc. SIGGRAPH) 2014, 33, 1–10. [Google Scholar] [CrossRef]
- Xu, W.; Wang, W.; Li, H.; Yang, Z.; Liu, L. Topology Optimization for Minimal Volume in 3D Printing. J. Comput. Res. Dev. 2015, 52, 38. [Google Scholar] [CrossRef]
- Kou, X.Y.; Tan, S.T. A simple and effective geometric representation for irregular porous structure modeling. Comput.-Aided Des. 2010, 42, 930–941. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Jiang, L. Bio-inspired design of multiscale structures for function integration. Nano Today 2011, 6, 155–175. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, Y.; Guo, Y. A modeling and optimization method for heterogeneous objects based on complex networks theory. Clust. Comput. 2019, 22, 2645–2654. [Google Scholar] [CrossRef]
- Ma, W. Subdivision surfaces for CAD—An overview. Comput.-Aided Des. 2005, 37, 693–709. [Google Scholar] [CrossRef]
- Wang, X.; Ying, X.; Liu, Y.-J.; Xin, S.-Q.; Wang, W.; Gu, X.; Mueller-Wittig, W.; He, Y. Intrinsic computation of centroidal Voronoi tessellation (CVT) on meshes. Comput.-Aided Des. 2015, 58, 51–61. [Google Scholar] [CrossRef]
- Tornabene, F.; Fantuzzi, N.; Ubertini, F.; Viola, E. Strong formulation finite element method based on differential quadrature: A survey. Appl. Mech. Rev. 2015, 67, 020801. [Google Scholar] [CrossRef]
- Roudsari, M.S.; Pak, M.; Smith, A. Ladybug: A parametric environmental plugin for grasshopper to help designers create an environmentally-conscious design. In Proceedings of the 13th International IBPSA Conference, Lyon, France, 26–28 August 2013; pp. 3128–3135. [Google Scholar]
- Geuzaine, C.; Remacle, J.-F. Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 2009, 79, 1309–1331. [Google Scholar] [CrossRef]
- Cimrman, R.; Lukeš, V.; Rohan, E. Multiscale finite element calculations in Python using SfePy. Adv. Comput. Math. 2019, 45, 1897–1921. [Google Scholar] [CrossRef] [Green Version]
- Villarrubia, G.; de Paz, J.F.; Chamoso, P.; la Prieta, F.D. Artificial neural networks used in optimization problems. Neurocomputing 2018, 272, 10–16. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, L.; Zhang, D. A Simple and Effective Modeling Method for 3D Porous Irregular Structures. Processes 2022, 10, 464. https://doi.org/10.3390/pr10030464
Ren L, Zhang D. A Simple and Effective Modeling Method for 3D Porous Irregular Structures. Processes. 2022; 10(3):464. https://doi.org/10.3390/pr10030464
Chicago/Turabian StyleRen, Lijing, and Denghui Zhang. 2022. "A Simple and Effective Modeling Method for 3D Porous Irregular Structures" Processes 10, no. 3: 464. https://doi.org/10.3390/pr10030464
APA StyleRen, L., & Zhang, D. (2022). A Simple and Effective Modeling Method for 3D Porous Irregular Structures. Processes, 10(3), 464. https://doi.org/10.3390/pr10030464