Effect of the Vortex Finder and Feed Parameters on the Short-Circuit Flow and Separation Performance of a Hydrocyclone
Abstract
:1. Introduction
2. Mathematical Model
2.1. Geometric Parameters of a Hydrocyclone
2.2. Model Description
2.3. Simulation Conditions and Boundary Condition
2.4. Model Validation
3. Characteristics of Short-Circuit Flow
3.1. Structural Form of Short-Circuit Flow
3.2. Calculation Method of the Short-Circuit Flow
4. Effects of the Geometric and Operating Parameters on the Short-Circuit Flow and Separation Efficiency
4.1. Effects of the Geometric Parameters on the Short-Circuit Flow and Separation Efficiency
4.1.1. Vortex Finder Diameter
4.1.2. Vortex Finder Wall Thickness
4.1.3. Vortex Finder Length
4.2. Effects of the Operating Parameters on the Short-Circuit Flow and Separation Efficiency
4.2.1. Inlet Velocity
4.2.2. Feed Concentration
4.3. Comparison and Analysis
5. Conclusions
- (1)
- The influence of the structural parameters of the vortex finder on the short-circuit flow and separation efficiency was clarified. It is effective by reducing the vortex finder diameter, increasing the vortex finder wall thickness, and adopting the moderate vortex finder length to inhibit the short-circuit flow and decrease the particle cut size.
- (2)
- The effects of inlet velocity and feed concentration on the short-circuit flow and separation efficiency were obtained. The faster inlet velocity and higher feed concentration can improve the processing efficiency of the hydrocyclone. Furthermore, the relatively faster inlet velocity and lower feed concentration could decrease the particle cut size and improve the separation efficiency.
- (3)
- The comparison of the influence degree of each parameter shows that the vortex finder wall thickness, vortex finder length, and inlet velocity have a greater influence on the short-circuit flow. Especially for the vortex finder wall thickness, the 1.5 mm increase in the wall thickness could decrease the short-circuit flow 2.65 × 10−3 kg·s−1, accounting for 7.37% of the inlet flow.
- (4)
- Compared with the structural parameters, the higher inlet velocity can effectively improve the separation performance. Furthermore, it is not feasible to improve the separation performance by unlimited increasing inlet velocity.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sakin, A.; Karagoz, I.; Avci, A. Effects of separation space diameter on the performance of a novel reverse flow cyclone. Sep. Sci. Technol. 2019, 54, 2450–2460. [Google Scholar] [CrossRef]
- Yu, J.; Fu, J. Separation performance of an 8 mm mini-hydrocyclone and its application to the treatment of rice starch wastewater. Sep. Sci. Technol. 2020, 55, 313–320. [Google Scholar] [CrossRef]
- Bretney, E. Water Purifier. US Patent 453105, 26 May 1891. [Google Scholar]
- Yuan, H.; Chen, G.; Yu, J. Study on short circuit flow under hydraulic cyclone cover. Fluid Mach. 2000, 28, 10–12. [Google Scholar]
- Fu, X.; Sun, G.; Liu, J.; Shi, M. Discuss on estimation difficulties and numerical computation methods for short circuit flow in cyclone separators. J. Chem. Ind. Eng. 2011, 62, 2535–2540. [Google Scholar]
- Li, F.; Liu, P.; Yang, X.; Zhang, Y.; Jiang, L.; Wang, H. Numerical analysis of the effect of solid rod on the flow field and separation performance of thick-walled overflow pipe hydrocyclone. Powder Technol. 2021, 388, 261–273. [Google Scholar] [CrossRef]
- Bradley, D.; Pulling, D.J. Flow patterns in the hydraulic cyclone and their interpretation in terms of performance. Trans. Inst. Chem. Eng. 1959, 37, 34–45. [Google Scholar]
- Bloor, M.I.G.; Ingham, D.B. Theoretical investigation of flow in a conical hydrocyclone. Trans. Inst. Chem. Eng. 1973, 51, 36–41. [Google Scholar]
- Kelsall, D.F. A further study of the hydraulic cyclone. Chem. Eng. Sci. 1953, 2, 254–272. [Google Scholar] [CrossRef]
- Wang, B.; Chu, K.W.; Yu, A.B. Numerical study of particle-fluid flow in a hydrocyclone. Ind. Eng. Chem. Res. 2007, 46, 4695–4705. [Google Scholar] [CrossRef]
- Wang, B.; Chu, K.W.; Yu, A.B.; Vince, A. Modeling the Multiphase Flow in a Dense Medium Cyclone. Ind. Eng. Chem. Res. 2009, 48, 3628–3639. [Google Scholar] [CrossRef]
- Zhao, Q.; Cui, B.Y.; Wei, D.Z.; Song, T.; Feng, Y.Q. Numerical analysis of the flow field and separation performance in hydrocyclones with different vortex finder wall thickness. Powder Technol. 2019, 345, 478–491. [Google Scholar] [CrossRef]
- Huang, X.; Qian, F. Effect of the improvement of inlet geometry of cyclone separators on shortcut flow rate. J. Filtr. Sep. 2008, 11–13. [Google Scholar]
- Xu, J.R.; Luo, Q.; Qiu, J.C. Research on the preseparation space in hydrocyclones. Int. J. Miner. Process. 1991, 31, 1–10. [Google Scholar] [CrossRef]
- Tang, B.; Xu, Y.X.; Song, X.F.; Sun, Z.; Yu, J.G. Numerical study on the relationship between high sharpness and configurations of the vortex finder of a hydrocyclone by central composite design. Chem. Eng. J. 2015, 278, 504–516. [Google Scholar] [CrossRef]
- Vakamalla, T.R.; Koruprolu, V.B.R.; Arugonda, R.; Mangadoddy, N. Development of novel hydrocyclone designs for improved fines classification using multiphase CFD model. Sep. Purif. Technol. 2017, 175, 481–497. [Google Scholar] [CrossRef]
- Zhu, G.F.; Liow, J.L.; Neely, A. Computational study of the flow characteristics and separation efficiency in a mini-hydrocyclone. Chem. Eng. Res. Des. 2012, 90, 2135–2147. [Google Scholar] [CrossRef]
- Murphy, S.; Delfos, R.; Pourquie, M.; Olujic, Z.; Jansens, P.J.; Nieuwstadt, F.T.M. Prediction of strongly swirling flow within an axial hydrocyclone using two commercial CFD codes. Chem. Eng. Sci. 2007, 62, 1619–1635. [Google Scholar] [CrossRef]
- Lee, H.; Park, J.; Lee, J.C.; Ko, K.; Seo, Y. Development of a hydrocyclone for ultra-low flow rates. Chem. Eng. Res. Des. 2020, 156, 100–107. [Google Scholar] [CrossRef]
- Lu, Y.J.; Zhou, L.X. Numerical simulation of fluid flow and oil-water separation in hydrocyclones. Chin. J. Chem. Eng. 2003, 11, 97–101. [Google Scholar]
- Wang, B.; Pei, B.B.; Liu, H.; Jiang, Y.C.; Xu, D.L.; Chen, Y.X. Function and effect of the inner vortex on the performance of cyclone separators. AlChE J. 2017, 63, 4508–4518. [Google Scholar] [CrossRef]
- Lim, E.W.C.; Chen, Y.R.; Wang, C.H.; Wu, R.M. Experimental and computational studies of multiphase hydrodynamics in a hydrocyclone separator system. Chem. Eng. Sci. 2010, 65, 6415–6424. [Google Scholar] [CrossRef]
- Liu, M.L.; Chen, J.Q.; Cai, X.L.; Han, Y.H.; Xiong, S. Oil-water pre-separation with a novel axial hydrocyclone. Chin. J. Chem. Eng. 2018, 26, 60–66. [Google Scholar] [CrossRef]
- Mokni, I.; Dhaouad, H.; Bournot, P.; Mhiri, H. Numerical investigation of the effect of the cylindrical height on separation performances of uniflow hydrocyclone. Chem. Eng. Sci. 2015, 122, 500–513. [Google Scholar] [CrossRef]
- Evans, W.K.; Suksangpanomrung, A.; Nowakowski, A.F. The simulation of the flow within a hydrocyclone operating with an air core and with an inserted metal rod. Chem. Eng. J. 2008, 143, 51–61. [Google Scholar] [CrossRef]
- Xu, Y.X.; Song, X.F.; Sun, Z.; Tang, B.; Li, P.; Yu, J.G. Numerical Investigation of the Effect of the Ratio of the Vortex-Finder Diameter to the Spigot Diameter on the Steady State of the Air Core in a Hydrocyclone. Ind. Eng. Chem. Res. 2013, 52, 5470–5478. [Google Scholar] [CrossRef]
- Cui, B.Y.; Wei, D.Z.; Gao, S.L.; Liu, W.G.; Feng, Y.Q. Numerical and experimental studies of flow field in hydrocyclone with air core. T. Nonferr. Metal. Soc. 2014, 24, 2642–2649. [Google Scholar] [CrossRef]
- Pang, X. Technical Calculation of Hydrocyclone; China Petrochemical Press: Beijing, China, 1997. [Google Scholar]
- Zhang, C.; Wei, D.Z.; Cui, B.Y.; Li, T.S.; Luo, N. Effects of curvature radius on separation behaviors of the hydrocyclone with a tangent-circle inlet. Powder Technol. 2017, 305, 156–165. [Google Scholar] [CrossRef]
- Cui, B.Y.; Zhang, C.E.; Zhao, Q.; Hou, D.X.; Wei, D.Z.; Song, T.; Feng, Y.Q. Study on interaction effects between the hydrocyclone feed flow rate and the feed size distribution. Powder Technol. 2020, 366, 617–628. [Google Scholar] [CrossRef]
- Wang, B.; Yu, A.B. Numerical study of the gas-liquid-solid flow in hydrocyclones with different configuration of vortex finder. Chem. Eng. J. 2008, 135, 33–42. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Q.; Qian, P.; Wang, H.L. Experimental study of circulation flow in a light dispersion hydrocyclone. Sep. Purif. Technol. 2014, 137, 66–73. [Google Scholar] [CrossRef]
Sequence Number | Influencing Factors | ||||
---|---|---|---|---|---|
do/mm | δ/mm | ho/mm | v/m·s−1 | cv/% | |
1 | 2.0 | 6.0 | |||
2 | 2.2 | 0.5 | 2.0 | 8.0 | |
3 | 2.4 | 1.0 | 4.0 | 10.0 | 1.0 |
4 (Base_H) | 2.6 | 1.5 | 6.0 | 12.0 | 2.0 |
5 | 2.8 | 2.0 | 8.0 | 14.0 | 3.0 |
6 | 3.0 | 10.0 | 16.0 | 4.0 | |
7 | 3.2 | 12.0 | 18.0 | 5.0 | |
8 | 14.0 | 6.0 | |||
9 | 16.0 |
Size Interval/μm | Mean Size/μm | Yield/% |
---|---|---|
−60 + 40 | 52.5 | 4.26 |
−40 + 35 | 37.5 | 3.14 |
−35 + 30 | 32.5 | 4.72 |
−30 + 25 | 27.5 | 6.9 |
−25 + 20 | 22.5 | 9.77 |
−20 + 18 | 19 | 4.85 |
−18 + 16 | 17 | 5.42 |
−16 + 14 | 15 | 5.99 |
−14 + 12 | 13 | 6.52 |
−12 + 10 | 11 | 6.98 |
−10 + 8 | 9 | 7.37 |
−8 + 6 | 7 | 7.77 |
−6 + 4 | 5 | 8.58 |
−4 + 2 | 3 | 11 |
−2 | 1 | 6.73 |
Total | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, T.; Zhang, Y. Effect of the Vortex Finder and Feed Parameters on the Short-Circuit Flow and Separation Performance of a Hydrocyclone. Processes 2022, 10, 771. https://doi.org/10.3390/pr10040771
Su T, Zhang Y. Effect of the Vortex Finder and Feed Parameters on the Short-Circuit Flow and Separation Performance of a Hydrocyclone. Processes. 2022; 10(4):771. https://doi.org/10.3390/pr10040771
Chicago/Turabian StyleSu, Tenglong, and Yifei Zhang. 2022. "Effect of the Vortex Finder and Feed Parameters on the Short-Circuit Flow and Separation Performance of a Hydrocyclone" Processes 10, no. 4: 771. https://doi.org/10.3390/pr10040771
APA StyleSu, T., & Zhang, Y. (2022). Effect of the Vortex Finder and Feed Parameters on the Short-Circuit Flow and Separation Performance of a Hydrocyclone. Processes, 10(4), 771. https://doi.org/10.3390/pr10040771