When the Total Hip Replacement Fails: A Review on the Stress-Shielding Effect
Abstract
:1. Introduction
Methodological Approach and Scope
2. Why Does the Stress-Shielding Appear?
3. How to Prevent Femoral Stress-Shielding
3.1. Prosthesis (Re)design
3.1.1. The Short Stem
3.1.2. The Hollow Stem
3.1.3. The Ribbed Stem
3.2. Surface Treatment and Coating
3.2.1. Ongrowth Anchoring
3.2.2. Ingrowth Anchoring
3.3. Innovative Biomaterials
3.3.1. Porous Titanium
3.3.2. β. Ti–33.6Nb–4Sn Alloy
3.3.3. CF/PEEK Composites
3.3.4. CF/PA 12 Composite
4. Other Design Solutions
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Knight, S.R.; Aujla, R.; Biswas, S.P. Total Hip Arthroplasty—Over 100 years of operative history. Orthop. Rev. 2011, 3, e16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sershon, R.; Balkissoon, R.; Valle, C.J. Current indications for hip resurfacing arthroplasty in 2016. Curr. Rev. Musculoskelet. Med. 2016, 9, 84–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez, P.F.; Morcuende, J.A. Early attempts at hip arthroplasty—1700s to 1950s. Iowa Orthop. J. 2005, 25, 25–29. [Google Scholar] [PubMed]
- Charnley, J. Arthroplasty of the hip. A new operation. Lancet 1961, 1, 1129–1132. [Google Scholar] [CrossRef]
- Hip and Knee Replacement. Available online: https://www.oecd-ilibrary.org/sites/2fc83b9a-en/index.html?itemId=/content/component/2fc83b9a-en (accessed on 13 March 2022).
- Singh, J.A.; Yu, S.; Chen, L.; Cleveland, J.D. Rates of total joint replacement in the United States: Future projections to 2020–2040 using the National Inpatient Sample. J. Rheumatol. 2019, 46, 1134–1140. [Google Scholar] [CrossRef]
- Lee, J.M. The Current Concepts of Total Hip Arthroplasty. Hip Pelvis 2016, 28, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Siopack, J.S.; Jergesen, H.E. Total hip arthroplasty. West. J. Med. 1995, 162, 243–249. [Google Scholar]
- Petis, S.; Howard, J.L.; Lanting, B.L.; Vasarhelyi, E.M. Surgical approach in primary total hip arthroplasty: Anatomy, technique and clinical outcomes. Can. J. Surg. 2015, 58, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Enge, J.D.J.; Castro, A.A.; Fonseca, E.K.U.N.; Baptista, E.; Padial, M.B.; Rosemberg, L.A. Main complications of hip arthroplasty: Pictorial essay. Radiol. Bras. 2020, 53, 56–62. [Google Scholar] [CrossRef]
- Del Pozo, J.L.; Patel, R. Clinical practice. Infection associated with prosthetic joints. N. Engl. J. Med. 2009, 361, 787–794. [Google Scholar] [CrossRef] [Green Version]
- Tavakkoli Avval, P.; Klika, V.; Bougherara, H. Predicting bone remodeling in response to total hip arthroplasty: Computational study using mechanobiochemical model. J. Biomech. Eng. 2014, 136, 051002. [Google Scholar] [CrossRef]
- Sharma, R.; Vittal, V.K.; Gupta, V. Homogeneous modelling and analysis of hip prosthesis using FEA. J. Phys. Conf. Ser. 2019, 1240, 012118. [Google Scholar] [CrossRef]
- Joshi, T.; Sharma, R.; Mittal, V.K.; Gupta, V.; Krishan, G. Dynamic analysis of hip prosthesis using different biocompatible alloys. Open J. Eng. ASME 2022, 1, 011001. [Google Scholar] [CrossRef]
- Brodt, S.; Matziolis, G.; Buckwitz, B.; Zippelius, T.; Strube, P.; Roth, A. Long-term follow-up of bone remodelling after cementless hip arthroplasty using different stems. Sci. Rep. 2020, 10, 10143. [Google Scholar] [CrossRef] [PubMed]
- Stukenborg-Colsman, C.M.; von der Haar-Tran, A.; Windhagen, H.; Bouguecha, A.; Wefstaedt, P.; Lerch, M. Bone remodelling around a cementless straight THA stem: A prospective dual-energy X-ray absorptiometry study. Hip Int. 2012, 22, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Sluimer, J.C.; Hoefnagels, N.H.; Emans, P.J.; Kuijer, R.; Geesink, R.G. Comparison of two hydroxyapatite-coated femoral stems: Clinical, functional, and bone densitometry evaluation of patients randomized to a regular or modified hydroxyapatite-coated stem aimed at proximal fixation. J. Arthroplast. 2006, 21, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Jahnke, A.; Wiesmair, A.K.; Fonseca Ulloa, C.A.; Ahmed, G.A.; Rickert, M.; Ishaque, B.A. Outcome of short- to medium-term migration analysis of a cementless short stem total hip arthroplasty using EBRA-FCA: A radiological and clinical study. Arch. Orthop. Trauma Surg. 2020, 140, 247–253. [Google Scholar] [CrossRef]
- Morita, A.; Kobayashi, N.; Choe, H.; Tezuka, T.; Hiashihira, S.; Inaba, Y. Preoperative factors predicting the severity of BMD loss around the implant after Total hip Arthroplasty. BMC Musculoskelet. Disord. 2021, 22, 290. [Google Scholar] [CrossRef]
- Frost, H.M. Wolff’s Law and bone’s structural adaptations to mechanical usage: An overview for clinicians. Angle Orthod. 1994, 64, 175–188. [Google Scholar] [CrossRef]
- Oftadeh, R.; Perez-Viloria, M.; Villa-Camacho, J.C.; Vaziri, A.; Nazarian, A. Biomechanics and mechanobiology of trabecular bone: A review. J. Biomech. Eng. 2015, 137, 0108021–01080215. [Google Scholar] [CrossRef] [Green Version]
- Klein-Nulend, J.; Bakker, A.D.; Bacabac, R.G.; Vatsa, A.; Weinbaum, S. Mechanosensation and transduction in osteocytes. Bone 2013, 54, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Yavropoulou, M.P.; Yovos, J.G. The molecular basis of bone mechanotransduction. J. Musculoskelet. Neuronal Interact. 2016, 16, 221–236. [Google Scholar] [PubMed]
- Siddiqui, J.A.; Partridge, N.C. Physiological Bone Remodeling: Systemic Regulation and Growth Factor Involvement. Physiology 2016, 31, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.J.; Reed, K.L.; Robertson, D.D.; Bragdon, C.; Harris, W.H.; Maloney, W.J. Reduced bone stress as predicted by composite beam theory correlates with cortical bone loss following cemented total hip arthroplasty. J. Orthop. Res. 1999, 17, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Engh, C.A.; Bobyn, J.D. The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplasty. Clin. Orthop. Relat. Res. 1988, 231, 7–28. [Google Scholar] [CrossRef]
- Sumner, D.R. Long-term implant fixation and stress-shielding in total hip replacement. J. Biomech. 2015, 48, 797–800. [Google Scholar] [CrossRef]
- Ait Moussa, A.; Fischer, J.; Yadav, R.; Khandaker, M. Minimizing Stress-shielding and cement damage in cemented femoral component of a hip prosthesis through computational design optimization. Adv. Orthop. 2017, 2017, 8437956. [Google Scholar] [CrossRef] [Green Version]
- Weinans, H.; Sumner, D.R.; Igloria, R.; Natarajan, R.N. Sensitivity of periprosthetic stress-shielding to load and the bone density-modulus relationship in subject-specific finite element models. J. Biomech. 2000, 33, 809–817. [Google Scholar] [CrossRef]
- Ridzwan, M.I.Z.; Shuib, S.; Hassan, A.Y.; Shokri, A.A.; Mohamad Ibrahim, M.N. Problem of Stress-shielding and Improvement to the Hip Implant Designs: A Review. J. Med. Sci. 2007, 7, 460–467. [Google Scholar] [CrossRef] [Green Version]
- Swanson, S.A.V. Mechanical Aspects of Fixation. In The Scientific Basis of Joint Replacement; Swanson, S.A.V., Freeman, M.A.R., Eds.; Pitman Medical Publishers: Turnbridge Wells, UK, 1977; pp. 130–157. [Google Scholar]
- Huiskes, R. Stress-shielding and bone resorption in THA: Clinical versus computer-simulation studies. Acta Orthop. Belg. 1993, 59 (Suppl. S1), 118–129. [Google Scholar]
- Luo, C.; Wu, X.D.; Wan, Y.; Liao, J.; Cheng, Q.; Tian, M.; Bai, Z.; Huang, W. Femoral Stress Changes after Total Hip Arthroplasty with the Ribbed Prosthesis: A Finite Element Analysis. Biomed. Res. Int. 2020, 23, 6783936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, M.G.; Advani, S.G.; Miller, F.; Santare, M.H. Analysis of a femoral hip prosthesis designed to reduce stress-shielding. J. Biomech. 2000, 33, 1655–1662. [Google Scholar] [CrossRef]
- Bieger, R.; Ignatius, A.; Reichel, H.; Dürselen, L. Biomechanics of a short stem: In vitro primary stability and stress-shielding of a conservative cementless hip stem. J. Orthop. Res. 2013, 31, 1180–1186. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Vallejo, J.; Roces-García, J.; Moreta, J.; Donaire-Hoyas, D.; Gayoso, Ó.; Marqués-López, F.; Albareda, J. Biomechanical behavior of an hydroxyapatite-coated traditional hip stem and a short one of similar design: Comparative study using finite element analysis. Arthroplast. Today 2021, 7, 167–176. [Google Scholar] [CrossRef]
- Fetto, J.F. A Dynamic Model of Hip Joint Biomechanics: The Contribution of Soft Tissues. Adv. Orthop. 2019, 4, 5804642. [Google Scholar] [CrossRef] [Green Version]
- Gross, S.; Abel, E.W. A finite element analysis of hollow stemmed hip prostheses as a means of reducing stress-shielding of the femur. J. Biomech. 2001, 34, 995–1003. [Google Scholar] [CrossRef]
- Wu, X.D.; Tian, M.; He, Y.; Chen, H.; Chen, Y.; Mishra, R.; Liu, W.; Huang, W. Short to Midterm Follow-Up of Periprosthetic Bone Mineral Density after Total Hip Arthroplasty with the Ribbed Anatomic Stem. Biomed. Res. Int. 2019, 27, 3085258. [Google Scholar] [CrossRef] [Green Version]
- Gruen, T.A.; McNeice, G.M.; Amstutz, H.C. “Modes of failure” of cemented stem-type femoral components: A radiographic analysis of loosening. Clin. Orthop. Relat. Res. 1979, 141, 17–27. [Google Scholar] [CrossRef]
- Lappalainen, R.; Santavirta, S.S. Potential of coatings in total hip replacement. Clin. Orthop. Relat. Res. 2005, 430, 72–79. [Google Scholar] [CrossRef]
- Bagno, A.; Di Bello, C. Surface treatments and roughness properties of Ti-based biomaterials. J. Mater. Sci. Mater. Med. 2004, 15, 935–949. [Google Scholar] [CrossRef]
- Thomas, K.A. Hydroxyapatite coatings. Orthopedics 1994, 17, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Arcos, D.; Vallet-Regí, M. Substituted hydroxyapatite coatings of bone implants. J. Mater. Chem. B 2020, 8, 1781–1800. [Google Scholar] [CrossRef] [PubMed]
- Auclair-Daigle, C.; Bureau, M.N.; Legoux, J.G.; Yahia, L. Bioactive hydroxyapatite coatings on polymer composites for orthopedic implants. J. Biomed. Mater. Res. A 2005, 73, 398–408. [Google Scholar] [CrossRef]
- MacDonald, S.J.; Rosenzweig, S.; Guerin, J.S.; McCalden, R.W.; Bohm, E.R.; Bourne, R.B.; Rorabeck, C.H.; Barrack, R.L. Proximally versus fully porous-coated femoral stems: A multicenter randomized trial. Clin. Orthop. Relat. Res. 2010, 468, 424–432. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, N.; Hamlet, S.; Love, R.M.; Nguyen, N.-T. Porous scaffolds for bone regeneration. J. Sci. Adv. Mater. Devices 2020, 5, 1–9. [Google Scholar] [CrossRef]
- Mour, M.; Das, D.; Winkler, T.; Hoenig, E.; Mielke, G.; Morlock, M.M.; Schilling, A.F. Advances in porous biomaterials for dental and orthopaedic applications. Materials 2010, 3, 2947–2974. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhou, X.; Liu, L.; Shi, Z.; Hao, Y. On the design and properties of porous femoral stems with adjustable stiffness gradient. Med. Eng. Phys. 2020, 81, 30–38. [Google Scholar] [CrossRef]
- Huiskes, R.; Weinans, H.; van Rietbergen, B. The relationship between stress-shielding and bone resorption around total hip stems and the effects of flexible materials. Clin. Orthop. Relat. Res. 1992, 274, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Arabnejad, S.; Johnston, B.; Tanzer, M.; Pasini, D. Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty. J. Orthop. Res. 2017, 35, 1774–1783. [Google Scholar] [CrossRef]
- Hanada, S.; Masahashi, N.; Jung, T.K.; Yamada, N.; Yamako, G.; Itoi, E. Fabrication of a high-performance hip prosthetic stem using β Ti-33.6Nb-4Sn. J. Mech. Behav. Biomed. Mater. 2014, 30, 140–149. [Google Scholar] [CrossRef] [Green Version]
- Chiba, D.; Yamada, N.; Mori, Y.; Oyama, M.; Ohtsu, S.; Kuwahara, Y.; Baba, K.; Tanaka, H.; Aizawa, T.; Hanada, S.; et al. Mid-term results of a new femoral prosthesis using Ti-Nb-Sn alloy with low Young’s modulus. BMC Musculoskelet. Disord. 2021, 22, 987. [Google Scholar] [CrossRef] [PubMed]
- Yamako, G.; Janssen, D.; Hanada, S.; Anijs, T.; Ochiai, K.; Totoribe, K.; Chosa, E.; Verdonschot, N. Improving stress-shielding following total hip arthroplasty by using a femoral stem made of β type Ti-33.6Nb-4Sn with a Young’s modulus gradation. J. Biomech. 2017, 63, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Yamako, G.; Chosa, E.; Totoribe, K.; Hanada, S.; Masahashi, N.; Yamada, N.; Itoi, E. In-vitro biomechanical evaluation of stress-shielding and initial stability of a low-modulus hip stem made of β type Ti-33.6Nb-4Sn alloy. Med. Eng. Phys. 2014, 36, 1665–1671. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Suonan, A.; Zhou, J.; Yuan, Q.; Liu, L.; Zhao, X.; Lou, X.; Yang, C.; Li, D.; Zhang, Y. PEEK (Polyether-ether-ketone) and its composite materials in orthopedic implantation. Arab. J. Chem. 2021, 14, 102977. [Google Scholar] [CrossRef]
- Rezaei, F.; Hassani, K.; Solhjoei, N.; Karimi, A. Carbon/PEEK composite materials as an alternative for stainless steel/titanium hip prosthesis: A finite element study. Australas. Phys. Eng. Sci. Med. 2015, 38, 569–580. [Google Scholar] [CrossRef]
- Carpenter, R.D.; Klosterhoff, B.S.; Torstrick, F.B.; Foley, K.T.; Burkus, J.K.; Lee, C.S.D.; Gall, K.; Guldberg, R.E.; Safranski, D.L. Effect of porous orthopaedic implant material and structure on load sharing with simulated bone ingrowth: A finite element analysis comparing titanium and PEEK. J. Mech. Behav. Biomed. Mater. 2018, 80, 68–76. [Google Scholar] [CrossRef]
- Anguiano-Sanchez, J.; Martinez-Romero, O.; Siller, H.R.; Diaz-Elizondo, J.A.; Flores-Villalba, E.; Rodriguez, C.A. Influence of PEEK Coating on Hip Implant Stress-shielding: A Finite Element Analysis. Comput. Math. Methods Med. 2016, 2016, 6183679. [Google Scholar] [CrossRef] [Green Version]
- Darwich, A.; Nazha, H.; Daoud, M. Effect of Coating Materials on the Fatigue Behavior of Hip Implants: A Three-dimensional Finite Element Analysis. J. Appl. Comput. Mech. 2020, 6, 284–295. [Google Scholar]
- Nakahara, I.; Takao, M.; Bandoh, S.; Bertollo, N.; Walsh, W.R.; Sugano, N. In vivo implant fixation of carbon fiber-reinforced PEEK hip prostheses in an ovine model. J. Orthop. Res. 2013, 31, 485–492. [Google Scholar] [CrossRef]
- Tavakkoli, A.P.; Samiezadeh, S.; Klika, V.; Bougherara, H. Investigating stress-shielding spanned by biomimetic polymer-composite vs. metallic hip stem: A computational study using mechano-biochemical model. J. Mech. Behav. Biomed. Mater. 2015, 41, 56–67. [Google Scholar] [CrossRef]
- Zhang, L.; Song, B.; Choi, S.-K.; Shi, Y. A topology strategy to reduce stress-shielding of additively manufactured porous metallic biomaterials. Int. J. Mech. Sci. 2021, 197, 106331. [Google Scholar] [CrossRef]
- Hsiang Loh, G.; Pei, E.; Harrison, D.; Monzón, M.D. An overview of functionally graded additive manufacturing. Addit. Manuf. 2018, 23, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Naebe, M.; Shirvanimoghaddam, K. Functionally graded materials: A review of fabrication and properties. Appl. Mater. Today 2016, 5, 223–245. [Google Scholar] [CrossRef]
- Shi, H.; Zhou, P.; Li, J.; Liu, C.; Wang, L. Functional Gradient Metallic Biomaterials: Techniques, Current Scenery, and Future Prospects in the Biomedical Field. Front. Bioeng. Biotechnol. 2021, 18, 616845. [Google Scholar] [CrossRef]
- Sola, A.; Bellucci, D.; Cannillo, V. Functionally graded materials for orthopedic applications—An update on design and manufacturing. Biotechnol. Adv. 2016, 34, 504–531. [Google Scholar] [CrossRef]
- Gok, M.G. Creation and finite-element analysis of multi-lattice structure design in hip stem implant to reduce the stress-shielding effect. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2022, 236, 429–439. [Google Scholar] [CrossRef]
- Trevisan, F.; Calignano, F.; Aversa, A.; Marchese, G.; Lombardi, M.; Biamino, S.; Ugues, D.; Manfredi, D. Additive manufacturing of titanium alloys in the biomedical field: Processes, properties and applications. J. Appl. Biomater. Funct. Mater. 2018, 16, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Murr, L.E.; Gaytan, S.M.; Medina, F.; Lopez, H.; Martinez, E.; Machado, B.I.; Hernandez, D.H.; Martinez, L.; Lopez, M.I.; Wicker, R.B.; et al. Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philos. Trans. A Math. Phys. Eng. Sci. 2010, 368, 1999–2032. [Google Scholar] [CrossRef] [Green Version]
- Oshkour, A.A.; Abu Osman, N.A.; Yau, Y.H.; Tarlochan, F.; Abas, W.A. Design of new generation femoral prostheses using functionally graded materials: A finite element analysis. Proc. Inst. Mech. Eng. H 2013, 227, 3–17. [Google Scholar] [CrossRef]
- Ahirwar, H.; Sahu, A.; Gupta, V.K.; Kumar, P.; Nanda, H.S. Design and finite element analysis of femoral stem prosthesis using functional graded materials. Comput. Methods Biomech. Biomed. Eng. 2021, 23, 1–14. [Google Scholar] [CrossRef]
- Al-Jassir, F.F.; Fouad, H.; Alothman, O.Y. In vitro assessment of Function Graded (FG) artificial Hip joint stem in terms of bone/cement stresses: 3D Finite Element (FE) study. Biomed. Eng. Online 2013, 12, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, S.; Anand, A.; Singh, A.; Pal, B. Evaluation of mechanical properties of Ti-25Nb BCC porous cell structure and their association with structure porosity: A combined finite element analysis and analytical approach for orthopedic application. Proc. Inst. Mech. Eng. H 2021, 235, 827–837. [Google Scholar] [CrossRef] [PubMed]
- Hazlehurst, K.B.; Wang, C.J.; Stanford, M. The potential application of a Cobalt Chrome Molybdenum femoral stem with functionally graded orthotropic structures manufactured using Laser Melting technologies. Med. Hypotheses 2013, 81, 1096–1099. [Google Scholar] [CrossRef]
- Abdelaal, O.; Darwish, S.; El-Hofy, H.; Saito, Y. Patient-specific design process and evaluation of a hip prosthesis femoral stem. Int. J. Artif. Organs 2019, 42, 271–290. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Coles-Black, J.; Chen, G.; Alexander, M.; Chuen, J.; Hardidge, A. 3D Printed Patient-Specific Complex Hip Arthroplasty Models Streamline the Preoperative Surgical Workflow: A Pilot Study. Front. Surg. 2021, 8, 687379. [Google Scholar] [CrossRef] [PubMed]
- Haglin, J.M.; Eltorai, A.E.; Gil, J.A.; Marcaccio, S.E.; Botero-Hincapie, J.; Daniels, A.H. Patient-Specific Orthopaedic Implants. Orthop. Surg. 2016, 8, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Jacquet, C.; Flecher, X.; Pioger, C.; Fabre-Aubrespy, M.; Ollivier, M.; Argenson, J.N. Long-term results of custom-made femoral stems. Orthopade 2020, 49, 408–416. [Google Scholar] [CrossRef]
- Fontalis, A.; Epinette, J.A.; Thaler, M.; Zagra, L.; Khanduja, V.; Haddad, F.S. Advances and innovations in total hip arthroplasty. SICOT J. 2021, 7, 26. [Google Scholar] [CrossRef]
- Bartlett, J.D.; Lawrence, J.E.; Stewart, M.E.; Nakano, N.; Khanduja, V. Does virtual reality simulation have a role in training trauma and orthopaedic surgeons? Bone Jt. J. 2018, 100-B, 559–565. [Google Scholar] [CrossRef]
- Clarke, E. Virtual reality simulation—The future of orthopaedic training? A systematic review and narrative analysis. Adv. Simul. 2021, 6, 2. [Google Scholar] [CrossRef]
- Rivière, C.; Harman, C.; Logishetty, K.; Van Der Straeten, C. Hip Replacement: Its Development and Future. In Personalized Hip and Knee Joint Replacement [Internet]; Rivière, C., Vendittoli, P.A., Eds.; Springer: Cham, Switzerland, 2020; Chapter 3. [Google Scholar]
- Marsh, M.; Newman, S. Trends and developments in hip and knee arthroplasty technology. J. Rehabil. Assist. Technol. Eng. 2021, 8, 2055668320952043. [Google Scholar] [CrossRef] [PubMed]
Material/Tissue | Elastic Modulus E [GPa] |
---|---|
Cortical bone | 16 |
Spongy bone | 0.1 |
316L Stainless Steel | 200 |
Ti6Al4V Alloy | 110 |
CoCr Alloy | 230 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savio, D.; Bagno, A. When the Total Hip Replacement Fails: A Review on the Stress-Shielding Effect. Processes 2022, 10, 612. https://doi.org/10.3390/pr10030612
Savio D, Bagno A. When the Total Hip Replacement Fails: A Review on the Stress-Shielding Effect. Processes. 2022; 10(3):612. https://doi.org/10.3390/pr10030612
Chicago/Turabian StyleSavio, Davide, and Andrea Bagno. 2022. "When the Total Hip Replacement Fails: A Review on the Stress-Shielding Effect" Processes 10, no. 3: 612. https://doi.org/10.3390/pr10030612
APA StyleSavio, D., & Bagno, A. (2022). When the Total Hip Replacement Fails: A Review on the Stress-Shielding Effect. Processes, 10(3), 612. https://doi.org/10.3390/pr10030612