The Anti-Hypertensive and Hypoglycemic Potential of Bioactive Compounds Derived from Pulasan Rind
Abstract
:1. Introduction
2. Methodology
2.1. Preparation and Extraction of Samples
2.2. Determination of Antioxidant Properties of Sample Extracts
2.2.1. Total Flavonoid Content (TFC)
2.2.2. Total Phenolic Content (TPC)
2.2.3. DPPH Radical Scavenging Activity
2.2.4. Ferric Reducing Antioxidant Power (FRAP)
2.2.5. Trolox Equivalent Antioxidant Capacity (TEAC)
2.3. Angiotensin-Converting Enzyme (ACE) Inhibition Assay
2.4. Alpha-Amylase Inhibition Assay
2.5. Identification of Bioactive Compounds
2.6. Statistical Analysis
3. Results and Discussion
3.1. Quantification of Antioxidant Components in Different Parts of Pulasan
3.2. Quantification of Antioxidant Capacity in Different Parts of Pulasan
3.2.1. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Assay
3.2.2. Trolox Equivalent Antioxidant Capacity (TEAC)
3.2.3. Ferric Reducing Antioxidant Power (FRAP)
3.3. The Anti-Hypertensive Properties of Pulasan Rind
3.4. The Hypoglycemic Properties of Pulasan Rind
3.5. Bioactive Compounds of Pulasan Rind
3.6. Identification of the Anti-Hypertensive and Hypoglycemic Bioactive Compounds Derived from the Pulasan Rind
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ling, L.T.; Radhakrishnan, A.K.; Subramaniam, T.; Cheng, H.M.; Palainisamy, U.D. Assessment of antioxidant capacity and cytotoxicity of selected Malaysian plants. Molecules 2010, 15, 2139–2151. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.T.; Tan, S.S. A Review on the Hypoglycemic Properties of Selected Non-Leafy Vegetables in Malaysia. Nutr. Food Sci. 2019, 49, 1113–1125. [Google Scholar] [CrossRef]
- Thitilertdecha, N.; Teerawutgulrag, A.; Kilburn, J.D.; Rakariyatham, N. Identification of major phenolic compounds from Nephelium lappaceum and their antioxidant activities. Molecules 2010, 15, 1453–1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riyanto, S.; Rohman, A. Antioxidant Activities of Rambutan (Nephelium Lappaceum L) Peel in vitro. Food Res. 2017, 2, 119–123. [Google Scholar] [CrossRef]
- Penang Tropical Fruit Farm. Available online: https://tropicalfruitfarm.com.my/fruits/p,p-t/pulasan/ (accessed on 24 December 2021).
- Villacís-Chiriboga, J.; Elst, K.; Van Camp, J.; Vera, E.; Ruales, J. Valorization of by-products from tropical fruits: Extraction methodologies, applications, environmental and economic assessment—A Review (Part 1: General overview of the by-products, traditional biorefinery practices and possible applications). Compr. Rev. Food Sci. Food Saf. 2020, 19, 405–447. [Google Scholar] [CrossRef]
- Chan, C.K.; Goh, B.K.; Kamarudin, M.N.A.; Kadir, H.A. Aqueous fraction of Nephelium ramboutan-ake Rind induces mitochondrial-apoptosis in HT-29 human colorectal adenocarcinoma cells. Molecules 2012, 17, 6633–6657. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.S.; Tan, S.T.; Tan, C.X. Antioxidant, hypoglycemic and anti-hypertensive properties of extracts derived from peel, fruit and kernel of salak. Br. Food J. 2020, 122, 1–10. [Google Scholar] [CrossRef]
- Shin, Y.; Liu, R.H.; Nock, J.F.; Holliday, D.; Watkins, C.B. Temperature and relative humidity effects on quality, total ascorbic acid, phenolics and flavonoid concentrations, and antioxidant activity of strawberry. Postharvest Biol. Technol. 2007, 45, 349–357. [Google Scholar] [CrossRef]
- Ismail, A.; Marjan, Z.M.; Foong, C.W. Total antioxidant activity and phenolic content in selected vegetables. Food Chem. 2004, 87, 581–586. [Google Scholar] [CrossRef]
- Enujiugha, V.N.; Talabi, Y.H.; Malomo, S.A.; Olagunju, A.I. DPPH radical scavenging capacity of phenolic extracts from African Yam Bean (Sphenostylis stenocarpa). Food Nutr. Sci. 2012, 3, 7–13. [Google Scholar]
- Abdullah, N.; Ismail, S.M.; Aminudin, N.; Shuib, A.S.; Lau, B.F. Evaluation of selected culinary-medicinal mushrooms for antioxidant and ACE inhibitory activities. Evid.-Based Complement. Altern. Med. 2011, 2012, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, A.E.D.S.; Lajolo, F.M.; Genovese, M.I. Chemical Composition and Antioxidant/Anti-diabetic Potential of Brazilian Native Fruits and Commercial Frozen Pulps. J. Agric. Food Chem. 2010, 58, 4666–4674. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Xia, W. Analysis of phenolic compounds in Chinese olive (Canarium album L.) fruit by RPHPLC-DAD-ESI-MS. Food Chem. 2007, 105, 1307–1311. [Google Scholar] [CrossRef]
- Wakeel, A.; Jan, S.A.; Ullah, I.; Shinwari, Z.K.; Xu, M. Solvent polarity mediates phytochemical yield and antioxidant capacity of Isatis tinctoria. Peer J. 2019, 7, 7857–7876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaves, J.O.; de Souza, M.C.; da Silva, L.C.; Lachos-Perez, D.; Torres-Mayanga, P.C.; Machado, A.P.D.F.; Forster-Carneiro, T.; Vázquez-Espinosa, M.; González-de-Peredo, A.V.; Barbero, G.F.; et al. Extraction of Flavonoids from Natural Sources Using Modern Techniques. Front Chem. 2020, 8, 507887–507912. [Google Scholar] [CrossRef] [PubMed]
- Sopee, M.S.M.; Azlan, A.; Khoo, H.E. Comparison of antioxidants content and activity of Nephelium mutabile rind extracted using ethanol and water. J. Food Meas. Charact. 2019, 13, 1958–1963. [Google Scholar] [CrossRef]
- Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 2014, 22, 296–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, P.Y.; Tan, S.T. Comparison of Total Phenolic Content and Antioxidant Activities in Selected Coloured Plants. Br. Food J. 2020, 122, 3193–3201. [Google Scholar] [CrossRef]
- Iloki-Assanga, S.B.; Lewis-Lujan, L.; Lara-Espinoza, C.L.; Gil-Salido, A.A.; Fernandez-Angulo, D.; Rubio-Pino, J.L.; Haines, D.D. Solvent effects on phytochemical constituent profiles and antioxidant activities, using four different extraction formulations for analysis of Bucida buceras L. and Phoradendron californicum. BMC Res. Notes 2015, 8, 396–409. [Google Scholar] [CrossRef] [Green Version]
- Gülçin, İ. Antioxidant activity of food constituents: An overview. Arch. Toxicol. 2012, 86, 345–391. [Google Scholar] [CrossRef]
- Chaudhary, S.K.; De, A.; Bhadra, S.; Mukherjee, P.K. Angiotensin-converting enzyme (ACE) inhibitory potential of standardized Mucuna pruriens seed extract. Pharm. Biol. 2015, 53, 1614–1620. [Google Scholar] [CrossRef] [PubMed]
- Kamtekar, S.; Keer, V.; Patil, V. Estimation of Phenolic content, Flavonoid Content, Antioxidant and Alpha-amylase Inhibitory Activity of Marketed Polyherbal Formulation. J. Appl. Pharm. Sci. 2014, 4, 61–65. [Google Scholar]
Extraction Solvent | Part of Pulasan | TFC (mg CE/g) | TPC (mg GAE/g) | DPPH (% RSA) | TEAC (µmol/g T.E.) | FRAP (µmol/g Fe2+) |
---|---|---|---|---|---|---|
Distilled Water | Rind | 1.95 ± 0.05 a | 3.00 ± 0.05 a | 60.18 ± 0.74 a | 19.61 ± 0.16 a | 42.75 ± 2.26 a |
Flesh | 0.35 ± 0.03 a | 0.68 ± 0.09 b | 6.43 ± 0.20 b | 4.32 ± 0.47 b | 5.86 ± 0.41 b | |
Kernel | 1.03 ± 0.32 a | 1.52 ± 0.31 c | 5.75 ± 0.20 b | 11.36 ± 0.66 c | 7.27 ± 0.07 b | |
Methanol | Rind | 40.75 ± 1.45 b | 10.31 ± 0.12 d | 75.72 ± 0.17 c | 20.65 ± 0.09 a | 95.17 ± 0.41 c |
Flesh | 3.09 ± 0.14 a | 1.54 ± 0.06 c | 34.50 ± 2.71 d | 12.90 ± 1.09 c | 15.01 ± 0.65 d | |
Kernel | 6.49 ± 0.04 a | 1.57 ± 0.02 c | 22.24 ± 4.16 e | 11.82 ± 0.44 c | 12.49 ± 0.60 e | |
Ethanol | Rind | 68.98 ± 6.71 c | 10.62 ± 0.11 d | 74.54 ± 0.87 c | 19.01 ± 0.13 a | 110.20 ± 0.03 f |
Flesh | 1.38 ± 0.07 a | 0.88 ± 0.07 b | 26.69 ± 2.70 e | 8.87 ± 1.61 d | 11.28 ± 0.23 e | |
Kernel | 2.26 ± 0.21 a | 1.56 ± 0.06 c | 15.12 ± 1.33 f | 11.50 ± 0.67 c | 12.00 ± 0.28 e |
Extraction Solvent | Rind |
---|---|
ACE inhibition (%) | |
Distilled Water | 83.97 ± 2.79 a |
Methanol | 97.74 ± 0.72 b |
Ethanol | 98.93 ± 0.58 b |
Alpha-amylase inhibition (%) | |
Distilled Water | 83.84 ± 2.34 c |
Methanol | 96.16 ± 10.23 d |
Ethanol | 94.89 ± 6.39 d |
Bioactive Compounds | mg/g Sample |
---|---|
Geraniin | 77.09 ± 0.63 |
Chlorogenic acid | 107.10 ± 1.09 |
Catechin | 21.30 ± 0.80 |
Corilagin | 41.93 ± 0.28 |
Syringic acid | 6.95 ± 0.42 |
Ellagic acid | 35.12 ± 2.27 |
Naringenin | 23.53 ± 0.95 |
Antioxidant Properties | ACE Inhibition | Alpha-Amylase Inhibition |
TPC | 0.977 * | 0.691 * |
TFC | 0.913 * | 0.633 |
FRAP | 0.976 * | 0.653 |
TEAC | 0.061 | 0.143 |
DPPH | 0.971 * | 0.707 * |
Bioactive Compound | ACE Inhibition | Alpha-Amylase Inhibition |
Geraniin | 0.998 * | 0.845 |
Chlorogenic Acid | 0.997 * | 0.846 |
Catechin | 0.998 * | 0.845 |
Corilagin | 0.997 * | 0.846 |
Syringic Acid | 0.998 * | 0.845 |
Ellagic Acid | −0.998 | −0.845 |
Naringenin | 0.998 * | 0.845 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, S.S.; Tan, S.T.; Tan, C.X. The Anti-Hypertensive and Hypoglycemic Potential of Bioactive Compounds Derived from Pulasan Rind. Processes 2022, 10, 592. https://doi.org/10.3390/pr10030592
Tan SS, Tan ST, Tan CX. The Anti-Hypertensive and Hypoglycemic Potential of Bioactive Compounds Derived from Pulasan Rind. Processes. 2022; 10(3):592. https://doi.org/10.3390/pr10030592
Chicago/Turabian StyleTan, Seok Shin, Seok Tyug Tan, and Chin Xuan Tan. 2022. "The Anti-Hypertensive and Hypoglycemic Potential of Bioactive Compounds Derived from Pulasan Rind" Processes 10, no. 3: 592. https://doi.org/10.3390/pr10030592
APA StyleTan, S. S., Tan, S. T., & Tan, C. X. (2022). The Anti-Hypertensive and Hypoglycemic Potential of Bioactive Compounds Derived from Pulasan Rind. Processes, 10(3), 592. https://doi.org/10.3390/pr10030592