Soil Organic Carbon and Its Controlling Factors in the Lakeside of West Mauri Lake along the Wetland Vegetation Types
Abstract
:1. Introduction
2. Site Description and Study Methods
2.1. Site Description
2.2. Study Methods
2.2.1. Experimental Design
2.2.2. Soil Sampling
2.2.3. Determination of Soil Physiochemical Properties
2.2.4. Statistical Analysis
3. Results
3.1. Vertical Distribution of SOC on the Lakeside of West Mauri Lake
3.2. Seasonal Dynamics of SOC in the Lakeside of West Mauri Lake
3.3. Change in SOC along the Lakeside of West Mauri Lake
3.4. Analysis of Influencing Factors of SOC in the Lakeside of West Mauri Lake
4. Discussion
4.1. Vertical Distribution of SOC in the Lakeside of West Mauri Lake
4.2. Changes in SOC in the Lakeside of West Mauri Lake
4.3. Correlation between SOC and Influencing Factors in the Lakeside of West Mauri Lake
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Keddy, P.A. Wetland Ecology: Principles and Conservation, 2nd ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Comer-Warner, S.A.; Nguyen, A.T.Q.; Nguyen, M.N.; Wang, M.L.; Turner, A.; Le, H.; Sgouridis, F.; Krause, S.; Kettridge, N.; Nguyen, N.; et al. Restoration Impacts on Rates of Denitrification and Greenhouse Gas Fluxes from Tropical Coastal Wetlands. Sci. Total Environ. 2022, 803, 13. [Google Scholar] [CrossRef] [PubMed]
- Gardner, R.C.; Barchiesi, S.; Beltrame, C.; Finlayson, C.M.; Galewski, T.; Harrison, I.; Paganini, M.; Perennou, C.; Pritchard, D.E.; Rosenqvist, A.; et al. State of the World’s Wetlands and Their Services to People: A Compilation of Recent Analyses; Ramsar Convention Secretariat: Gland, Switzerland, 2015. [Google Scholar]
- Chmura, G.L.; Anisfeld, S.C.; Cahoon, D.R.; Lynch, J.C. Global Carbon Sequestration in Tidal, Saline Wetland Soils. Glob. Biogeochem. Cycles 2003, 17, 1111. [Google Scholar] [CrossRef]
- Duarte, C.M.; Middelburg, J.J.; Caraco, N. Major Role of Marine Vegetation on the Oceanic Carbon Cycle. Biogeosciences 2005, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sahagian, D.; Melack, J. Global Wetland Distribution and Functional Characterization: Trace Gases and the Hydrologic Cycle; International Geosphere-Biosphere Programme (IGBP): Stockholm, Sweden, 1998. [Google Scholar]
- Ludwig, B.; Geisseler, D.; Michel, K.; Joergensen, R.G.; Schulz, E.; Merbach, I.; Raupp, J.; Rauber, R.; Hu, K.; Niu, L.; et al. Effects of Fertilization and Soil Management on Crop Yields and Carbon Stabilization in Soils. A Review. Agron. Sustain. Dev. 2011, 31, 361–372. [Google Scholar] [CrossRef] [Green Version]
- Mitsch, W.J.; Gosselink, J.G. Wetlands, 4th ed.; John Wiley & Sons Inc.: New York, NY, USA, 2007. [Google Scholar]
- Mitra, S.; Wassmann, R.; Vlek, P.L.G. An Appraisal of Global Wetland Area and Its Organic Carbon Stock. Curr. Sci. 2005, 88, 25–35. [Google Scholar]
- Zheng, Y.; Niu, Z.; Gong, P.; Dai, Y.; Shangguan, W. Preliminary Estimation of the Organic Carbon Pool in China’s Wetlands. Chin. Sci. Bull. 2013, 58, 662–670. [Google Scholar] [CrossRef] [Green Version]
- Minick, K.J.; Mitra, B.; Li, X.F.; Fischer, M.; Aguilos, M.; Prajapati, P.; Noormets, A.; King, J.S. Wetland Microtopography Alters Response of Potential Net CO2 and CH4 Production to Temperature and Moisture: Evidence from a Laboratory Experiment. Geoderma 2021, 402, 13. [Google Scholar] [CrossRef]
- Liu, S.W.; Zheng, Y.J.; Ma, R.Y.; Yu, K.; Han, Z.Q.; Xiao, S.Q.; Li, Z.F.; Wu, S.; Li, S.Q.; Wang, J.Y.; et al. Increased Soil Release of Greenhouse Gases Shrinks Terrestrial Carbon Uptake Enhancement under Warming. Glob. Chang. Biol. 2020, 26, 4601–4613. [Google Scholar] [CrossRef]
- Qi, Q.; Zhang, D.J.; Zhang, M.Y.; Tong, S.Z.; Wang, W.H.; An, Y. Spatial Distribution of Soil Organic Carbon and Total Nitrogen in Disturbed Carex Tussock Wetland. Ecol. Indic. 2021, 120, 8. [Google Scholar] [CrossRef]
- Xiong, X.; Grunwald, S.; Myers, D.B.; Ross, C.W.; Harris, W.G.; Comerford, N.B. Interaction Effects of Climate and Land Use/Land Cover Change on Soil Organic Carbon Sequestration. Sci. Total Environ. 2014, 493, 974–982. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.X.; Ma, H.Y.; Qian, J.; Chang, J. Impact of Land Use Changes on Soil Carbon, Nitrogen and Phosphorus and Water Pollution in an Arid Region of Northwest China. Soil Use Manag. 2004, 20, 32–39. [Google Scholar] [CrossRef]
- Zhang, J.; Song, C.; Wang, S. Short-Term Dynamics of Carbon and Nitrogen after Tillage in a Freshwater Marsh of Northeast China. Soil Tillage Res. 2008, 99, 149–157. [Google Scholar] [CrossRef]
- Grasset, C.; Rodriguez, C.; Delolme, C.; Marmonier, P.; Bornette, G. Can Soil Organic Carbon Fractions Be Used as Functional Indicators of Wetlands? Wetlands 2017, 37, 1195–1205. [Google Scholar] [CrossRef]
- Liang, Y.K.; Dong, W.H.; Wu, X.C.; Xie, W. Changes and Vertical Distribution Characteristics of Soil Organic Carbon in Different Land Cover Types in Honghe Wetland of Sanjiang Plain, China. Curr. Sci. 2018, 114, 1055–1062. [Google Scholar] [CrossRef]
- Pearse, A.L.; Barton, J.L.; Lester, R.E.; Zawadzki, A.; Macreadie, P.I. Soil Organic Carbon Variability in Australian Temperate Freshwater Wetlands. Limnol. Oceanogr. 2018, 63, S254–S266. [Google Scholar] [CrossRef]
- Tao, B.X.; Wang, Y.P.; Yu, Y.; Li, Q.Z.; Luo, C.Y.; Zhang, B.H. Interactive Effects of Nitrogen Forms and Temperature on Soil Organic Carbon Decomposition in the Coastal Wetland of the Yellow River Delta, China. Catena 2018, 165, 408–413. [Google Scholar] [CrossRef]
- Coops, H.; Beklioglu, M.; Crisman, T.L. The Role of Water-Level Fluctuations in Shallow Lake Ecosystems—Workshop Conclusions. Hydrobiologia 2003, 506, 23–27. [Google Scholar] [CrossRef]
- Dai, X.; Wan, R.R.; Yang, G.S.; Wang, X.L.; Xu, L.G. Responses of Wetland Vegetation in Poyang Lake, China to Water-Level Fluctuations. Hydrobiologia 2016, 773, 35–47. [Google Scholar] [CrossRef]
- Hu, J.Y.; Xie, Y.H.; Tang, Y.; Li, F.; Zou, Y.A. Changes of Vegetation Distribution in the East Dongting Lake After the Operation of the Three Gorges Dam, China. Front. Plant Sci. 2018, 9, 582. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Page, A.L., Ed.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982; pp. 539–579. [Google Scholar]
- Bremner, J.M. Nitrogen-total. In Methods of Soil Analysis. Part 3-Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1996; pp. 1085–1122. ISBN 0891188258. [Google Scholar]
- Watanabe, F.S.; Olsen, S.R. Test of an Ascorbic Acid Method for Determining Phosphorus in Water and NaHCO3 Extracts from Soil. Soil Sci. Soc. Am. J. 1965, 291, 677–678. [Google Scholar] [CrossRef]
- Hanlon, E.A. Elemental determination by atomic absorption spectrophotometry. In Handbook of Reference Methods for Plant Analysis; Kalra, Y.P., Ed.; CRC Press: Boca Raton, FL, USA, 1998; pp. 157–164. [Google Scholar]
- Yin, S.; Bai, J.H.; Wang, W.; Zhang, G.L.; Jia, J.; Cui, B.S.; Liu, X.H. Effects of Soil Moisture on Carbon Mineralization in Floodplain Wetlands with Different Flooding Frequencies. J. Hydrol. 2019, 574, 1074–1084. [Google Scholar] [CrossRef]
- Wang, Y.H.; Jiao, L. Study of the Characteristics and Storage of Soil Organic Carbon in the Ebinur Lake Weland. Acta Ecol. Sin. 2016, 36, 1–9. [Google Scholar]
- Jobbagy, E.G.; Jackson, R.B. The Distribution of Soil Nutrients with Depth: Global Patterns and the Imprint of Plants. Biogeochemistry 2001, 53, 51–77. [Google Scholar] [CrossRef]
- Shao, X.X.; Yang, W.Y.; Wu, M.; Jiang, K.Y. Soil Organic Carbon Content and Its Distribution Pattern in Hangzhou Bay Coastal Wetlands. Chin. J. Appl. Ecol. 2011, 22, 658–664. [Google Scholar]
- Liu, J.; Zhou, H.; Qin, P.; Zhou, J. Effects of Spartina Alterniflora Salt Marshes on Organic Carbon Acquisition in Intertidal Zones of Jiangsu Province, China. Ecol. Eng. 2007, 30, 240–249. [Google Scholar] [CrossRef]
- Zhou, L.; Yin, S.; An, S.; Yang, W.; Deng, Q.; Xie, D.; Ji, H.; Ouyang, Y.; Cheng, X. Spartina Alterniflora Invasion Alters Carbon Exchange and Soil Organic Carbon in Eastern Salt Marsh of China. CLEAN Soil Air Water 2015, 43, 569–576. [Google Scholar] [CrossRef]
- Chivers, M.R.; Turetsky, M.R.; Waddington, J.M.; Harden, J.W.; McGuire, A.D. Effects of Experimental Water Table and Temperature Manipulations on Ecosystem CO2 Fluxes in an Alaskan Rich Fen. Ecosystems 2009, 12, 1329–1342. [Google Scholar] [CrossRef]
- Krauss, K.W.; Whitbeck, J.L.; Howard, R.J. On the Relative Roles of Hydrology, Salinity, Temperature, and Root Productivity in Controlling Soil Respiration from Coastal Swamps (Freshwater). Plant Soil 2012, 358, 265–274. [Google Scholar] [CrossRef]
- Yang, W.; Zhao, H.; Chen, X.; Yin, S.; Cheng, X.; An, S. Consequences of Short-Term C-4 Plant Spartina Alterniflora Invasions for Soil Organic Carbon Dynamics in a Coastal Wetland of Eastern China. Ecol. Eng. 2013, 61, 50–57. [Google Scholar] [CrossRef]
- Wang, G.B.; Ruan, H.H.; Tang, Y.F.; He, R. A Review on the Dynamics of Soil Microbial Biomass in Forest Ecosystems. J. Anhui Agric. Univ. 2009, 36, 100–104. [Google Scholar]
- Jiao, H.J.; Lu, J.W. Study on Soil Structure, Carbon and Nitrogen Characteristics during Natural Restoration of Degraded Wetland in Lakeside Zone. Beijing Water J. 2012, 4, 21–24. [Google Scholar]
- Li, Y.; Han, Q.; Liu, X.Y.; Zhao, L.; Zhang, Q.C. Characteristic of Soil Nutrient Restoration under Different Modes of Returning Farmlands to Wetlands in the Riparian Wetlands of Wuyu’er River. Wetl. Sci. 2016, 14, 578–581. [Google Scholar]
- Miao, L.; Yang, X.T.; Wang, T.; Sun, Y.J.; Zhang, J. Seasonal Dynamics and Content of Soil Organic Carbon of Southern Foot of Taihang Mountains during Different Natural Successions. J. Henan Agric. Univ. 2016, 50, 318–324. [Google Scholar]
- Ju, X.T.; Xing, G.X.; Chen, X.P.; Zhang, S.L.; Zhang, L.J.; Liu, X.J.; Cui, Z.L.; Yin, B.; Christie, P.; Zhu, Z.L.; et al. Reducing Environmental Risk by Improving N Management in Intensive Chinese Agricultural Systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.L.; Chen, D.L. Nitrogen Fertilizer Use in China—Contributions to Food Production, Impacts on the Environment and Best Management Strategies. Nutr. Cycl. Agroecosyst. 2002, 63, 117–127. [Google Scholar] [CrossRef]
- Kristek, S.; Resic, I.; Jovic, J.; Rasic, S.; Varga, I.; Lenart, L.; Kispal, H.; Antunovic, M. Possibility of Minearl Nitrogen Fertilization Reduction by Applying Beneficial Microoganisms. Listy Cukrovarnické a Reparské 2017, 133, 90–93. [Google Scholar]
- Winder, M. Limnology: Lake Warming Mimics Fertilization. Nat. Clim. Chang. 2012, 2, 771–772. [Google Scholar] [CrossRef]
- Conley, D.J.; Paerl, H.W.; Howarth, R.W.; Boesch, D.F.; Seitzinger, S.P.; Havens, K.E.; Lancelot, C.; Likens, G.E. Controlling Eutrophication: Nitrogen and Phosphorus. Science 2009, 323, 1014–1015. [Google Scholar] [CrossRef]
Organic Matter | Bulk Density | Moisture Content | Total N | Total P | Total K | Total Cd | Total Pb | Total Cr | Total Cu | Total Zn | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SOCD | r | 0.728 | 0.571 | 0.330 | 0.718 | 0.133 | −0.768 | 0.721 | 0.264 | −0.114 | −0.167 | −0.161 |
p | <0.001 | <0.001 | <0.001 | <0.001 | 0.139 | <0.001 | <0.001 | 0.009 | 0.269 | 0.105 | 0.116 | |
Organic matter | r | −0.089 | 0.579 | 0.983 | 0.373 | −0.081 | 0.731 | 0.210 | −0.236 | −0.212 | −0.158 | |
p | 0.320 | <0.001 | <0.001 | <0.001 | 0.270 | <0.001 | 0.027 | 0.013 | 0.026 | 0.098 | ||
Bulk density | r | −0.081 | −0.092 | −0.559 | −0.883 | −0.471 | 0.048 | 0.368 | 0.222 | 0.163 | ||
p | 0.313 | 0.306 | <0.001 | <0.001 | <0.001 | 0.639 | <0.001 | 0.030 | 0.112 | |||
Moisture content | r | 0.559 | −0.194 | −0.249 | 0.580 | 0.221 | 0.011 | −0.097 | −0.055 | |||
p | <0.001 | 0.015 | 0.002 | <0.001 | 0.031 | 0.913 | 0.347 | 0.594 | ||||
Total N | r | 0.390 | −0.118 | 0.730 | 0.249 | −0.194 | −0.159 | −0.116 | ||||
p | <0.001 | 0.108 | <0.001 | 0.009 | 0.041 | 0.096 | 0.224 | |||||
Total P | r | 0.434 | 0.381 | 0.546 | 0.311 | 0.277 | 0.110 | |||||
p | <0.001 | <0.001 | <0.001 | 0.001 | 0.003 | 0.250 | ||||||
Total K | r | −0.467 | −0.022 | 0.329 | 0.438 | 0.422 | ||||||
p | <0.001 | 0.821 | <0.001 | <0.001 | <0.001 | |||||||
Total Cd | r | 0.377 | −0.087 | −0.011 | −0.026 | |||||||
p | <0.001 | 0.366 | 0.911 | 0.790 | ||||||||
Total Pb | r | 0.543 | 0.365 | 0.234 | ||||||||
p | <0.001 | <0.001 | 0.013 | |||||||||
Total Cr | r | 0.487 | 0.404 | |||||||||
p | <0.001 | <0.001 | ||||||||||
Total Cu | r | 0.484 | ||||||||||
p | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, D.; Jiang, L.; Wu, X.; Liu, W.; Huang, R. Soil Organic Carbon and Its Controlling Factors in the Lakeside of West Mauri Lake along the Wetland Vegetation Types. Processes 2022, 10, 765. https://doi.org/10.3390/pr10040765
Lei D, Jiang L, Wu X, Liu W, Huang R. Soil Organic Carbon and Its Controlling Factors in the Lakeside of West Mauri Lake along the Wetland Vegetation Types. Processes. 2022; 10(4):765. https://doi.org/10.3390/pr10040765
Chicago/Turabian StyleLei, Dian, Lijuan Jiang, Xiaofu Wu, Wensheng Liu, and Rong Huang. 2022. "Soil Organic Carbon and Its Controlling Factors in the Lakeside of West Mauri Lake along the Wetland Vegetation Types" Processes 10, no. 4: 765. https://doi.org/10.3390/pr10040765
APA StyleLei, D., Jiang, L., Wu, X., Liu, W., & Huang, R. (2022). Soil Organic Carbon and Its Controlling Factors in the Lakeside of West Mauri Lake along the Wetland Vegetation Types. Processes, 10(4), 765. https://doi.org/10.3390/pr10040765